首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Fate of Hydrocarbons During Oily Sludge Disposal in Soil   总被引:6,自引:4,他引:2       下载免费PDF全文
A 1,280-day laboratory simulation of the “landfarming” process explored the fate in soil of polynuclear aromatics (PNAs) and total extractable hydrocarbon residues originating from the disposal of an oily sludge. In addition to the measurement of CO2 evolution, periodic analyses of PNAs and hydrocarbons monitored biodegradation activity. The estimation of carbon balance and of soil organic matter assessed the fate of residual hydrocarbons. Seven sludge applications during a 920-day active disposal period were followed by a 360-day inactive “closure” period with no further sludge applications. A burst of CO2 evolution followed each sludge addition, but substantial amounts of undegraded hydrocarbons remained at the end of the study. Hydrocarbon accumulation did not inhibit biodegradation performance. Conversion of hydrocarbons to CO2 predominated during active disposal; incorporation into soil organic matter predominated during the closure period. In this sludge, the predominant PNAs were degraded more completely (85%) than total hydrocarbons. Both biodegradation and abiotic losses of three- and four-ring PNAs contributed to this result. Some PNAs with five and six rings were more persistent, but these constituted only a small portion of the PNAs in the sludge. The study confirmed that the microbially mediated processes of mineralization and humification remove sludge hydrocarbons from soils of landfarms with reasonable efficiency.  相似文献   

2.
Effects of oil spills on microbial heterotrophs in Antarctic soils   总被引:7,自引:2,他引:5  
Oil spillage on the moist coastal soils of the Ross Sea region of Antarctica can impact on populations of microbial heterotrophs in these soils, as determined by viable plate counts and a most probable number technique. Elevated numbers of culturable hydrocarbon degraders, bacteria and fungi were detected in surface and subsurface soils from oil-contaminated sites, compared with nearby control sites. Culturable yeasts were not detected in soil from coastal control sites, yet reached >105 organisms g-1 dry weight in contaminated soils. The presence of hydrocarbons in soils resulted in a shift in the genera of culturable filamentous fungi. Chrysosporium dominated control soils, yet Phialophora was more abundant in oil-contaminated soils. Hydrocarbon degraders are most likely bacteria; however, fungi could play a role in degradation of hydrocarbons or their metabolites. Depleted levels of nitrate detected in some contaminated soils and decreased pH may be the result of growth of hydrocarbon degraders. Numbers and diversity of culturable microbes from Antarctic soil varied depending on whether a pristine site or a human-impacted (in this case, by fuel spills) site is studied.  相似文献   

3.
Effects of Jet Fuel Spills on the Microbial Community of Soil   总被引:6,自引:2,他引:4       下载免费PDF全文
Hydrocarbon residues, microbial numbers, and microbial activity were measured and correlated in loam soil contaminated by jet fuel spills resulting in 50 and 135 mg of hydrocarbon g of soil−1. Contaminated soil was incubated at 27°C either as well-aerated surface soil or as poorly aerated subsurface soil. In the former case, the effects of bioremediation treatment on residues, microbial numbers, and microbial activity were also assessed. Hydrocarbon residues were measured by quantitative gas chromatography. Enumerations included direct counts of metabolically active bacteria, measurement of mycelial length, plate counts of aerobic heterotrophs, and most probable numbers of hydrocarbon degraders. Activity was assessed by fluorescein diacetate (FDA) hydrolysis. Jet fuel disappeared much more rapidly from surface soil than it did from subsurface soil. In surface soil, microbial numbers and mycelial length were increased by 2 to 2.5 orders of magnitude as a result of jet fuel contamination alone and by 3 to 4 orders of magnitude as a result of the combination of jet fuel contamination and bioremediation. FDA hydrolysis was stimulated by jet fuel and bioremediation, but was inhibited by jet fuel alone. The latter was traced to an inhibition of the FDA assay by jet fuel biodegradation products. In subsurface soil, oxygen limitation strongly attenuated microbial responses to jet fuel. An increase in the most probable numbers of hydrocarbon degraders was accompanied by a decline in other aerobic heterotrophs, so that total plate counts changed little. The correlations between hydrocarbon residues, microbial numbers, and microbial activity help in elucidating microbial contributions to jet fuel elimination from soil.  相似文献   

4.
We investigated the feasibility of bioremediation as a treatment option for a chronically diesel-oil-polluted soil in an alpine glacier area at an altitude of 2,875 m above sea level. To examine the efficiencies of natural attenuation and biostimulation, we used field-incubated lysimeters (mesocosms) with unfertilized and fertilized (N-P-K) soil. For three summer seasons (July 1997 to September 1999), we monitored changes in hydrocarbon concentrations in soil and soil leachate and the accompanying changes in soil microbial counts and activity. A significant reduction in the diesel oil level could be achieved. At the end of the third summer season (after 780 days), the initial level of contamination (2,612 ± 70 μg of hydrocarbons g [dry weight] of soil−1) was reduced by (50 ± 4)% and (70 ± 2)% in the unfertilized and fertilized soil, respectively. Nonetheless, the residual levels of contamination (1,296 ± 110 and 774 ± 52 μg of hydrocarbons g [dry weight] of soil−1 in the unfertilized and fertilized soil, respectively) were still high. Most of the hydrocarbon loss occurred during the first summer season ([42 ± 6]% loss) in the fertilized soil and during the second summer season ([41 ± 4]% loss) in the unfertilized soil. In the fertilized soil, all biological parameters (microbial numbers, soil respiration, catalase and lipase activities) were significantly enhanced and correlated significantly with each other, as well as with the residual hydrocarbon concentration, pointing to the importance of biodegradation. The effect of biostimulation of the indigenous soil microorganisms declined with time. The microbial activities in the unfertilized soil fluctuated around background levels during the whole study.  相似文献   

5.
Microorganisms comprise the bulk of biodiversity, but only a small fraction of this diversity grows on artificial media. This phenomenon was noticed almost a century ago, repeatedly confirmed, and termed the “great plate count anomaly.” Advances in microbial cultivation improved microbial recovery but failed to explain why most microbial species do not grow in vitro. Here we show that at least some of such species can form domesticated variants capable of growth on artificial media. We also present evidence that small signaling molecules, such as short peptides, may be essential factors in initiating growth of nongrowing cells. We identified one 5-amino-acid peptide, LQPEV, that at 3.5 nM induces the otherwise “uncultivable” strain Psychrobacter sp. strain MSC33 to grow on standard media. This demonstrates that the restriction preventing microbial in vitro growth may be different from those offered to date to explain the “great plate count anomaly,” such as deficiencies in nutrient composition and concentrations in standard media, medium toxicity, and inappropriate incubation time. Growth induction of MSC33 illustrates that some microorganisms do not grow in vitro because they are removed from their native communities and the signals produced therein. “Uncultivable” species represent the largest source of unexplored biodiversity, and provide remarkable opportunities for both basic and applied research. Access to cultures of some of these species should be possible through identification of the signaling compounds necessary for growth, their addition to standard medium formulations, and eventual domestication.  相似文献   

6.
This study investigated the potential effect of poultry dung (biostimulation) and stubborn grass (Sporobolus pyramidalis) (phytoremediation) on microbial biodegradation of gasoline and nickel uptake in gasoline-nickel-impacted soil. In addition, the potential stimulatory effects of nickel on hydrocarbon utilization were investigated over a small range of nickel concentrations (2.5–12.5 mg/kg). The results showed that an increase in nickel concentration increased hydrocarbon degraders in soil by a range of 8.4–17.2% and resulted in a relative increase in gasoline biodegradation (57.5–62.4%). Also, under aerobic conditions, total petroleum hydrocarbons’ (TPH) removal was 62.4% in the natural gasoline-nickel microcosm (natural attenuation), and a maximum of 78.5%, 85.7%, and 95.8% TPH removal was obtained in phytoremediation, biostimulation, and a combination of biostimulation- and phytoremediation-treated microcosms, respectively. First-order kinetics described the biodegradation of gasoline and nickel uptake very well. Half-life times obtained were 28.88, 18.24, 14.44, and 8.56 days for gasoline degradation under natural attenuation, phytoremediation, biostimulation, and combined biostimulation and phytoremediation treatment methods, respectively. The results indicate that these remediation methods have promising potential for effective remediation of soils co-contaminated with petroleum hydrocarbons and heavy metals.  相似文献   

7.
A laboratory experiment was conducted to identify key hydrocarbon degraders from a marine oil spill sample (Prestige fuel oil), to ascertain their role in the degradation of different hydrocarbons, and to assess their biodegradation potential for this complex heavy oil. After a 17-month enrichment in weathered fuel, the bacterial community, initially consisting mainly of Methylophaga species, underwent a major selective pressure in favor of obligate hydrocarbonoclastic microorganisms, such as Alcanivorax and Marinobacter spp. and other hydrocarbon-degrading taxa (Thalassospira and Alcaligenes), and showed strong biodegradation potential. This ranged from >99% for all low- and medium-molecular-weight alkanes (C15–C27) and polycyclic aromatic hydrocarbons (C0- to C2- naphthalene, anthracene, phenanthrene, dibenzothiophene, and carbazole), to 75–98% for higher molecular-weight alkanes (C28–C40) and to 55–80% for the C3 derivatives of tricyclic and tetracyclic polycyclic aromatic hydrocarbons (PAHs) (e.g., C3-chrysenes), in 60 days. The numbers of total heterotrophs and of n-alkane-, aliphatic-, and PAH degraders, as well as the structures of these populations, were monitored throughout the biodegradation process. The salinity of the counting medium affects the counts of PAH degraders, while the carbon source (n-hexadecane vs. a mixture of aliphatic hydrocarbons) is a key factor when counting aliphatic degraders. These limitations notwithstanding, some bacterial genera associated with hydrocarbon degradation (mainly belonging to α- and γ-Proteobacteria, including the hydrocarbonoclastic Alcanivorax and Marinobacter) were identified. We conclude that Thalassospira and Roseobacter contribute to the degradation of aliphatic hydrocarbons, whereas Mesorhizobium and Muricauda participate in the degradation of PAHs.  相似文献   

8.
The effect of nutrient and water enhancement on the biodegradation of petroleum was tested in Antarctic mineral soils. Nitrogen, phosphorus and potassium were applied in solution, with or without gum xanthan or plastic covers, to sites artificially contaminated with distillate. The effectiveness of these procedures was assessed by measuring changes in total petroleum hydrocarbons; heptadecane/pristane and octadecane/phytane ratios; in concentrations of major hydrocarbon components and in microbial numbers and activity.Significantly lower hydrocarbon concentrations were recorded after one year in soils treated with fertilizer solutions, but only in the surface 3 cm. These soils also showed lowered heptadecane/pristane and octadecane/ phytane ratios and had the highest levels of microbial activity relative to other plots. Soils treated with gum xanthan. or covered with plastic had the highest residual hydrocarbon levels. Both treatments inhibited evaporative loss of hydrocarbon, and there were indications that gum xanthan was utilized by the microbiota as an alternative carbon source to distillate. Higher temperatures were recordecd under the plastic but no stimulation of biodegradation was detected.Estimated numbers of metabolically active bacteria were in the range 107 to 108 g–1 dry weight of soil, with an estimated biomass of 0.03 to 0.26 mg g–1 soil. Estimated numbers of amoebae were in the range 106 to 107 g–1 soil (biomass of 2 to 4 mgg–1). The highest populations were recorded in fertilized, contaminated soils, the only soils where petroleum degradation was demonstrated.  相似文献   

9.
Abstract Successful stimulation of N2 fixation and petroleum hydrocarbon degradation in indigenous microbial consortia may decrease exogenous N requirements and reduce environmental impacts of bioremediation following petroleum pollution. This study explored the biodegradation of petroleum pollution by indigenous N2 fixing marine microbial consortia. Particulate organic carbon (POC) in the form of ground, sterile corn-slash (post-harvest leaves and stems) was added to diesel fuel amended coastal water samples to stimulate biodegradation of petroleum hydrocarbons by native microorganisms capable of supplying a portion of their own N. It was hypothesized that addition of POC to petroleum amended water samples from N-limited coastal waters would promote the growth of N2 fixing consortia and enhance biodegradation of petroleum. Manipulative experiments were conducted using samples from coastal waters (marinas and less polluted control site) to determine the effects of POC amendment on biodegradation of petroleum pollution by native microbial consortia. Structure and function of the microbial consortia were determined by measurement of N2 fixation (acetylene reduction), hydrocarbon biodegradation (14C hexadecane mineralization), bacterial biomass (AODC), number of hydrocarbon degrading bacteria (MPN), and bacterial productivity (3H-thymidine incorporation). Throughout this study there was a consistent enhancement of petroleum hydrocarbon degradation in response to the addition of POC. Stimulation of diesel fuel biodegradation following the addition of POC was likely attributable to increases in bacterial N2 fixation, diesel fuel bioavailability, bacterial biomass, and metabolic activity. Toxicity of the bulk phase water did not appear to be a factor affecting biodegradation of diesel fuel following POC addition. These results indicate that the addition of POC to diesel-fuel-polluted systems stimulated indigenous N2 fixing microbial consortia to degrade petroleum hydrocarbons. Received: 29 December 1998; Accepted: 6 April 1999  相似文献   

10.
Microbial degradation of hydrocarbons in the environment.   总被引:69,自引:2,他引:67       下载免费PDF全文
The ecology of hydrocarbon degradation by microbial populations in the natural environment is reviewed, emphasizing the physical, chemical, and biological factors that contribute to the biodegradation of petroleum and individual hydrocarbons. Rates of biodegradation depend greatly on the composition, state, and concentration of the oil or hydrocarbons, with dispersion and emulsification enhancing rates in aquatic systems and absorption by soil particulates being the key feature of terrestrial ecosystems. Temperature and oxygen and nutrient concentrations are important variables in both types of environments. Salinity and pressure may also affect biodegradation rates in some aquatic environments, and moisture and pH may limit biodegradation in soils. Hydrocarbons are degraded primarily by bacteria and fungi. Adaptation by prior exposure of microbial communities to hydrocarbons increases hydrocarbon degradation rates. Adaptation is brought about by selective enrichment of hydrocarbon-utilizing microorganisms and amplification of the pool of hydrocarbon-catabolizing genes. The latter phenomenon can now be monitored through the use of DNA probes. Increases in plasmid frequency may also be associated with genetic adaptation. Seeding to accelerate rates of biodegradation has been shown to be effective in some cases, particularly when used under controlled conditions, such as in fermentors or chemostats.  相似文献   

11.
Microbial ferrous iron [Fe(II)] oxidation leads to the formation of iron-rich macroscopic aggregates (“iron snow”) at the redoxcline in a stratified lignite mine lake in east-central Germany. We aimed to identify the abundant Fe-oxidizing and Fe-reducing microorganisms likely to be involved in the formation and transformation of iron snow present in the redoxcline in two basins of the lake that differ in their pH values. Nucleic acid- and lipid-stained microbial cells of various morphologies detected by confocal laser scanning microscopy were homogeneously distributed in all iron snow samples. The dominant iron mineral appeared to be schwertmannite, with shorter needles in the northern than in the central basin samples. Total bacterial 16S rRNA gene copies ranged from 5.0 × 108 copies g (dry weight)−1 in the acidic central lake basin (pH 3.3) to 4.0 × 1010 copies g (dry weight)−1 in the less acidic (pH 5.9) northern basin. Total RNA-based quantitative PCR assigned up to 61% of metabolically active microbial communities to Fe-oxidizing- and Fe-reducing-related bacteria, indicating that iron metabolism was an important metabolic strategy. Molecular identification of abundant groups suggested that iron snow surfaces were formed by chemoautotrophic iron oxidizers, such as Acidimicrobium, Ferrovum, Acidithiobacillus, Thiobacillus, and Chlorobium, in the redoxcline and were rapidly colonized by heterotrophic iron reducers, such as Acidiphilium, Albidiferax-like, and Geobacter-like groups. Metaproteomics yielded 283 different proteins from northern basin iron snow samples, and protein identification provided a glimpse into some of their in situ metabolic processes, such as primary production (CO2 fixation), respiration, motility, and survival strategies.  相似文献   

12.
Rhizospheric degradation of phenanthrene is a function of proximity to roots   总被引:13,自引:1,他引:12  
Rhizodegradation of recalcitrant organic pollutants, such as polycyclic aromatic hydrocarbons (PAH), may benefit from the major role that root exudates have on rhizospheric microbial processes. We investigated the influence of the proximity to ryegrass (Lolium perenneL.) roots on microbial populations and their biodegradation of phenanthrene (PHE) using compartmented pots. PAH degrading bacteria, total heterotrophic bacteria and PHE biodegradation were quantified in three consecutive sections at different distance (0–3, 3–6, 6–9 mm) from a mat of actively exuding roots. A bacterial gradient was observed with higher numbers of heterotrophs and PAH degrading bacteria closest to the roots. In parallel, a PHE biodegradation gradient was evident in the presence of roots. The biodegradation reached 86%, 48% and 36% of initially added PHE, respectively, in the layers 0–3 mm, 3–6 and 6–9 mm from the roots. The biodegradation rate was similar throughout the three layers of the non planted control. The present experimental system seems well suited for spatial and dynamic studies of PAH rhizoremediation.  相似文献   

13.
Effects of oxygen,nitrogen, and temperature on gasoline biodegradation in soil   总被引:10,自引:0,他引:10  
Biodegradation was considered to be a feasible approach to remediate petroleum hydrocarbon-contaminated soil from a site at the University of Idaho. Before a full-scale treatment process was designed, the biodegradative capacity of the soil's indigenous microorganisms was tested. Gas chromatography was used to measure gasoline vapor components in the headspace above the contaminated soils held in closed containers. In a study of biodegradation kinetics, gasoline degradation rates under various conditions (different soil cores, temperatures, oxygen concentrations, and nutrient concentrations) were tested. It was found that gasoline hydrocarbons could be biodegraded at relatively high rates after appropriate nutrient additions. An unexpected observation was that the optimal concentration of oxygen for the gasoline-degrading microorganisms in these soils was only 10%.Publication No. 94505 of the Idaho Agricultural Experiment Station.  相似文献   

14.
Using three different microscopy techniques (epifluorescence, electronic and atomic force microscopy), we showed that high-Mg calcite grains in calcifying microbial mats from the hypersaline lake “La Salada de Chiprana”, Spain, contain viruses with a diameter of 50–80 nm. Energy-dispersive X-ray spectrometer analysis revealed that they contain nitrogen and phosphorus in a molar ratio of ~9, which is typical for viruses. Nucleic acid staining revealed that they contain DNA or RNA. As characteristic for hypersaline environments, the concentrations of free and attached viruses were high (>1010 viruses per g of mat). In addition, we showed that acid treatment (dissolution of calcite) resulted in release of viruses into suspension and estimated that there were ~15 × 109 viruses per g of calcite. We suggest that virus-mineral interactions are one of the possible ways for the formation of nano-sized structures often described as “nanobacteria” and that viruses may play a role in initiating calcification.  相似文献   

15.
To effectively monitor biodegrading populations, a comprehensive 50-mer-based oligonucleotide microarray was developed based on most of the 2,402 known genes and pathways involved in biodegradation and metal resistance. This array contained 1,662 unique and group-specific probes with <85% similarity to their nontarget sequences. Based on artificial probes, our results showed that under hybridization conditions of 50°C and 50% formamide, the 50-mer microarray hybridization can differentiate sequences having <88% similarity. Specificity tests with representative pure cultures indicated that the designed probes on the arrays appeared to be specific to their corresponding target genes. The detection limit was ~5 to 10 ng of genomic DNA in the absence of background DNA and 50 to 100 ng of pure-culture genomic DNA in the presence of background DNA or 1.3 × 107 cells in the presence of background RNA. Strong linear relationships between the signal intensity and the target DNA and RNA were observed (r2 = 0.95 to 0.99). Application of this type of microarray to analyze naphthalene-amended enrichment and soil microcosms demonstrated that microflora changed differently depending on the incubation conditions. While the naphthalene-degrading genes from Rhodococcus-type microorganisms were dominant in naphthalene-degrading enrichments, the genes involved in naphthalene (and polyaromatic hydrocarbon and nitrotoluene) degradation from gram-negative microorganisms, such as Ralstonia, Comamonas, and Burkholderia, were most abundant in the soil microcosms. In contrast to general conceptions, naphthalene-degrading genes from Pseudomonas were not detected, although Pseudomonas is widely known as a model microorganism for studying naphthalene degradation. The real-time PCR analysis with four representative genes showed that the microarray-based quantification was very consistent with real-time PCR (r2 = 0.74). In addition, application of the arrays to both polyaromatic-hydrocarbon- and benzene-toluene-ethylbenzene-xylene-contaminated and uncontaminated soils indicated that the developed microarrays appeared to be useful for profiling differences in microbial community structures. Our results indicate that this technology has potential as a specific, sensitive, and quantitative tool in revealing a comprehensive picture of the compositions of biodegradation genes and the microbial community in contaminated environments, although more work is needed to improve detection sensitivity.  相似文献   

16.
Bioremediation has been used to treat soils contaminated with complex mixtures of organic compounds such as total petroleum hydrocarbons (TPH), oil and grease (O&G), or polycyclic aromatic hydrocarbons (PAHs). Despite the common use and cost-effectiveness of bioremediation for treating hydrocarbon-contaminated soils, it has been observed that a residual fraction remains undegraded in the soil even when optimal biodegradation conditions have been provided. This paper provides a brief review of the two major conceptual models that have been used to explain why a residual hydrocarbon fraction remains in the soil after bioremediation treatment. The contaminant sequestration model is based on the assumption that a certain fraction of hydrocarbons is “locked up” in small soil pores within soil particles or aggregates. These sorbed hydrocarbons are believed to be inaccessible to soil microorganisms. Consequently, limitations in bioavailability are thought to be the major reason for incomplete hydrocarbon biodegradation, particularly in aged or weathered soils. Alternatively, according to the inherent recalcitrance model, incomplete TPH biodegradation may be caused by the presence of certain hydrocarbons that are inherently recalcitrant to biodegradation or are only extremely slowly degradable even under optimal conditions. Each conceptual model provides different explanations regarding the potential risks of the residual hydrocarbon fraction. If the residual TPH is truly sequestered within the soil pore space, it is unlikely that these compounds will pose any significant risk to human or environmental receptors. By contrast, these risks may be considerably greater if the residual TPH fraction consists of inherently recalcitrant compounds that reside mostly on the surface of soil particles and therefore are much more available to potential receptors. Both conceptual models and their implications for the potential risk of the residual TPH fraction are discussed.  相似文献   

17.
The potential for biodegradation of aromatic hydrocarbons was evaluated in soil samples recovered along gradients of both contaminant levels and pH values existing downstream of a long-term coal pile storage basin. pH values for areas greatly impacted by runoff from the storage basin were 2.0. Even at such a reduced pH, the indigenous microbial community was metabolically active, showing the ability to oxidize more than 40% of the parent hydrocarbons, naphthalene and toluene, to carbon dioxide and water. Treatment of the soil samples with cycloheximide inhibited mineralization of the aromatic substrates. DNA hybridization analysis indicated that whole-community nucleic acids recovered from these samples did not hybridize with genes, such as nahA, nahG, nahH, todC1C2, and tomA, that encode common enzymes from neutrophilic bacteria. Since these data suggested that the degradation of aromatic compounds may involve a microbial consortium instead of individual acidophilic bacteria, experiments using microorganisms isolated from these samples were initiated. While no defined mixed cultures were able to evolve 14CO2 from labeled substrates in these mineralization experiments, an undefined mixed culture including a fungus, a yeast, and several bacteria successfully metabolized approximately 27% of supplied naphthalene after 1 week. This study shows that biodegradation of aromatic hydrocarbons can occur in environments with extremely low pH values.  相似文献   

18.
Hydrocarbon-utilizing microorganisms were enumerated from Alaskan continental shelf areas by using plate counts and a new most-probable-number procedure based on mineralization of 14C-labeled hydrocarbons. Hydrocarbon utilizers were ubiquitously distributed, with no significant overall concentration differences between sampling regions or between surface water and sediment samples. There were, however, significant seasonal differences in numbers of hydrocarbon utilizers. Distribution of hydrocarbon utilizers within Cook Inlet was positively correlated with occurrence of hydrocarbons in the environment. Hydrocarbon biodegradation potentials were measured by using 14C-radiolabeled hydrocarbon-spiked crude oil. There was no significant correlation between numbers of hydrocarbon utilizers and hydrocarbon biodegradation potentials. The biodegradation potentials showed large seasonal variations in the Beaufort Sea, probably due to seasonal depletion of available nutrients. Non-nutrient-limited biodegradation potentials followed the order hexadecane > naphthalene pristane > benzanthracene. In Cook Inlet, biodegradation potentials for hexadecane and naphthalene were dependent on availability of inorganic nutrients. Biodegradation potentials for pristane and benzanthracene were restricted, probably by resistance to attack by available enzymes in the indigenous population.  相似文献   

19.
The evaluation of soil lipase activity as a tool to monitor the decontamination of a freshly oil-polluted soil was tested in a laboratory study. An arable soil was experimentally contaminated with diesel oil at 5 mg hydrocarbons g–1 soil dry weight and incubated with and without fertilization (N-P-K) for 116 days at 20°C. Lipase activity and counts of oil-degrading microorganisms were measured at regular time intervals, and the correlations with the levels of hydrocarbon concentrations in soil were investigated. The residual soil hydrocarbon concentration correlated significantly negatively with soil lipase activity and with the number of oil-degrading microorganisms, independent of fertilization. The induction of soil lipase activity is a valuable indicator of oil biodegradation in naturally attenuated (unfertilized) and bioremediated (fertilized) soils.  相似文献   

20.
Biodegradation of poorly water-soluble liquid hydrocarbons is often limited by low availability of the substrate to microbes. Adhesion of microorganisms to an oil–water interface can enhance this availability, whereas detaching cells from the interface can reduce the rate of biodegradation. The capability of microbes to adhere to the interface is not limited to hydrocarbon degraders, nor is it the only mechanism to enable rapid uptake of hydrocarbons, but it represents a common strategy. This review of the literature indicates that microbial adhesion can benefit growth on and biodegradation of very poorly water-soluble hydrocarbons such as n-alkanes and large polycyclic aromatic hydrocarbons dissolved in a non-aqueous phase. Adhesion is particularly important when the hydrocarbons are not emulsified, giving limited interfacial area between the two liquid phases. When mixed communities are involved in biodegradation, the ability of cells to adhere to the interface can enable selective growth and enhance bioremediation with time. The critical challenge in understanding the relationship between growth rate and biodegradation rate for adherent bacteria is to accurately measure and observe the population that resides at the interface of the hydrocarbon phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号