首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Sulfide oxidation is expected to play an important role in cellular switching between low steady-state intracellular hydrogen sulfide levels and the higher concentrations where the physiological effects are elicited. Yet despite its significance, fundamental questions regarding how the sulfide oxidation pathway is wired remain unanswered, and competing proposals exist that diverge at the very first step catalyzed by sulfide quinone oxidoreductase (SQR). We demonstrate that, in addition to sulfite, glutathione functions as a persulfide acceptor for human SQR and that rhodanese preferentially synthesizes rather than utilizes thiosulfate. The kinetic behavior of these enzymes provides compelling evidence for the flow of sulfide via SQR to glutathione persulfide, which is then partitioned to thiosulfate or sulfite. Kinetic simulations at physiologically relevant metabolite concentrations provide additional support for the organizational logic of the sulfide oxidation pathway in which glutathione persulfide is the first intermediate formed.  相似文献   

2.
3.
Deenergized cells of Desulfovibrio desulfuricans strain Essex 6 formed trithionate and thiosulfate during reduction of sulfite with H2 or formate. The required conditions were pretreatment with the uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP), low concentration of the electron donor H2 or formate (25–200 M) and the presence of sulfite in excess (>250 M). The cells formed up to 20 M thiosulfate, and variable amounts of trithionate (0–9 M) and sulfide (0–62 M). Tetrathionate was not produced. Sulfate could not replace sulfite in these experiments, as deenergized cells cannot activate sulfate. However, up to 5 M thiosulfate was produced by cells growing with H2 and excess sulfate in a chemostat. Micromolar concentrations of trithionate were incompletely reduced to thiosulfate and sulfide by washed cells in the presence of CCCP. Millimolar trithionate concentrations blocked the formation of sulfide, even in the absence of CCCP, and caused thiosulfate accumulation; sulfide formation from sulfate, sulfite or thiosulfate was stopped, too. Trithionate reduction with H2 in the presence of thiocyanate was coupled to respiration-driven proton translocation (extrapolated H+/H2 ratios of 1.5±0.6). Up to 150 M trithionate was formed by washed cells during oxidation of sulfite plus thiosulfate with ferricyanide as electron acceptor (reversed trithionate reductase activity). Cell breakage resulted in drastic decrease of sulfide formation. Cell-free extract reduced sulfite incompletely to trithionate, thiosulfate, and sulfide. Thiosulfate was reduced stoichiometrically to sulfite and sulfide (thiosulfate reductase activity). The formation of sulfide from sulfite, thiosulfate or trithionate by cell-free extract was blocked by methyl viologen, leading to increased production of thiosulfate plus trithionate from sulfite, or increased thiosulfate formation from trithionate. Our study demonstrates for the first time the formation of intermediates during sulfite reduction with whole cells of a sulfate-reducing bacterium oxidizing physiological electron donors. All results are in accordance with the trithionate pathway of sulfite reduction.With gratitude dedicated to Prof. Dr. Norbert Pfennig on occasion of his 65th birthday  相似文献   

4.
Studies with (35)S-labeled substrates were conducted to investigate the pathway involved in the reduction of sulfite to sulfide by cell-free extracts of the sulfate-reducing organism Desulfovibrio vulgaris. The results showed that accumulation of thiosulfate occurred when crude extracts were incubated under appropriate conditions with sulfite as substrate. With labeled sulfite as substrate, thiosulfate with equal distribution of radioactivity in both sulfur atoms was formed. When the rates of formation of (35)S(2-) from inner- and outer-labeled thiosulfate were compared, the rate of formation from outer-labeled thiosulfate was greater. Time studies with S-(35)SO(3) (2-) showed an increase of (35)S(2-) with time and an increasing ratio of doubly labeled to inner labeled thiosulfate remaining in the reaction mixture. From these studies it is concluded that thiosulfate is a stable intermediate formed from sulfite during the reduction of sulfate by D. vulgaris. Both sulfur atoms are derived from sulfite; during the utilization of thiosulfate, the outer sulfur is reduced to sulfide and the inner sulfur recycles through a sulfite pool.  相似文献   

5.
Theissen U  Martin W 《The FEBS journal》2008,275(6):1131-1139
The lugworm Arenicola marina inhabits marine sediments in which sulfide concentrations can reach up to 2 mM. Although sulfide is a potent toxin for humans and most animals, because it inhibits mitochondrial cytochrome c oxidase at micromolar concentrations, A. marina can use electrons from sulfide for mitochondrial ATP production. In bacteria, electron transfer from sulfide to quinone is catalyzed by the membrane-bound flavoprotein sulfide : quinone oxidoreductase (SQR). A cDNA from A. marina was isolated and expressed in Saccharomyces cerevisiae, which lacks endogenous SQR. The heterologous enzyme was active in mitochondrial membranes. After affinity purification, Arenicola SQR isolated from yeast mitochondria reduced decyl-ubiquinone (K(m) = 6.4 microm) after the addition of sulfide (K(m) = 23 microm) only in the presence of cyanide (K(m) = 2.6 mM). The end product of the reaction was thiocyanate. When cyanide was substituted by Escherichia coli thioredoxin and sulfite, SQR exhibited one-tenth of the cyanide-dependent activity. Six amino acids known to be essential for bacterial SQR were exchanged by site-directed mutagenesis. None of the mutant enzymes was active after expression in yeast, implicating these amino acids in the catalytic mechanism of the eukaryotic enzyme.  相似文献   

6.
Reduced sulfur compound oxidation by Thiobacillus caldus.   总被引:7,自引:0,他引:7       下载免费PDF全文
The oxidation of reduced inorganic sulfur compounds was studied by using resting cells of the moderate thermophile Thiobacillus caldus strain KU. The oxygen consumption rate and total oxygen consumed were determined for the reduced sulfur compounds thiosulfate, tetrathionate, sulfur, sulfide, and sulfite in the absence and in the presence of inhibitors and uncouplers. The uncouplers 2,4-dinitrophenol and carbonyl cyanide m-chlorophenyl-hydrazone had no affect on the oxidation of thiosulfate, suggesting that thiosulfate is metabolized periplasmically. In contrast, the uncouplers completely inhibited the oxidation of tetrathionate, sulfide, sulfur, and sulfite, indicating that these compounds are metabolized in the cytoplasm of T. caldus KU. N-Ethylmaleimide inhibited the oxidation of tetrathionate and thiosulfate at the stage of elemental sulfur, while 2-heptyl-4-hydroxyquinoline-N-oxide stopped the oxidation of thiosulfate, tetrathionate, and elemental sulfur at the stage of sulfite. The following intermediates in the oxidation of the sulfur compounds were found by using uncouplers and inhibitors: thiosulfate was oxidized to tetrathionate, elemental sulfur was formed during the oxidation of tetrathionate and sulfide, and sulfite was found as an intermediate of tetrathionate and sulfur metabolism. On the basis of these data we propose a model for the metabolism of the reduced inorganic sulfur compounds by T. caldus KU.  相似文献   

7.
Summary Intact cells of Thiobacillus denitrificans catalyzed the oxidation of thiosulfate, sulfide and sulfite with nitrate or oxygen as the terminal acceptor. The anaerobic oxidation of thiosulfate, sulfide and sulfite was sensitive to the inhibitors of the flavoprotein system. Under aerobic conditions the oxidation of sulfide and sulfite was sensitive to these inhibitors but the thiosulfate oxidation was unaffected. Cyanide and azide inhibited the aerobic and anaerobic respiration when thiosulfate, sulfide or sulfite served as electron donors. The oxidation of thiosulfate by cell-free preparations was mediated by cytochromes of c, a and o-types. The cell-free extracts also catalyzed the oxidation of NADH and succinate, involving flavoproteins and b, c, a and o-type cytochromes. In addition, a cytochrome oxidase sensitive to cyanide and azide was also present.Non-Standard Abbreviations TTFA Thenoyltrifluoroacetone - HQNO 2-heptyl-4-hydroxyquonoline N-oxide Aspirant van het Nationaal Fonds voor Wetenschappelijk Onderzoek (Belgian National Science Foundation).  相似文献   

8.
Sulfide is a natural, widely distributed, poisonous substance, and sulfide:quinone oxidoreductase (SQR) is responsible for the initial oxidation of sulfide in mitochondria. In this study, we examined the response of SQR to sulfide exposure (25, 50, and 150 μM) at mRNA, protein, and enzyme activity levels in the body wall and hindgut of the echiuran worm Urechis unicinctus, a benthic organism living in marine sediments. The results revealed SQR mRNA expression during sulfide exposure in the body wall and hindgut increased in a time- and concentration-dependent manner that increased significantly at 12 h and continuously increased with time. At the protein level, SQR expression in the two tissues showed a time-dependent relationship that increased significantly at 12 h in 50 μM sulfide and 6 h in 150 μM, and then continued to increase with time while no significant increase appeared after 25 μM sulfide exposure. SQR enzyme activity in both tissues increased significantly in a time-dependent manner after 50 μM sulfide exposure. We concluded that SQR expression could be induced by sulfide exposure and that the two tissues studied have dissimilar sulfide metabolic patterns. A U. unicinctus sulfide-induced detoxification mechanism was also discussed.  相似文献   

9.
The SoxXAYZB(CD)2‐mediated pathway of bacterial sulfur‐chemolithotrophy explains the oxidation of thiosulfate, sulfide, sulfur and sulfite but not tetrathionate. Advenella kashmirensis, which oxidizes tetrathionate to sulfate, besides forming it as an intermediate during thiosulfate oxidation, possesses a soxCDYZAXOB operon. Knock‐out mutations proved that only SoxBCD is involved in A. kashmirensis tetrathionate oxidation, whereas thiosulfate‐to‐tetrathionate conversion is Sox independent. Expression of two glutathione metabolism‐related proteins increased under chemolithotrophic conditions, as compared to the chemoorganotrophic one. Substrate‐dependent oxygen consumption pattern of whole cells, and sulfur‐oxidizing enzyme activities of cell‐free extracts, measured in the presence/absence of thiol inhibitors/glutathione, corroborated glutathione involvement in tetrathionate oxidation. Furthermore, proteome analyses detected a sulfite:acceptor oxidoreductase (SorAB) exclusively under chemolithotrophic conditions, while expression of a methanol dehydrogenase (XoxF) homolog, subsequently named thiol dehydrotransferase (ThdT), was found to increase 3‐ and 10‐fold during thiosulfate‐to‐tetrathionate conversion and tetrathionate oxidation respectively. A thdT knock‐out mutant did not oxidize tetrathionate but converted half of the supplied 40 mM S‐thiosulfate to tetrathionate. Knock‐out of another thiosulfate dehydrogenase (tsdA) gene proved that both ThdT and TsdA individually converted ~ 20 mM S‐thiosulfate to tetrathionate. The overexpressed and isolated ThdT protein exhibited PQQ‐dependent thiosulfate dehydrogenation, whereas its PQQ‐independent thiol transfer activity involving tetrathionate and glutathione potentially produced a glutathione:sulfodisulfane adduct and sulfite. SoxBCD and SorAB were hypothesized to oxidize the aforesaid adduct and sulfite respectively.  相似文献   

10.
All of fourteen sulfate-reducing bacteria tested were able to carry out aerobic respiration with at least one of the following electron donors: H2, lactate, pyruvate, formate, acetate, butyrate, ethanol, sulfide, thiosulfate, sulfite. Generally, we did not obtain growth with O2 as electron acceptor. The bacteria were microaerophilic, since the respiration rates increased with decreasing O2 concentrations or ceased after repeated O2 additions. The amounts of O2 consumed indicated that the organic substrates were oxidized incompletely to acetate; only Desulfobacter postgatei oxidized acetate with O2 completely to CO2. Many of the strains oxidized sulfite (completely to sulfate) or sulfide (incompletely, except Desulfobulbus propionicus); thiosulfate was oxidized only by strains of Desulfovibrio desulfuricans; trithionate and tetrathionate were not oxidized by any of the strains. With Desulfovibrio desulfuricans CSN and Desulfobulbus propionicus the oxidation of inorganic sulfur compounds was characterized in detail. D. desulfuricans formed sulfate during oxidation of sulfite, thiosulfate or elemental sulfur prepared from polysulfide. D. propionicus oxidized sulfite and sulfide to sulfate, and elemental sulfur mainly to thiosulfate. A novel pathway that couples the sulfur and nitrogen cycles was detected: D. desulfuricans and (only with nitrite) D. propionicus were able to completely oxidize sulfide coupled to the reduction of nitrate or nitrite to ammonia. Cell-free extracts of both strains did not oxidize sulfide or thiosulfate, but formed ATP during oxidation of sulfite (37 nmol per 100 nmol sulfite). This, and the effects of AMP, pyrophosphate and molybdate on sulfite oxidation, suggested that sulfate is formed via the (reversed) sulfate activation pathway (involving APS reductase and ATP sulfurylase). Thiosulfate oxidation with O2 probably required a reductive first step, since it was obtained only with energized intact cells.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - APS adenosine phosphosulfate or adenylyl sulfate  相似文献   

11.
12.
The sulfate-reducing bacteriumDesulfobulbus propionicus oxidized sulfide, elemental sulfur, and sulfite to sulfate with oxygen as electron acceptor. Thiosulfate was reduced and disproportionated exclusively under anoxic conditions. When small pulses of oxygen were added to washed cells in sulfide-containing assays, up to 3 sulfide molecules per O2 disappeared transiently. After complete oxygen consumption, part of the sulfide reappeared. The intermediate formed was identified as elemental sulfur by chemical analysis and turbidity measurements. When excess sulfide was present, sulfur dissolved as polysulfide. This process was faster in the presence of cells than in their absence. The formation of sulfide after complete oxygen consumption was due to a disproportionation of elemental sulfur (or polysulfide) to sulfide and sulfate. The uncoupler tetrachlorosalicylanilide (TCS) and the electron transport inhibitor myxothiazol inhibited sulfide oxidation to sulfate and caused accumulation of sulfur. In the presence of the electron transport inhibitor 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO), sulfite and thiosulfate were formed. During sulfur oxidation at low oxygen concentrations, intermediary formation of sulfide was observed, indicating disproportionation of sulfur also under these conditions. It is concluded that sulfide oxidation inD. propionicus proceeds via oxidation to elemental sulfur, followed by sulfur disproportionation to sulfide and sulfate. Dedicated to Prof. Dr. Dr. h.c. Norbert Pfennig on the occasion of his 70th birthday  相似文献   

13.
Rhodanese is a component of the mitochondrial H2S oxidation pathway. Rhodanese catalyzes the transfer of sulfane sulfur from glutathione persulfide (GSSH) to sulfite generating thiosulfate and from thiosulfate to cyanide generating thiocyanate. Two polymorphic variations have been identified in the rhodanese coding sequence in the French Caucasian population. The first, 306A→C, has an allelic frequency of 1% and results in an E102D substitution in the encoded protein. The second polymorphism, 853C→G, has an allelic frequency of 5% and leads to a P285A substitution. In this study, we have examined differences in the stability between wild-type rhodanese and the E102D and P285A variants and in the kinetics of the sulfur transfer reactions. The Asp-102 and Ala-285 variants are more stable than wild-type rhodanese and exhibit kcat/Km,CN values that are 17- and 1.6-fold higher, respectively. All three rhodanese forms preferentially catalyze sulfur transfer from GSSH to sulfite, generating thiosulfate and glutathione. The kcat/Km,sulfite values for the variants in the sulfur transfer reaction from GSSH to sulfite were 1.6- (Asp-102) and 4-fold (Ala-285) lower than for wild-type rhodanese, whereas the kcat/Km,GSSH values were similar for all three enzymes. Thiosulfate-dependent H2S production in murine liver lysate is low, consistent with a role for rhodanese in sulfide oxidation. Our studies show that polymorphic variations that are distant from the active site differentially modulate the sulfurtransferase activity of human rhodanese to cyanide versus sulfite and might be important in differences in susceptibility to diseases where rhodanese dysfunction has been implicated, e.g. inflammatory bowel diseases.  相似文献   

14.
15.
The central protein of the four component sulfur oxidizing (Sox) enzyme system of Paracoccus pantotrophus, SoxYZ, carries at the SoxY subunit the covalently bound sulfur substrate which the other three proteins bind, oxidize, and release as sulfate. SoxYZ of different preparations resulted in different specific thiosulfate-oxidizing activities of the reconstituted Sox enzyme system. From these preparations SoxYZ was activated up to 24-fold by different reductants with disodium sulfide being the most effective and yielded a uniform specific activity of the Sox system. The activation comprised the activities with hydrogen sulfide, thiosulfate, and sulfite. Sulfide-activation decreased the predominant beta-sheet character of SoxYZ by 4%, which caused a change in its conformation as determined by infrared spectroscopy. Activation of SoxYZ by sulfide exposed the thiol of the C-terminal Cys-138 of SoxY as evident from alkylation by 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid. Also, SoxYZ activation enhanced the formation of the Sox(YZ)2 heterotetramer as evident from density gradient gel electrophoresis. The tetramer was formed due to an interprotein disulfide between SoxY to yield a SoxY-Y dimer as determined by combined high pressure liquid chromatography and mass spectrometry. The significance of the conformational change of SoxYZ and the interprotein disulfide between SoxY-Y is discussed.  相似文献   

16.
From aerobically grown cells of the extremely thermophilic, facultatively anaerobic chemolithoautotrophic archaebacterium Desulfurolobus ambivalens (DSM 3772), a soluble oxygenase reductase (SOR) was purified which was not detectable in anaerobically grown cells. In the presence of oxygen but not under a hydrogen atmosphere, the enzyme simultaneously produced sulfite, thiosulfate, and hydrogen sulfide from sulfur. Nonenzymatic control experiments showed that thiosulfate was produced mainly in a chemical reaction between sulfite and sulfur. The maximum specific activity of the purified SOR in sulfite production was 10.6 mumol/mg of protein at pH 7.4 and 85 degrees C. The ratio of sulfite to hydrogen sulfide production was 5:4 in the presence of zinc ions. The temperature range of enzyme activity was 50 to 108 degrees C, with a maximum at 85 degrees C. The molecular mass of the native SOR was 550 kilodaltons, determined by gel filtration. It consisted of identical subunits with an apparent molecular mass of 40 kilodaltons in sodium dodecyl sulfate-gel electrophoresis. The particle diameter in electron micrographs was 15 /+- 1.5 nm. The enzyme activity was inhibited by the thiol-binding reagents p-chloromercuribenzoic acid, N-ethyl maleimide, and 2-iodoacetic acid and by flavin adenine dinucleotide, Fe3+, and Fe2+. It was not affected by CN-, N3-, or reduced glutathione.  相似文献   

17.
The active site cysteine of pig liver thioltransferase was identified as Cys22. The kinetics of the reaction between Cys22 of the reduced enzyme and iodoacetic acid as a function of pH revealed that the active site sulfhydryl group had a pKa of 2.5. Incubation of reduced enzyme with [1-14C]cysteine prevented the inactivation of the enzyme by iodoacetic acid at pH 6.5, and no stable protein-cysteine disulfide was found when the enzyme was separated from excess [1-14C]cysteine, suggesting an intramolecular disulfide formation. The results suggested a reaction mechanism for thioltransferase. The thiolated Cys22 first initiates a nucleophilic attack on a disulfide substrate, resulting in the formation of an unstable mixed disulfide between Cys22 and the substrate. Subsequently, the sulfhydryl group at Cys25 is deprotonated as a result of micro-environmental changes within the active site domain, releasing the mixed disulfide and forming an intramolecular disulfide bond. Reduced glutathione, the second substrate, reduces the intramolecular disulfide forming a transient mixed disulfide which is then further reduced by glutathione to regenerate the reduced enzyme and form oxidized glutathione. The rate-limiting step for a typical reaction between a disulfide and reduced glutathione is proposed to be the reduction of the intramolecular disulfide form of the enzyme by reduced glutathione.  相似文献   

18.
The anaerobic oxidation of protoporphyrinogen to protoporphyrin was demonstrated in extracts of Desulfovibrio gigas. Protoporphyrin formation occurred in the presence of nitrite, hydroxylamine, sulfite, thiosulfate, ATP plus sulfate, NAD+, NADP+, flavin adenine dinucleotide, flavin mononucleotide, fumarate, 2,6-dichlorophenol-indophenol, methyl viologen, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. With dialyzed cell extracts, highest activities were observed with sulfite, NAD+, and NADP+ as electron acceptors. The enzyme for protoporphyrinogen oxidation was localized in the membrane of D. gigas and displayed optimal activity at pH 7.3 and 28 degrees C.  相似文献   

19.
Thiosulfate metabolism in Rhodopseudomonas palustris   总被引:1,自引:0,他引:1  
The cells of the purple nonsulfur bacterium Rhodopseudomonas palustris, Nakamura strain, are capable of oxidizing thiosulfate and sulfide both under the anaerobic conditions in the light and under the aerobic conditions in the dark. Regardless of the presence of thiosulfate in the medium, the cells contain thiosulfate reductase, rodanase, thiosulfate oxidase, and sulfite oxidase. However, the capability to oxidize thiosulfate and sulfide is induced in Rh. palustris after the cells have been incubated in the presence of thiosulfate for 2--4 hours. The process of induction is related to the synthesis of protein components. Decomposition of thiosulfate in Rh. palustris when its concentration in the medium is low (2--5 mM) is accompanied with the formation of an equimolar quantity of sulfate. When the concentration of thiosulfate is higher (10--20 mM), the products of its oxidation are tetrathionate and sulfate. Therefore, the metabolic pathway of thiosulfate in Rh. palustris depends on its concentration in the medium.  相似文献   

20.
During growth of Clostridium pasteurianum on sulfite, approximately half the sulfite was reduced to sulfide and half to thiosulfate. Sulfide was enriched in 32S or 34S at different stages of growth and thiosulfate was enriched in 32S, particularly in the sulfane atom. It is suggested that thiosulfate in these bacterial cultures arose from a secondary chemical reaction. The chemical formation of thiosulfate from sulfide and sulfite was also accompanied by sulfur isotope fractionation. The implications of these results with respect to 'inverse' isotopic effects are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号