首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The pod shattering or dehiscence is essential for the propagation of pod-bearing plant species in the wild, but it causes significant yield losses during harvest of domesticated crop plants. Identifying novel molecular makers, which are linked to seed-shattering genes, is needed to employ the molecular marker-assisted selection for efficiently developing shattering-resistant soybean varieties. In this study, a genetic linkage map was constructed using 115 recombinant inbred lines (RILs) developed from crosses between the pod shattering susceptible variety, Keunol, and resistant variety, Sinpaldal. A 180 K Axiom® SoyaSNPs data and pod shattering data from two environments in 2001 and 2015 were used to identify quantitative trait loci (QTL) for pod shattering. A major QTL was identified between two flanking single nucleotide polymorphism (SNP) markers, AX-90320801 and AX-90306327 on chromosome 16 with 1.3 cM interval, 857 kb of physical range. In sequence, genotype distribution analysis was conducted using extreme phenotype RILs. This could narrow down the QTL down to 153 kb on the physical map and was designated as qPDH1-KS with 6 annotated gene models. All exons within qPDH1-KS were sequenced and the 6 polymorphic SNPs affecting the amino acid sequence were identified. To develop universally available molecular markers, 38 Korean soybean cultivars were investigated by the association study using the 6 identified SNPs. Only two SNPs were strongly associated with the pod shattering. These two identified SNPs will help to identify the pod shattering responsible gene and to develop pod shattering-resistant soybean plants using marker-assisted selection.  相似文献   

2.
Pod dehiscence (shattering) is a major cause of yield loss in mechanical harvesting of soybeans. To develop useful selection markers, we conducted a high-resolution mapping of a major quantitative trait locus (QTL) controlling pod dehiscence, designated as qPDH1. The progeny of a residual heterozygous line, which was a recombinant inbred line segregating only for the genomic region around qPDH1, was screened for flanking markers to obtain various recombinants in the vicinity of the QTL. Analysis of the relationship between degree of pod dehiscence and graphical genotype of these lines confined the location of qPDH1 to a 134-kb region on chromosome 16 (formerly linkage group J), where ten putative genes were predicted to be present. None of these genes showed significant sequence homology with the Arabidopsis genes that have previously been reported to be associated with pod dehiscence, suggesting the presence of a novel gene and mechanism underlying pod dehiscence in soybean. Sequencing analysis of the parental shattering-resistant and -susceptible cultivars for the candidate genes revealed a high-frequency nucleotide polymorphism in this genomic region between the cultivars. Three markers were developed using insertion/deletion variations in the region. Polymorphism at these marker loci was basically conserved between diverse shattering-resistant and -susceptible cultivars/lines, suggesting the versatility and usefulness of these markers for marker-assisted selection.  相似文献   

3.
炸荚是野生大豆繁衍后代的一种原始自然属性,同时也是栽培大豆减产的主要原因之一,因此对其发生规律和分子遗传基础的研究具有重要的理论意义和潜在的育种应用价值。文章在剖析抗炸荚大豆荚部细胞学微观组织结构特征的基础上,总结了大豆炸荚的发生规律和大豆炸荚表型性状的鉴定指标与方法,介绍了抗炸荚种质鉴定与抗炸荚品种选育概况,同时详细阐述了大豆抗炸荚性状的分子遗传基础研究进展,最后对大豆抗炸荚性的研究与应用进行了展望。  相似文献   

4.
Cowpea (Vigna unguiculata (L.) Walp.) is a grain legume commonly grown and consumed in many parts of the tropics and subtropics. A genetic linkage map was constructed using simple sequence repeat (SSR) markers and a recombinant inbred (RI) population of159 individuals derived from a cross between the breeding line 524B, a California Blackeye, and 219-01, a perennial wild cowpea from Kenya. Out of 912 primer combinations predicted to amplify SSRs in cowpea, 639 reliably produced amplification products in PCR assays and 202 (31.6%) were polymorphic between the two parents. These polymorphic SSRs were used to construct a genetic map consisting of 11 linkage groups (LGs) spanning 677 cM, with an average distance between markers of 3 cM. Agronomic traits related to domestication (seed weight, pod shattering) were analyzed together with the genotypic data. Six quantitative trait loci (QTL) for seed size were revealed with the phenotypic variation ranging from 8.9 to 19.1%. Four QTL for pod shattering were identified with the phenotypic variation ranging from 6.4 to 17.2%. The QTL for seed size and pod shattering mainly cluster in two areas of LGs 1 and 10, facilitating the use of marker-assisted selection to eliminate undesirable wild phenotypes in breeding activities involving introgression of traits from wild germplasm. The generation of an SSR-based molecular map and additional trait-linked markers also contributes to the expanding tool kit available to cowpea breeders, especially in Africa.  相似文献   

5.
6.
The complete or partial loss of shattering ability occurred independently during the domestication of several crops. Therefore, the study of this trait can provide an understanding of the link between phenotypic and molecular convergent evolution. The genetic dissection of ‘pod shattering’ in Phaseolus vulgaris is achieved here using a population of introgression lines and next‐generation sequencing techniques. The ‘occurrence’ of the indehiscent phenotype (indehiscent versus dehiscent) depends on a major locus on chromosome 5. Furthermore, at least two additional genes are associated with the ‘level’ of shattering (number of shattering pods per plant: low versus high) and the ‘mode’ of shattering (non‐twisting versus twisting pods), with all of these loci contributing to the phenotype by epistatic interactions. Comparative mapping indicates that the major gene identified on common bean chromosome 5 corresponds to one of the four quantitative trait loci for pod shattering in Vigna unguiculata. None of the loci identified comprised genes that are homologs of the known shattering genes in Glycine max. Therefore, although convergent domestication can be determined by mutations at orthologous loci, this was only partially true for P. vulgaris and V. unguiculata, which are two phylogenetically closely related crop species, and this was not the case for the more distant P. vulgaris and G. max. Conversely, comparative mapping suggests that the convergent evolution of the indehiscent phenotype arose through mutations in different genes from the same underlying gene networks that are involved in secondary cell‐wall biosynthesis and lignin deposition patterning at the pod level.  相似文献   

7.
A reduction in pod shattering is one of the main components of grain legume domestication. Despite this, many domesticated legumes suffer serious yield losses due to shattering, particularly under arid conditions. Mutations related to pod shattering modify the twisting force of pod walls or the structural strength of the dehiscence zone in pod sutures. At a molecular level, a growing body of evidence indicates that these changes are controlled by a relatively small number of key genes that have been selected in parallel across grain legume species, supporting partial molecular convergence. Legume homologs of Arabidopsis thaliana silique shattering genes play only minor roles in legume pod shattering. Most domesticated grain legume species contain multiple shattering-resistance genes, with mutants of each gene typically showing only partial shattering resistance. Hence, crosses between varieties with different genes lead to transgressive segregation of shattering alleles, producing plants with either enhanced shattering resistance or atavistic susceptibility to the trait. The frequency of these resistance pod-shattering alleles is often positively correlated with environmental aridity. The continued development of pod-shattering-related functional information will be vital for breeding crops that are suited to the increasingly arid conditions expected in the coming decades.

Recent genetic, genomic, and phenotypic studies of pod shattering in grain legumes lay the foundation for breeding crops suited for increasingly arid conditions.  相似文献   

8.
Soybean seed and pod traits are important yield components. Selection for high yield style in seed and pod along with agronomic traits is a goal of many soybean breeders. The intention of this study was to identify quantitative trait loci (QTL) underlying seed and pod traits in soybean among eleven environments in China. 147 recombinant inbred lines were advanced through single-seed-descent method. The population was derived from a cross between Charleston (an American high yield soybean cultivar) and DongNong594 (a Chinese high yield soybean cultivar). A total of 157 polymorphic simple sequence repeat markers were used to construct a genetic linkage map. The phenotypic data of seed and pod traits [number of one-seed pod, number of two-seed pod, number of three-seed pod, number of four-seed pod, number of (two plus three)-seed pod, number of (three plus four)-seed pod, seed weight per plant, number of pod per plant] were recorded in eleven environments. In the analysis of single environment, fourteen main effect QTLs were identified. In the conjoint analysis of multiple environments, twenty-four additive QTLs were identified, and additive QTLs by environments interactions (AE) were evaluated and analyzed at the same time among eleven environments; twenty-three pairs of epistatic QTLs were identified, and epistasis (additive by additive) by environments interactions (AAE) were also analyzed and evaluated among eleven environments. Comparing the results of identification between single environment mapping and multiple environments conjoint mapping, three main effect QTLs with positive additive values and another three main effect QTLs with negative additive values, had no interactions with all environments, supported that these QTLs could be used in molecular assistant breeding in the future. These different effect QTLs could supply a good foundation to the gene clone and molecular asisstant breeding of soybean seed and pod traits.  相似文献   

9.
10.
Seed shattering refers to the phenomenon in which the pods split along the abdominal and back sutures before the crop is received, so that the seeds are spread. Seed shattering is vital to the reproduction of their offspring in wild plants, but it is also the main cause of crop yield loss reason. Pod-explosion resistance is a complex process of physical and physiological and biochemical reactions. Soybean seed shattering phenomenon is widespread, which severely restricts the development of soybean industry. Seed shattering (pod cracking or fruit dropping) is essential for the reproduction of its offspring in wild plants, but it is also the main cause of crop yield loss. This article analyzes the morphology and structure of pods related to seed shattering from the morphology of pods. On the basis of the regularity of the occurrence of seed shattering and the summary of phenotypic index identification methods, physiologically introduced the regulation mechanism of key enzymes and endogenous hormones on seed shattering. The localization, labeling and cloning of seed shattering genes are introduced in molecular biology. The study focused on reviewing the latest advances in the research on soybean seed shattering characteristics, and discussed with the research results of related crops. Finally, the research and application of soybean seed shattering resistance were prospected for several aspects.  相似文献   

11.
Increasing the yield of soybean (Glycine max L. Merrill) is a main aim of soybean breeding. The 100-seed weight is a critical factor for soybean yield. To facilitate genetic analysis of quantitative traits and to improve the accuracy of marker-assisted breeding in soybean, a valuable mapping population consisting of 194 chromosome segment substitution lines (CSSLs) was developed. In these lines, different chromosomal segments of the Chinese cultivar Suinong 14 were substituted into the genetic background of wild soybean (Glycine soja Sieb. & Zucc.) ZYD00006. Based on these CSSLs, a genetic map covering the full genome was generated using 121 simple sequence repeat (SSR) markers. In the quantitative trait loci (QTL) analysis, twelve main effect QTLs (qSW-B1-1/2/3, qSW-D1b-1/2, qSW-D2-1/2, qSW-G-1/2/3, qSW-M-2 and qSW-N-2) underlying 100-seed weight were identified in 2011 and 2012. The epistatic effects of pairwise interactions between markers were analyzed in 2011 and 2012. The results clearly demonstrated that these CSSLs could be used to identify QTLs, and that an epistatic analysis was able to detect several sites with important epistatic effects on 100-seed weight. Thus, we identified loci that will be valuable for improving soybean 100-seed weight. These results provide a valuable foundation for identifying the precise location of genes of interest, and for designing cloning and marker-assisted selection breeding strategies targeting the 100-seed weight of soybean.  相似文献   

12.
Epistatic association mapping in homozygous crop cultivars   总被引:4,自引:0,他引:4  
Lü HY  Liu XF  Wei SP  Zhang YM 《PloS one》2011,6(3):e17773
The genetic dissection of complex traits plays a crucial role in crop breeding. However, genetic analysis and crop breeding have heretofore been performed separately. In this study, we designed a new approach that integrates epistatic association analysis in crop cultivars with breeding by design. First, we proposed an epistatic association mapping (EAM) approach in homozygous crop cultivars. The phenotypic values of complex traits, along with molecular marker information, were used to perform EAM. In our EAM, all the main-effect quantitative trait loci (QTLs), environmental effects, QTL-by-environment interactions and QTL-by-QTL interactions were included in a full model and estimated by empirical Bayes approach. A series of Monte Carlo simulations was performed to confirm the reliability of the new method. Next, the information from all detected QTLs was used to mine novel alleles for each locus and to design elite cross combination. Finally, the new approach was adopted to dissect the genetic basis of seed length in 215 soybean cultivars obtained, by stratified random sampling, from 6 geographic ecotypes in China. As a result, 19 main-effect QTLs and 3 epistatic QTLs were identified, more than 10 novel alleles were mined and 3 elite parental combinations, such as Daqingdou and Zhengzhou790034, were predicted.  相似文献   

13.
Modification of seed dispersal was perhaps one of the most important steps towards domestication of seed crops. Among the legumes of the Middle East, four patterns of such modification can be distinguished in the process of domestication. The initial stage of domestication of lentil, pea and grass pea was apparently due to a single mutation in a major gene that prevented pod dehiscente. In chick pea the domesticated type was formed by accumulation of several mutations in minor genes that reduced the amount of pod dropping and shattering. From a seed dispersal point of view, fenugreek was preadapted to cultivation since the wild species do not shatter their seeds. In the bitter vetch and common vetch partial seed shattering apparently was tolerable and desirable under cultivation since the seed served merely for sowing the next year crop.  相似文献   

14.
As PCR methods have improved over the last 15 years, there has been an upsurge in the number of new DNA marker tools, which has allowed the generation of high-density molecular maps for all the key Brassica crop types. Biotechnology and molecular plant breeding have emerged as a significant tool for molecular understanding that led to a significant crop improvement in the Brassica napus species. Brassica napus possess a very complicated polyploidy-based genomics. The quantitative trait locus (QTL) is not sufficient to develop effective markers for trait introgression. In the coming years, the molecular marker techniques will be more effective to determine the whole genome impairing desired traits. Available genetic markers using the single-nucleotide sequence (SNP) technique and high-throughput sequencing are effective in determining the maps and genome polymorphisms amongst candidate genes and allele interactions. High-throughput sequencing and gene mapping techniques are involved in discovering new alleles and gene pairs, serving as a bridge between the gene map and genome evaluation. The decreasing cost for DNA sequencing will help in discovering full genome sequences with less resources and time. This review describes (1) the current use of integrated approaches, such as molecular marker technologies, to determine genome arrangements and interspecific outcomes combined with cost-effective genomes to increase the efficiency in prognostic breeding efforts. (2) It also focused on functional genomics, proteomics and field-based breeding practices to achieve insight into the genetics underlying both simple and complex traits in canola.  相似文献   

15.
QTL mapping of domestication-related traits in soybean (Glycine max)   总被引:5,自引:0,他引:5  
Liu B  Fujita T  Yan ZH  Sakamoto S  Xu D  Abe J 《Annals of botany》2007,100(5):1027-1038
BACKGROUND AND AIMS: Understanding the genetic basis underlying domestication-related traits (DRTs) is important in order to use wild germplasm efficiently for improving yield, stress tolerance and quality of crops. This study was conducted to characterize the genetic basis of DRTs in soybean (Glycine max) using quantitative trait locus (QTL) mapping. METHODS: A population of 96 recombinant inbred lines derived from a cultivated (ssp. max) x wild (ssp. soja) cross was used for mapping and QTL analysis. Nine DRTs were examined in 2004 and 2005. A linkage map was constructed with 282 markers by the Kosambi function, and the QTL was detected by composite interval mapping. KEY RESULTS: The early flowering and determinate habit derived from the max parent were each controlled by one major QTL, corresponding to the major genes for maturity (e1) and determinate habit (dt1), respectively. There were only one or two significant QTLs for twinning habit, pod dehiscence, seed weight and hard seededness, which each accounted for approx. 20-50 % of the total variance. A comparison with the QTLs detected previously indicated that in pod dehiscence and hard seededness, at least one major QTL was common across different crosses, whereas no such consistent QTL existed for seed weight. CONCLUSIONS: Most of the DRTs in soybeans were conditioned by one or two major QTLs and a number of genotype-dependent minor QTLs. The common major QTLs identified in pod dehiscence and hard seededness may have been key loci in the domestication of soybean. The evolutionary changes toward larger seed may have occurred through the accumulation of minor changes at many QTLs. Since the major QTLs for DRTs were scattered across only six of the 20 linkage groups, and since the QTLs were not clustered, introgression of useful genes from wild to cultivated soybeans can be carried out without large obstacles.  相似文献   

16.
17.
Narrow leaflet cultivars tend to have more seeds per pod than broad leaflet cultivars in soybean [Glycine max (L.) Merr.], which suggests that the leaflet-shape trait locus is tightly linked to or cosegregates with the trait locus controlling the number of seeds per pod (NSPP). Here, we attempted to further elucidate the relationship between leaflet shape and NSPP. A BC3F2 population from a cross between the ‘Sowon’ (narrow leaflets and high NSPP) and ‘V94-5152’ (broad leaflets and low NSPP) variants was used. The results of the molecular genetic analyses indicated that, although the NSPP characteristic, in particular, the occurrence of 4-seeded pods, is governed by additional modifying genes that are likely present in Sowon, the two traits cosegregate in the BC3F2 population. The mapping results generated using public markers demonstrated that the narrow leaflet-determining gene in Sowon is an allele of the previously highly studied ln gene on chromosome 20. A high-resolution map delimited the genomic region controlling both the leaflet shape and NSPP traits to a sequence length of 66 kb, corresponding to 0.7 cM. Among the three genes annotated in this 66 kb region, Glyma20g25000.1 appeared to be a good candidate for the Ln-encoding gene, owing to its 47.8% homology with the protein encoding for the JAGGED gene that regulates lateral organ development in Arabidopsis. Taken together, our results suggested that phenotypic variations for narrow leaflet and NSPP are predominantly from the pleiotropic effects of the ln gene. Thus, our results should provide a molecular framework for soybean breeding programs with the objective of improving soybean yield.  相似文献   

18.
Rice ( Oryza sativa) cultivar development currently faces the task of overcoming yield plateaus, which is difficult due to the narrow genetic base of breeding programs. Oryza glumaepatula is a diploid wild relative of cultivated rice, native to Central and South America, and is therefore a potential source of alleles of agronomic importance to rice breeding programs. We studied 11 agronomic traits in BC(2)F(2) families of the interspecific cross Oryza sativa x O. glumaepatula. Transgressive lines which are almost isogenic to the elite recurrent O. sativa parent were identified for most of these traits. Quantitative trait locus (QTL) analysis was performed by single-point and interval mapping using a molecular map based on 157 microsatellite and STS markers. Marker regions accounting for 14.5 to 72.9% of a phenotypic variation trait were identified in 9 of the 12 rice chromosomes. Positive QTL effects from O. glumaepatula were observed in chromosomal regions associated with tillering and panicle-number traits.  相似文献   

19.
Cultivated peanut (Arachis hypogaea L.) is an important oil and cash crop. Pod size is one of the major traits determining yield and commodity characteristic of peanut. Fine mapping of quantitative trait locus (QTL) and identification of candidate genes associated with pod size are essential for genetic improvement and molecular breeding of peanut varieties. In this study, a major QTL related to pod size, qAHPS07, was fine mapped to a 36.46 kb interval on chromosome A07 using F2, recombinant inbred line (RIL) and secondary F2 populations. qAHPS07 explained 38.6%, 23.35%, 37.48%, 25.94% of the phenotypic variation for single pod weight (SPW), pod length (PL), pod width (PW) and pod shell thickness (PST), respectively. Whole genome resequencing and gene expression analysis revealed that a RuvB-like 2 protein coding gene AhRUVBL2 was the most likely candidate for qAHPS07. Overexpression of AhRUVBL2 in Arabidopsis led to larger seeds and plants than the wild type. AhRUVBL2-silenced peanut seedlings represented small leaves and shorter main stems. Three haplotypes were identified according to three SNPs in the promoter of AhRUVBL2 among 119 peanut accessions. Among them, SPW, PW and PST of accessions carrying Hap_ATT represent 17.6%, 11.2% and 26.3% higher than those carrying Hap_GAC,respectively. In addition, a functional marker of AhRUVBL2 was developed. Taken together, our study identified a key functional gene of peanut pod size, which provides new insights into peanut pod size regulation mechanism and offers practicable markers for the genetic improvement of pod size-related traits in peanut breeding.  相似文献   

20.
Genetic diversity of crop plants resulting from breeding and selection is preserved in gene banks. Utilization of such materials for further crop improvement depends on knowledge of agronomic performance and useful traits, which is usually obtained by phenotypic evaluation. Associations between DNA markers and agronomic characters in collections of crop plants would (i) allow assessment of the genetic potential of specific genotypes prior to phenotypic evaluation, (ii) identify superior trait alleles in germplasm collections, (iii) facilitate high resolution QTL mapping and (iv) validate candidate genes responsible for quantitative agronomic characters. The feasibility of association mapping was tested in a gene bank collection of 600 potato cultivars bred between 1850 and 1990 in different countries. The cultivars were genotyped with five DNA markers linked to previously mapped QTL for resistance to late blight and plant maturity. Specific DNA fragments were tested for association with these quantitative characters based on passport evaluation data. Highly significant association with QTL for resistance to late blight and plant maturity was detected with PCR markers specific for R1, a major gene for resistance to late blight, and anonymous PCR markers flanking the R1 locus at 0.2 Centimorgan genetic distance. The marker alleles associated with increased resistance and later plant maturity were traced to an introgression from the wild species S. demissum. These DNA markers are the first marker that are diagnostic for quantitative agronomic characters in a large collection of cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号