首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variation in 30 chloroplast DNAs, representing 22 wild and cultivated accessions in the genus Pisum, was analyzed by comparing fragment patterns produced by 16 restriction endonucleases. Three types of mutations were detected. First, an inversion of between 2.2 kilobase pairs (kb) and 5.2 kb distinguished a population of P. humile from all other Pisum accessions examined. Second, deletions and insertions of between 50 and 1200 base pairs produced small restriction fragment length variations in four regions of the 120-kb chloroplast genome. Two of these regions—one of which is located within the sequence that is inverted in P. humile—showed a high degree of size polymorphism, to the extent that size differences were detected between individuals from the same accession. Finally, a total of only 11 restriction site mutations were detected among the 165 restriction sites sampled in the 30 DNAs. Based on these results and previous data, we conclude that the chloroplast genome is evolving very slowly relative to nuclear and mitochondrial DNAs. The Pisum chloroplast DNA restriction site mutations define two major lineages: One includes all tested accessions of P. fulvum, which is known to be cytogenetically quite distinct from all other Pisum taxa. The second includes 12 of 13 cultivated lines of the garden pea (P. sativum) and a wild population of P. humile from northern Israel. These observations strongly reinforce an earlier conclusion that the cultivated pea was domesticated primarily from northern populations of P. humile. A 13th P. sativum cultivar has a chloroplast genome that is significantly different from those of the aforementioned lines and somewhat more similar to those of P. elatius and southern populations of P. humile. This observation indicates that secondary hybridization may have occurred during the domestication of the garden pea.  相似文献   

2.
Genome size was measured in 75 samples of the wild pea species Pisum abyssinicum, P. elatius, P. fulvum and P. humile by ethidium-bromide (EB) flow cytometry (internal standard: Triticum monococcum) and Feulgen densitometry (internal standard: Pisum sativum Kleine Rheinländerin). Total variation of EB-DNA between samples covered 97.7% to 114.9% of the P. sativum value, and Feulgen DNA values were strongly correlated with EB-DNA values (r=0.9317, P < 0.001). Only P. fulvum was homogeneous in genome size (108.9% of P. sativum). Wide variation was observed between samples in P. abyssinicum (100.9–109.7%), P. elatius (97.7–114.9%) and P. humile (98.3–111.1% of P. sativum). In view of the world-wide genome size constancy in P. sativum, the present data are interpreted to show that the pea taxa with variable genome size are genetically inhomogeneous and that the current classification is not sufficient to describe the biological species groups adequately.  相似文献   

3.
A DAPI and ethidium bromide flow cytometric and Feulgen densitometric analysis of genome size variation in Pisum was conducted. The material included 38 accessions of P. sativum of widely different geographic origin and altogether 14 samples of P. elatius, P. abyssinicum, P. humile and P. fulvum. The relative genome size values obtained with the three staining methods were strongly correlated. No evidence for genome size variation was found among P. sativum cultivars. In particular, certain Italian cultivars, for which strongly deviating C-values have been reported, proved to be invariant. The only occasion when ambiguous evidence for marginal genome size variation was found was when all 38 accessions taxonomically affiliated with P. sativum were considered. Pisum abyssinicum and P. fulvum differed from P. sativum by about 1.066-and 1.070-fold, respectively; 1 accession of P. humile differed by 1.089-fold, and 2 of P. elatius by 1.122- and 1.195-fold, respectively (ethidiumbromide comparison), while the other accessions of these taxa were not different from P. sativum. This variation may indicate taxonomic inhomogeneity and demands further investigation. Cultivated P. sativum has long been suspected of not being constant with respect to genome size. As shown here, these findings were not based on genuine differences, but rather were technical in origin.  相似文献   

4.
Breakdown of storage materials, oxygen uptake, respiratory control and ADP/O ratios in the cotyledons of the garden pea P. sativum and in the wild pea P. elatius were compared. Starch and protein degradation was slower in P. elatius than in P. sativum. Embryo growth began later in the wild pea. However, in the garden pea the mitochondria were uncoupled after about 48 h of germination, while in P. elatius the ability to carry out oxidative phosphorylation was maintained for 4 days. The respiratory control ratio was higher in the wild pea at all stages of germination and a steady level of oxygen uptake was maintained in the cotyledons for at least 3 days. The findings are discussed in relation to the ecological requirements for germination in the two species.  相似文献   

5.
Genetic analysis was performed to finely map and assess the mode of inheritance of two unlinked nuclear genes Scs1 and Scs2 involved in incompatibility of the nuclear genome of the cultivated pea Pisum sativum subsp. sativum with the cytoplasm of the wild pea of the subspecies P. sativum subsp. elatius, accession VIR320. Based on the segregation of genotypes in the progeny of the test-crosses, we concluded that if the cytoplasm was inherited from the wild pea VIR320, the Scs1 allele from the cultivated pea was gametophyte lethal and sporophyte recessive lethal. The Scs2 allele from the cultivated pea reduced male gametophyte viability. In homozygote, Scs2 from cultivated parent brought about nuclear–cytoplasmic conflict manifested as chlorophyll deficiency, reduction of blade organs, and low pollen fertility of about 20%. In heterozygote, Scs1 and Scs2 genes reduced pollen fertility by ca 50 and 30%, respectively. The Scs1 and Scs2 genes involved in nuclear–cytoplasmic incompatibility were genetically mapped. The distance between the markers bordering Scs1 comprised about 2.5 cM on linkage group III. The map distance between the bordering markers in the neighborhood of Scs2 varied substantially from cross to cross in the range of 2.0–15.1 cM on linkage group V.  相似文献   

6.
Taxonomic treatment of the achlorophyllous monotropoid plant Monotropastrum humile is still unclear and confusing because of the lack of detailed morphological analyses and molecular phylogeny. In particular, the taxonomic status of a glabrous variety, M. humile var. glaberrimum, is under debate. Our detailed examination of the morphological characteristics of living plants revealed that M. humile var. glaberrimum can be easily distinguished from the putative conspecific taxon M. humile var. humile by characteristics not previously recognized, namely the shape and color of the floral disc. Most morphological features characterizing Cheilotheca were also found in M. humile var. glaberrimum. Moreover, there was considerable nucleotide differentiation in the internal transcribed spacer (ITS)2 sequences of M. humile var. humile and var. glaberrimum. Molecular analysis of the phylogenetic relationship of M. humile var. humile, var. glaberrimum, and other monotropoids using ITS2 sequences showed that two varieties of M. humile formed a monophyletic clade with a member of a different genus, Monotropa L., but obvious phylogenetic relationships among these three taxa were not obtained. Thus we conclude that Monotropastrum humile var. glaberrimum should be treated as a distinct species. However, the generic affiliation of M. humile var. glaberrimum could not be determined because of its intermediate character state combination and the insufficient characterization of related species. We strongly suggest that Monotropastrum as a whole needs re-evaluation.  相似文献   

7.
Relationships among cultivated and wild lentils revealed by RAPD analysis   总被引:5,自引:0,他引:5  
RAPD markers were used to distinguish between six different Lens taxa, representing cultivated lentil and its wild relatives. Twenty-four arbitrary sequence 10-mer primers were identified which revealed robust and easily interpretable amplification-product profiles. These generated a total of 88 polymorphic bands in 54 accessions and were used to partition variation within and among Lens taxa. The data showed that, of the taxa examined, ssp. orientalis is most similar to cultivated lentil. L. ervoides was the most divergent wild taxon followed by L. nigricans. The genetic similarity between the latter two species was of the same magnitude as between ssp. orientalis and cultivated lentil. In addition, species-diagnostic amplification products specific to L. odemensis, L. ervoides and L. nigricans were identified. These results correspond well with previous isozyme and RFLP studies. RAPDs, however, appear to provide a greater degree of resolution at a sub-species level. The level of variation detected within cultivated lentils suggests that RAPD markers may be an appropriate technology for the construction of genetic linkage maps between closely related Lens accessions.On sabbatical leave from HP Agricultural University, Palampur 176 062, India  相似文献   

8.
An influence of some Random Amplified Polymorphic DNA (RAPD) reaction factors on resulting banding pattern and the ability of RAPD technique to detect DNA polymorphism among six economically important pea cultivars was tested. Relatively high level of DNA polymorphism among peas was observed, using polyacrylamide/urea gels and silver staining. Altogether 13 arbitrarily designed primers produced 313 amplification products. In addition 59 polymorphisms were found. These polymorphisms can serve as potential genetic markers. RAPD data were processed using cluster analysis and plotted as dendrogram. Each tested cultivar was clearly distinguished from the others. Moreover,Pisum sativum andP. sativum subsp.arvense cultivars were separated into 2 different clusters, according to their systematic relationships.  相似文献   

9.
Genetic diversity, population structure and genome-wide marker-trait association analysis was conducted for the USDA pea (Pisum sativum L.) core collection. The core collection contained 285 accessions with diverse phenotypes and geographic origins. The 137 DNA markers included 102 polymorphic fragments amplified by 15 microsatellite primer pairs, 36 RAPD loci and one SCAR (sequence characterized amplified region) marker. The 49 phenotypic traits fall into the categories of seed macro- and micro-nutrients, disease resistance, agronomic traits and seed characteristics. Genetic diversity, population structure and marker-trait association were analyzed with the software packages PowerMarker, STUCTURE and TASSEL, respectively. A great amount of variation was revealed by the DNA markers at the molecular level. Identified were three sub-populations that constituted 56.1%, 13.0% and 30.9%, respectively, of the USDA Pisum core collection. The first sub-population is comprised of all cultivated pea varieties and landraces; the second of wild P. sativum ssp. elatius and abyssinicum and the accessions from the Asian highland (Afghanistan, India, Pakistan, China and Nepal); while the third is an admixture containing alleles from the first and second sub-populations. This structure was achieved using a stringent cutoff point of 15% admixture (q-value 85%) of the collection. Significant marker-trait associations were identified among certain markers with eight mineral nutrient concentrations in seed and other important phenotypic traits. Fifteen pairs of associations were at the significant levels of P ?? 0.01 when tested using the three statistical models. These markers will be useful in marker-assisted selection to breed pea cultivars with desirable agronomic traits and end-user qualities.  相似文献   

10.

Key message

Divergent wild and endemic peas differ in hybrid sterility in reciprocal crosses with cultivated pea depending on alleles of a nuclear ‘speciation gene’ involved in nuclear–cytoplasmic compatibility.

Background

In hybrids between cultivated and wild peas, nuclear–cytoplasmic conflict frequently occurs. One of the nuclear genes involved, Scs1, was earlier mapped on Linkage Group III.

Results

In reciprocal crosses of seven divergent pea accessions with cultivated P. sativum, some alleles of Scs1 manifested incompatibility with an alien cytoplasm as a decrease in pollen fertility to about 50 % in the heterozygotes and lack of some genotypic classes among F2 segregants. Earlier, we defined monophyletic evolutionary lineages A, B, C and D of pea according to allelic state of three markers, from nuclear, plastid and mitochondrial genomes. All tested representatives of wild peas from the lineages A and C exhibited incompatibility due to Scs1 deleterious effects in crosses with testerlines of P. sativum subsp. sativum (the common cultivated pea) at least in one direction. A wild pea from the lineage B and a cultivated pea from the lineage D were compatible with the testerline in both directions. The tested accession of cultivated P. abyssinicum (lineage A) was partially compatible in both directions. The Scs1 alleles of some pea accessions even originating from the same geographic area were remarkably different in their compatibility with cultivated Pisum sativum cytoplasm.

Conclusion

Variability of a gene involved in reproductive isolation is of important evolutionary role and nominate Scs1 as a speciation gene.  相似文献   

11.
Aschochyta blight, caused by Mycosphaerella pinodes, is one of the most economically serious pea pathogens, particularly in winter sowings. The wild Pisum sativum subsp. syriacum accession P665 shows good levels of resistance to this pathogen. Knowledge of the genetic factors controlling resistance to M. pinodes in this wild accession would facilitate gene transfer to pea cultivars; however, previous studies mapping resistance to M. pinodes in pea have never included this wild species. The objective of this study was to identify quantitative trait loci (QTL) controlling resistance to M. pinodes in P. sativum subsp. syriacum and to compare these with QTLs previously described for the same trait in P. sativum. A population formed by 111 F6:7 recombinant inbred lines derived from a cross between accession P665 and a susceptible pea cultivar (Messire) was analysed using morphological, isozyme, RAPD, STS and EST markers. The map developed covered 1214 cM and contained 246 markers distributed in nine linkage groups, of which seven could be assigned to pea chromosomes. Six QTLs associated with resistance to M. pinodes were detected in linkage groups II, III, IV and V, which collectively explained between 31 and 75% of the phenotypic variation depending of the trait. While QTLs MpIII.1 and MpIII.2 were detected both for seedlings and field resistance, MpV.1 and MpII.1 were specific for growth chamber conditions and MpIII.3 and MpIV.1 for field resistance. Quantitative trait loci MpIII.1, MpII.1, MpIII.2 and MpIII.3 may coincide with other QTLs associated with resistance to M. pinodes previously described in P. sativum. Four QTLs associated with earliness of flowering were also identified. While dfIII.2 and dfVI.1, may correspond with other genes and QTLs controlling earliness in P. sativum, dfIII.1 and dfII.1 may be specific to P. sativum subsp. syriacum. Flowering date and growth habit were strongly associated with resistance to M. pinodes in the field evaluations. The relation observed between earliness, growth habit and resistance to M. pinodes is discussed.  相似文献   

12.
The most economically important group of species in the genus Amaranthus is the A. hybridus species complex, including three cultivated grain amaranths, A. cruentus, A. caudatus, and A. hypochondriacus, and their putative wild progenitors, A. hybridus, A. quitensis, and A. powellii. Taxonomic confusion exists among these closely related taxa. Internal transcribed spacer (ITS) of nuclear ribosomal DNA, amplified fragment length polymorphism (AFLP), and double-primer fluorescent intersimple sequence repeat (ISSR) were employed to reexamine the taxonomic status and phylogenetic relationships of grain amaranths and their wild relatives. Low ITS divergence in these taxa resulted in poorly resolved phylogeny. However, extensive polymorphisms exist at AFLP and ISSR loci both within and among species. In phylogenetic trees based on either AFLP or ISSR or the combined data sets, nearly all intraspecific accessions can be placed in their corresponding species clades, indicating that these taxa are well-separated species. The AFLP trees share many features in common with the ISSR trees, both showing a close relationship between A. caudatus and A. quitensis, placing A. hybridus in the same clade as all grain amaranths, and indicating that A. powellii is the most divergent taxon in the A. hybridus species complex. This study has demonstrated that both AFLP and double-primer fluorescent ISSR have a great potential for generating a large number of informative characters for phylogenetic analysis of closely related species, especially when ITS diversity is insufficient.  相似文献   

13.
Estimates of the phylogenetic relationships among cultivated and wildAllium species would benefit from identification of objective molecular characters. Restriction fragment length polymorphisms in the nuclear 45s ribosomal DNA (rDNA) were identified among two of five accessions of each of six cultivated Alliums. Restriction enzyme sites forBamHI,DraI,EcoRI,EcoRV,SacI, andXbaI were mapped. Different lengths of the rDNA repeat unit among the cultivated Alliums were due to sizes of the intergenic spacer. Nineteen polymorphic restriction enzyme sites were discovered and used to estimate phylogenetic relationships. Cladistic analyses based on Wagner parsimony were completed without an outgroup and resulted in two equally most parsimonious trees of 22 steps. A combined analysis of differences at RE sites in the ribosomal (19 characters) and chloroplast (15 characters) DNA generated a single most parsimonious tree of 39 steps. Single trichotomies were observed at 40 and 41 steps. Strict consensus of the three trees of 41 or fewer steps consisted of a lineage forA. tuberosum, a second forA. ampeloprasum andA. sativum, and a third forA. cepa, A. fistulosum, andA. schoenoprasum. Estimates of phylogenetic relationships based on variability at restriction enzyme sites in the rDNA and chloroplast DNA agree with the classification scheme ofTraub. Because of the predominance of autapomorphies, restriction enzyme analysis of the nuclear 45s rDNA is of limited use in estimating phylogenies amongAllium sections. However it is useful in the establishment of interspecific hybridity.  相似文献   

14.
AFLP and RAPD marker techniques have been used to evaluate and study the diversity and phylogeny of 54 lentil accessions representing six populations of cultivated lentil and its wild relatives. Four AFLP primer combinations revealed 23, 25, 52 and 48 AFLPs respectively, which were used to partition variation within and among Lens taxa. The results of AFLP analysis is compared to previous RAPD analysis of the same material. The two methods provide similar conclusions as far as the phylogeny of Lens is concerned. The AFLP technique detected a much higher level of polymorphyism than the RAPD analysis. The use of 148 AFLPs arising from four primer combinations was able to discriminate between genotypes which could not be distinguished using 88 RAPDs. The level of variation detected within the cultivated lentil with AFLP analysis indicates that it may be a more efficient marker technology than RAPD analysis for the construction of genetic linkage maps between carefully chosen cultivated lentil accessions.  相似文献   

15.
Broadening of the genetic base and systematic exploitation of heterosis in cultivated lentils requires reliable information on genetic diversity in the germplasm. The ability of random amplified polymorphic DNA (RAPD) to distinguish among different taxa of Lens was evaluated for several geographically dispersed accessions/cultivars of four diploid Lens species. This study was carried out to assess whether RAPD data can provide additional evidence about the origin of the cultivated lentil and to measure genetic variability in lentil germplasm. Three cultivars of Lens culinaris ssp. culinaris, including one microsperma, and two macrosperma types, and four wild species (L. culinaris ssp. orientalis, L. odemensis and L. nigricans) were evaluated for genetic variability using a set of 1 11-mer and 14 random 10-mer primers. One hundred and fifty-eight reproducible and scorable DNA bands were observed from these primers. Genetic distances between each of the accessions were calculated from simple matching coefficients. Split decomposition analysis of the RAPD data allowed construction of an unrooted tree. This study revealed that (1) the level of intraspecific genetic variation in cultivated lentils is narrower than that in some wild species. (2) L. culinaris ssp. orientalis is the most likely candidate as a progenitor of the cultivated species, (3) L. nigricans accession W6 3222 (unknown) and L. c. ssp. orientalis W6 3244 (Turkey) can be reclassified as species of L. odemensis and (4) transmission of genetic material in Lens interspecific hybrids is genotypically specific, as identified by the RAPD markers in our study.  相似文献   

16.
The genetic variability based on random-amplified polymorphic DNA markers was analysed among 10 cultivated rose varieties and 9 wild species from three different series of the genus Rosa. Using 13 different RAPD primers, 104 polymorphic DNA fragments with a high potential to differentiate rose genotypes could be produced. A dendrogram displaying the relative genetic similarities among the genotypes shows the existence of large genetic diversity among the cultivated roses as compared to the wild species. Furthermore, the main clusters found here are in agreement with known pedigrees and the classical taxonomy. However, the relationships between cultivated roses as inferred by RAPD markers do not correlate with the classical rose classification system. From the present data it is concluded that cultivated roses display a high level of genetic variability despite the fact that single morphological and physiological characters may be less polymorphic within rose groups. This contrasts with the widely accepted opinion of a lack of genetic variability in roses. This is also in accordance with the reported history of rose breeding which makes it highly probable that rose genomes comprise mosaics of different species genomes. As a consequence, it may be possible to utilize the high genetic variability of all genetic traits not under actual selection by breeders for future breeding programmes.  相似文献   

17.
Seed protein analysis and morphological characterization were carried out in one cultivated and one wild species of Sesamum, Sesamum indicum L. and S. occidentale Regel and Heer. Data on 13 quantitative and 33 qualitative characters of the cultivated species and seven accessions of the wild taxa were analyzed. The genetic diversity of the taxa was assessed using UPGMA dendrogram and one-way ANOVA (p?<?0.05). Principal component analysis (PCA) was executed to identify the significant characters to delimit the taxa. Seed protein analysis showed diverse bands, ranging from 16 to 88?kDa. A dendrogram based on UPGMA analysis of seed protein suggested intraspecific relationships of the wild taxa as evidenced from the morphological characterization.  相似文献   

18.
Inter- and intraspecific variation of two ginseng species Panax ginseng and P. quinquefolius was estimated by studying 159 RAPD and 39 allozyme loci. Parameters of polymorphism and genetic diversity were determined and a tree was constructed to characterize the differences between individual plants, samples, and species. Genetic variation in P. ginseng proved to be lower than in P. quinquefolius. Gene diversity in the total P. ginseng sample was comparable with the mean expected heterozygosity of herbaceous plants. This suggests that wild P. ginseng plants in various areas of the currently fragmented natural habitat and cultivated plants of different origin have retained a significant proportion of their gene pool. The mean heterozygosity calculated per polymorphic locus for the RAPD phenotypes is similar to that of the allozyme loci and may be helpful in estimating gene diversity in populations of rare and endangered plant species.  相似文献   

19.
Insertions and deletions (indels) are common in intergenic spacer regions of plastid DNA and can provide important phylogenetic characters for closely related species. For example, a 241-bp plastid DNA deletion in the trnV-UAC/ndhC intergenic spacer region has been shown to have major phylogenetic importance in determining the origin of the cultivated potato. As part of a phylogenetic study of the wild potato Solanum series Piurana group we screened 199 accessions of 38 wild potato species in nine of the 19 tuber-bearing (Solanum section Petota) series that have not been examined before for indels in the trnV-UAC/ndhC intergenic spacer region. A novel 41 bp deletion (but no 241 bp deletion) was discovered for 30 accessions of three species: S. chiquidenum (5 of 10 accessions), S. chomatophilum (19 of 28), and S. jalcae (6 of 6). Accessions with and without this deletion are found throughout much of the north-south range of all three species in northern and central Peru, but not east of the Marañón River. Multivariate morphological analyses of these 44 accessions showed no morphological associations to the deletion. The results suggest extensive interspecific gene flow among these three species, or a common evolutionary history among species that have never been suggested to be interrelated.  相似文献   

20.
Levels of variation revealed by starch gel-electrophoresis were compared with morphological and chemical variation within and among the species and subspecies ofVirgilia:V. oroboides subsp.oroboides, V. oroboides subsp.ferruginea andV. divaricata. The data sets exhibited concordance in that all point to a very close relationship between the taxa. Differences are mostly quantitative and an overlapping east-west gradient of character variation is indicated. Analysis of morphological and chemical characters showed thatV. oroboides subsp.ferruginea andV. divaricata are relatively distinct, whereas allozyme analysis indicated a high degree of genetic similarity among populations of these two taxa. The observed pattern of variation suggests relatively recent speciation with subsequent introgressive hybridisation resulting in a geographical and ecological gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号