首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 113 毫秒
1.
Experiments were done to find whether buckwheat extract ameliorates the renal injury induced by ischemia-reperfusion. In ischemic-reperfused control rats, the activities of antioxidative enzymes in renal tissue and blood and renal parameters deviated from the normal range, indicating dysfunction of the kidneys. In contrast, when buckwheat extract was given orally for 20 consecutive days before ischemia and reperfusion, the activities of the antioxidation enzymes superoxide dismutase, catalase, and glutathione peroxidase were higher, while thiobarbituric acid-reactive substance levels in serum and renal tissue were lower in the treated rats than in the controls. Decreased levels of urea nitrogen and creatinine in serum demonstrated a protective effect against the renal dysfunction caused by ischemia and recirculation. On the other hand, it was demonstrated that buckwheat extract had a protective effect on cultured proximal tubule cells subjected to hypoxia-reoxygenation, probably by preventing oxygen free radicals from attacking the cell membranes.  相似文献   

2.
Tea polyphenols (TP) was investigated in rats for its protective effect on renal ischemia/reperfusion injury (RIRI). Rats were randomized into groups as follows: (I) sham group (n = 10); (II) RIRI group (n = 10); (III) RIRI + TP (100 mg/kg) group (n = 5); (IV) RIRI + TP (200 mg/kg) group (n = 5); (V) RIRI + TP+ Astragalus mongholicus aqueous extract (AMAE) (300 mg/kg + 100 mg/kg) group (n = 5). For the IRI + TP groups, rats were orally given with tea polyphenols (100, 200 and 300 mg/kg body weight) once daily 10 days before induction of ischemia, followed by renal IRI. For the sham group and RIRI group, rats were orally given with equal volume of saline once daily 10 days before induction of ischemia, followed by renal IRI. Results showed that tea polyphenol pretreatment significantly suppressed ROS level and MDA release. On the other hand, in rats subjected to ischemia–reperfusion, the activities of endogenous antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GSH-Px) showed recovery, whereas the levels of urea nitrogen and serum creatinine were reduced by administration of tea polyphenols orally for 10 days prior to ischemia–reperfusion. Moreover, tea polyphenol pretreatment significantly decreased TLR4 and NF-κB p65 protein expression levels in RIRI rats. At the same time, tea polyphenol pretreatment attenuated the increased level of serum IL-1β, IL-6, ICAM-1 and TNF-α, and enhanced IL-10 production in RIRI rats. Furthermore, tea polyphenol pretreatment significantly decreased renal epithelial tubular cell apoptosis induced by renal ischemia/reperfusion, alleviating renal ischemia/reperfusion injury. These results cumulatively indicate that tea polyphenol pretreatment could suppress the TLR4/NF-κB p65 signaling pathway, protecting renal tubular epithelial cells against ischemia/reperfusion-induced apoptosis, which implies that antioxidants may be a potential and effective agent for prevention of the ischemic/reperfusion injury through the suppression extrinsic apoptotic signal pathway induced by TLR4/NF-κB p65 signal pathway. Moreover, supplement of AMAE can increased renal protection effect of TP.  相似文献   

3.
The serum cholesterol (total, free, esterified, low density lipoprotein (LDL) and oxidized LDL) levels of rats fed a diet containing, by weight, 1% cholesterol and 0.5% cholic acid increased, as compared with those of rats fed a normal diet. The levels, especially of total cholesterol, LDL and oxidized LDL, were reduced significantly in a dose-dependent manner, in rats given Coptidis Rhizoma extract orally at doses of 50 and 100 mg/kg body wt./day for 30 days. These results indicate that Coptidis Rhizoma extract is effective in reducing the pathological damage caused by hypercholesterolemia, through lowering of serum cholesterol levels. In addition, Coptidis Rhizoma extract reduced the level of liver cholesterol, but it did not reduce that of fecal cholesterol, suggesting that the cholesterol level-lowering effect resulted from the reduction of cholesterol synthesis, not the enhancement of its excretion. Furthermore, the serum thiobarbituric acid-reactive substance level decreased after oral administration of Coptidis Rhizoma extract, indicating that Coptidis Rhizoma could prevent hypercholesterolemic disease through reducing lipid peroxidation. This study demonstrates that Coptidis Rhizoma may be a useful therapy for hypercholesterolemia through reducing oxidative stress and cholesterol levels.  相似文献   

4.
Glycyrrhizae radix water extract (GRWE) and its two major constituents glycyrrhizin and 3-glycyrrhetinic monodesmoside, significantly suppressed LDH leakage and MDA release, whereas glycyrrhetinic acid had no effect. On the other hand, in rats subjected to ischemia-reperfusion, the activities of endogenous antioxidant enzymes including catalase and glutathione peroxidase showed recovery, whereas the levels of urea nitrogen and creatinine in serum were reduced by administration of glycyrrhizin orally for 30 days prior to ischemia-reperfusion. These results indicate that GRWE and its two constituents may be promising for amelioration of hypoxia (ischemia)-reoxygenation (reperfusion) injury and improvement of renal function by acting directly or indirectly as antioxidant and oxygen radical-scavenging agents.  相似文献   

5.
The present work was focused to evaluate the ameliorative property of aqueous extract of Trichosanthes dioica fruit (AQ T. dioica fruit) against arsenic-induced toxicity in male Wistar albino rats. AQ T. dioica fruit was administered orally to rats at 50 and 100 mg/kg body weight for 20 consecutive days prior to oral administration of sodium arsenite (10 mg/kg) for 10 days. Then the rats were sacrificed for the evaluation of body weights, organ weights, hematological profile, serum biochemical profile, and hepatic and renal antioxidative parameters viz. lipid peroxidation, reduced and oxidized glutathione, glutathione-S-transferase, glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase, and DNA fragmentation. Pretreatment with AQ T. dioica fruit at both doses markedly and significantly normalized body weights, organ weights, hematological profiles, and serum biochemical profile in arsenic-treated animals. Further, AQ T. dioica fruit pretreatment significantly modulated all the aforesaid hepatic and renal biochemical perturbations and reduced DNA fragmentation in arsenic-intoxicated rats. Therefore, from the present findings, it can be concluded that T. dioica fruit possessed remarkable value in amelioration of arsenic-induced hepatic and renal toxicity, mediated by alleviation of arsenic-induced oxidative stress by multiple mechanisms in male albino rats.  相似文献   

6.
There is little information about the hepatoprotective effects of gallic acid against ischemia–reperfusion (I/R) damage. Animals were subjected to I/R. Gallic acid at doses of 50 and 100 mg/kg body weight (bw) were injected as a single dose prior to ischemia. Liver tissue homogenates were used for the measurement of malondialdehyde (MDA), catalase (CAT) and glutathione peroxidase (GPx) levels. At the same time alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were assayed in serum samples and compared statistically. While the ALT, AST, LDH activities and MDA levels were significantly increased, CAT and GPx activities significantly decreased in only I/R-induced control rats compared to normal control rats (P < 0.05). Treatment with gallic acid at a dose of 100 mg/kg bw significantly decreased the ALT, AST, LDH activities and MDA levels, and markedly increased activities of CAT and GPx in tissue homogenates compared to I/R-induced rats with no treatment group (P < 0.05). In oxidative stress generated by hepatic ischemia–reperfusion, gallic acid contributes partially an alteration in the delicate balance between the scavenging capacity of antioxidant defense systems and free radicals in favour of the antioxidant defense systems in the body.  相似文献   

7.
Hwang YS  Shin CY  Huh Y  Ryu JH 《Life sciences》2002,71(18):2105-2117
The preventive effect of Hwangryun-Hae-Dok-tang (HHDT, Huanglian-Jie-Du-Tang), a Chinese herbal medicine, and its ingredients on ischemia/reperfusion-induced brain injury was evaluated in the rat brain. HHDT consists of four herbs, namely, Coptidis rhizoma, Scutellariae radix, Phellodendri cortex, and Gardeniae fructus. Ischemia was induced by intraluminal occlusion of the right middle cerebral artery for 120 min and reperfusion was continued for 22 h. HHDT (200 mg/kg), Coptidis rhizoma (100 mg/kg), Scutellariae radix (100 mg/kg), Phellodendri cortex (100 mg/kg), and Gardeniae fructus (100 mg/kg) were orally administered, promptly prior to reperfusion and 2 h after reperfusion. Baicalein, a component of Scutellariae radix, was also examined at a dosage of 50 mg/kg given 2 h apart, promptly prior to and 2 h after reperfusion. Total infarction volume in the ipsilateral hemisphere of ischemia/reperfusion rats was significantly lowered by treatment with HHDT, Scutellariae radix, and balicalein. However, the other ingredient of HHDT did not show any ameliorating effects on total infarction volume. The inhibiting effect of Scutellariae radix on total infarction volume was much higher than that of the others. In addition, HHDT, Scutellariae radix, and baicalein significantly inhibited myeloperoxidase (MPO) activity, an index of neutrophil infiltration in ischemic brain tissue at about the same rate (30%). There was marked mismatch between total infarction volume and MPO activity in the Scutellariae radix-treated rats but not in the HHDT- and baicalein-treated groups. Our findings suggest that Scutellariae radix as an ingredient of HHDT plays a crucial protective role in ischemia-induced brain injury. In addition, it is apparent that the effect of Scutellariae radix is the result, in part, of baicalein, a compound contained in Scutellariae radix.  相似文献   

8.
The effect of Wen-Pi-Tang extract on renal injury induced by peroxynitrite (ONOO -) production was investigated using rats subjected to intravenous lipopolysaccharide (LPS) injection and then renal ischemia followed by reperfusion. The plasma level of 3-nitrotyrosine, a marker of cytotoxic ONOO - formation in vivo , was enhanced markedly in control rats subjected to LPS plus ischemia-reperfusion, but was significantly reduced by the oral administration of Wen-Pi-Tang extract, at doses of 62.5 and 125 mg/kg body weight/day, for 30 days prior to LPS plus ischemia-reperfusion. The activities of inducible nitric oxide synthase (iNOS) and xanthine oxidase (XOD) in renal tissue of control and Wen-Pi-Tang extract-treated rats did not change significantly, while those of the antioxidant enzymes, superoxide dismutase, catalase and gluta-thione peroxidase, were significantly increased by the administration of Wen-Pi-Tang extract, indicating that Wen-Pi-Tang improved the defense system by scavenging free radicals, not by directly inhibiting nitric oxide and superoxide production by iNOS and XOD. In addition, the levels of the hydroxylated products, m - and p -tyrosine, declined, whereas that of phenylalanine increased, after oral administration of Wen-Pi-Tang extract. Furthermore, the elevated plasma urea nitrogen and creatinine levels resulting from LPS plus ischemia-reperfusion process were significantly reduced by Wen-Pi-Tang extract, implying amelioration of renal impairment. The present study indicates that Wen-Pi-Tang extract contributes to the regulation of ONOO - formation and plays a beneficial role against ONOO --induced oxidative injury and renal dysfunction in vivo .  相似文献   

9.
The effect of Wen-Pi-Tang extract on renal injury induced by peroxynitrite (ONOO &#109 ) production was investigated using rats subjected to intravenous lipopolysaccharide (LPS) injection and then renal ischemia followed by reperfusion. The plasma level of 3-nitrotyrosine, a marker of cytotoxic ONOO &#109 formation in vivo, was enhanced markedly in control rats subjected to LPS plus ischemia-reperfusion, but was significantly reduced by the oral administration of Wen-Pi-Tang extract, at doses of 62.5 and 125 mg/kg body weight/day, for 30 days prior to LPS plus ischemia-reperfusion. The activities of inducible nitric oxide synthase (iNOS) and xanthine oxidase (XOD) in renal tissue of control and Wen-Pi-Tang extract-treated rats did not change significantly, while those of the antioxidant enzymes, superoxide dismutase, catalase and gluta-thione peroxidase, were significantly increased by the administration of Wen-Pi-Tang extract, indicating that Wen-Pi-Tang improved the defense system by scavenging free radicals, not by directly inhibiting nitric oxide and superoxide production by iNOS and XOD. In addition, the levels of the hydroxylated products, m - and p -tyrosine, declined, whereas that of phenylalanine increased, after oral administration of Wen-Pi-Tang extract. Furthermore, the elevated plasma urea nitrogen and creatinine levels resulting from LPS plus ischemia-reperfusion process were significantly reduced by Wen-Pi-Tang extract, implying amelioration of renal impairment. The present study indicates that Wen-Pi-Tang extract contributes to the regulation of ONOO &#109 formation and plays a beneficial role against ONOO &#109 -induced oxidative injury and renal dysfunction in vivo .  相似文献   

10.
Reoxygenation of the ischemic tissue promotes the generation of various reactive oxygen metabolites (ROM) which are known to have deleterious effects on various cellular functions. This study was designed to determine the possible protective effect of mesna (2-Mercaptoethane Sulfonate) on renal ischemia/reperfusion (I/R) injury. Wistar albino rats were unilaterally nephrectomized, and 15 days later they were subjected to 45 min of renal pedicle occlusion followed by 6 h of reperfusion. Mesna (MESNA, 150 mg/kg, i.p.; an effective dose against I/R injury) or vehicle was administered twice, 15 min prior to ischemia and immediately before the reperfusion period. At the end of the reperfusion period, rats were killed by decapitation. Kidney samples were taken for histological examination or determination of the free radicals, renal malondialdehyde (MDA) and glutathione (GSH) levels, and myeloperoxidase (MPO) activity. Renal tissue collagen content, as a fibrosis marker was also determined. Creatinine and urea concentrations in blood were measured for the evaluation of renal function. The results demonstrated that renal I/R caused nephrotoxicity, as evidenced by increases in blood urea and creatinine levels, which was reversed by MESNA treatment. Increased free radical levels, as assessed by nitroblue-tetrazolium test were reduced with MESNA. Moreover, the decrease in GSH and increases in MDA levels, and MPO activity induced by I/R indicated that renal injury involves free radical formation. Treatment of rats with MESNA restored the reduced GSH levels while it decreased MDA levels as well as MPO activity. Increased collagen contents of the kidney tissues by I/R were reversed back to the control levels by MESNA treatment. Since MESNA administration reversed these oxidant responses, improved renal function and microscopic damage, it seems likely that MESNA protects kidney tissue against I/R induced oxidative damage.  相似文献   

11.
There is a very little information about the protective effect of lycopene (LYC) against hepatic ischemia–reperfusion injury. The present study was designed to examine the possible protective effect of the strong antioxidant and anti-inflammatory agent, LYC, on hepatic ischemia/reperfusion injury. For this purpose, rats were subjected to 45 min of hepatic ischemia followed by 60 min of reperfusion period. LYC at the doses of 2.5 and 5 mg/kg body weight (bw) were injected intraperitoneally, 60 min prior to ischemia. Upon sacrification, hepatic tissue samples were used for the measurement of catalase (CAT) activity and malondialdehyde (MDA) levels. Also, aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) were assayed in serum samples. As a result of the use of LYC at the doses of 2.5 and 5 mg/kg bw; while improvements of the ALT, AST, LDH and MDA values were partial and dose-dependent, the improvement of CAT activity was total and dose-independent (p < 0.05). Our findings suggest that LYC has a protective effect against ischemia/reperfusion injury on the liver.  相似文献   

12.
Free radicals have been implicated in neuronal injury during ischemia reperfusion in stroke. Trans resveratrol, a potent antioxidant, polyphenolic compound found in grapes and wines has recently been shown to have neuroprotective activity against oxidative stress in in vitro studies. In the present study the effect of chronic treatment of trans resveratrol was evaluated in focal ischemia induced by middle cerebral artery [MCA] occlusion in rats. Male Wistar rats were pretreated with trans resveratrol 20 mg/kg i.p. for 21 days and were subjected to focal ischemia by occlusion of MCA using intraluminal thread. After two hours of MCA occlusion reperfusion was allowed by retracting the thread. Animals were assessed for motor performance after 24 hours and subsequently rats were sacrificed for estimation of markers of oxidative stress [malondialdehyde [MDA] and reduced glutathione] and for evaluation of volume of infarction. Control group received vehicle and similar protocol was followed. Significant motor impairment, with elevated levels of MDA and reduced glutathione was observed in the vehicle treated MCA occluded rats. Treatment with trans resveratrol prevented motor impairment, rise in levels of MDA and reduced glutathione and also significantly decreased the volume of infarct as compared to control. The study provides first evidence of effectiveness of trans resveratrol in focal ischemia most probably by virtue of its antioxidant property.  相似文献   

13.
AIM: Oxytocin was previously shown to have anti-inflammatory effects in different inflammation models. The major objective of the present study was to evaluate the protective role of oxytocin (OT) in protecting the kidney against ischemia/reperfusion (I/R) injury. MATERIALS AND METHODS: Male Wistar albino rats (250-300 g) were unilaterally nephrectomized, and subjected to 45 min of renal pedicle occlusion followed by 6 h of reperfusion. OT (1 mg/kg, ip) or vehicle was administered 15 min prior to ischemia and was repeated immediately before the reperfusion period. At the end of the reperfusion period, rats were decapitated and kidney samples were taken for histological examination or determination of malondialdehyde (MDA), an end product of lipid peroxidation; glutathione (GSH), a key antioxidant; and myeloperoxidase (MPO) activity, an index of tissue neutrophil infiltration. Creatinine and urea concentrations in blood were measured for the evaluation of renal function, while TNF-alpha and lactate dehydrogenase (LDH) levels were determined to evaluate generalized tissue damage. Formation of reactive oxygen species in renal tissue samples was monitored by chemiluminescence technique using luminol and lucigenin probes. RESULTS: The results revealed that I/R injury increased (p<0.01-0.001) serum urea, creatinine, TNF-alpha and LDH levels, as well as MDA, MPO and reactive oxygen radical levels in the renal tissue, while decreasing renal GSH content. However, alterations in these biochemical and histopathological indices due to I/R injury were attenuated by OT treatment (p<0.05-0.001). CONCLUSIONS: Since OT administration improved renal function and microscopic damage, along with the alleviation of oxidant tissue responses, it appears that oxytocin protects renal tissue against I/R-induced oxidative damage.  相似文献   

14.
Vitamin D, most commonly associated with the growth and remodeling of bone, has been shown to ameliorate ischemia/reperfusion injury (IRI) in some tissues, yet its underlying mechanism remains elusive. This study was designed to examine the protective effect of vitamin D, if any, against hepatic IRI in rats and the underlying mechanism involved. Adult female Wistar rats were randomly divided into control, sham-operated (sham), ischemia/reperfusion (I/R), and ischemic-reperfused vitamin D-treated (vit D) groups. Rats in the I/R and vit D groups were subjected to partial (70 %) hepatic ischemia for 45 min, followed by 1 h of reperfusion. Vitamin D was given to rats orally in a dose of 500 IU/kg daily for 2 weeks before being subjected to I/R. Markers of liver damage, oxidative stress, inflammation and apoptosis were evaluated. Hepatic morphology was also examined. Vit D-treated rats had significantly lower serum levels of alanine aminotransferase, aspartate aminotransferase, and γ glutamyl transferase compared to rats in the I/R group. Also, vit D-treated rats showed a significant decrease in malondialdehyde, interleukin-1 beta, interleukin-6, tumor necrosis factor-α, nuclear factor κB, B cell leukemia/lymphoma 2-associated X protein, cytochrome c, and caspase-3 levels, with higher levels of glutathione peroxidase and B cell lymphoma 2 protein levels in liver tissues compared to I/R rats. Histological examination showed less damaged liver tissues with amelioration of apoptotic signs in the vit D group compared to the I/R group. In conclusion, vitamin D supplementation ameliorates hepatic IRI mostly by alleviating the inflammatory-apoptotic response mediated by the oxidative reperfusion injury insult.  相似文献   

15.
The cerebral ischemia in rats was induced by occluding bilateral common carotid arteries (BCCAO) for 30 min., followed by 45 min reperfusion. BCCAO caused significant depletion in superoxide dismutase, catalase, glutathione, glutathione peroxidase, glutathione-S-transferase, glutathione reductase and significant increase in lipid peroxidation along with severe neuronal damage in the brain. All the alterations except depletion in glutathione peroxidase and glutathione-S-transferase levels induced by cerebral ischemia were significantly attenuated by 15 days pretreatment with methanolic extract of P. dactylifera fruits (100, 300 mg/kg), whereas 30 mg/kg dose was insignificant in this regard. These results suggest the possible use P. dactylifera against bilateral common carotid artery occlusion induced oxidative stress and neuronal damage.  相似文献   

16.
Recent studies from our lab and others have shown that the hematopoietic cytokine erythropoietin (EPO) can protect the heart from ischemic damage in a red blood cell-independent manner. Here we examined any protective effects of the long-acting EPO analog darbepoetin alfa (DA) in a rat model of ischemia-reperfusion (I/R) injury. Rats were subjected to 30-min ischemia followed by 72-h reperfusion. In a dose-response study, DA (2, 7, 11, and 30 mug/kg) or vehicle was administered as a single bolus at the start of ischemia. To determine the time window of potential cardioprotection, a single high dose of DA (30 mug/kg) was given at either the initiation or the end of ischemia or at 1 or 24 h after reperfusion. After 3 days, cardiac function and infarct size were assessed. Acute myocyte apoptosis was quantified by TUNEL staining on myocardial sections and by caspase-3 activity assays. DA significantly reduced infarct size from 32.8 +/- 3.5% (vehicle) to 11.0 +/- 3.3% in a dose-dependent manner, while there was no difference in ischemic area between groups. Treatment with DA as late as 24 h after the beginning of reperfusion still demonstrated a significant reduction in infarct size (17.0 +/- 1.6%). Consistent with infarction data, DA improved in vivo cardiac reserve compared with vehicle. Finally, DA significantly decreased myocyte apoptosis and caspase-3 activity after I/R. These data indicate that DA protects the heart against I/R injury and improves cardiac function, apparently through a reduction of myocyte apoptosis. Of clinical importance pointing toward a relevant therapeutic utility, we report that even if given 24 h after I/R injury, DA can significantly protect the myocardium.  相似文献   

17.
Heme oxygenase (HO)-1 catalyzes the rate-limiting step in heme degradation releasing iron, carbon monoxide, and biliverdin. Induction of HO-1 occurs as an adaptive and protective response to oxidative stress. Ischemia and reperfusion (IR) injury seems to be mainly caused by the oxidative stress. In this study, we have examined whether prior induction of HO-1 with buthionine sulfoximine (BSO), a glutathione (GSH) depletor, affects the subsequent renal IR injury. BSO (2 mmol/kg body weight) was administered intraperitoneally into rats, the levels of HO-1 protein increased within 4 h after the injection. When BSO was administered into rats at 5 h prior to the renal 45 min of ischemia, the renal IR injury was assessed by determining the levels of blood urea nitrogen and serum creatinine, markers for renal injury, after 24 h of reperfusion. The renal injury was significantly improved as compared to the rats treated with IR alone. Administration of zinc-protoporphyrin IX, an inhibitor of HO activity, reduced the efficacy of BSO pretreatment on the renal IR injury. Our findings suggest that the prior induction of HO-1 ameliorates the subsequent renal IR injury.  相似文献   

18.
19.
The activities of rat hepatic subcellular antioxidant enzymes were studied during hepatic ischemia/reperfusion. Ischemia was induced for 30 min (reversible ischemia) or 60 min (irreversible ischemia). Ischemia was followed by 2 or 24 h of reperfusion. Hepatocyte peroxisomal catalase enzyme activity decreased during 60 min of ischemia and declined further during reperfusion. Peroxisomes of normal density (d = 1.225 gram/ml) were observed in control tissues. However, 60 min of ischemia also produced a second peak of catalase specific activity in subcellular fractions corresponding to newly formed low density immature peroxisomes (d = 1.12 gram/ml). The second peak was also detectable after 30 min of ischemia followed by reperfusion for 2 or 24 h. Mitochondrial and microsomal fractions responded differently. MnSOD activity in mitochondria and microsomal fractions increased significantly (p < 0.05) after 30 min of ischemia, but decreased below control values following 60 min of ischemia and remained lower during reperfusion at 2 and 24 h in both organelle fractions. Conversely, mitochondrial and microsomal glutathione peroxidase (GPx) activity increased significantly (p < 0.001) after 60 min of ischemia and was sustained during 24 h of reperfusion. In the cytosolic fraction, a significant increase in CuZnSOD activity was noted following reperfusion in animals subjected to 30 min of ischemia, but 60 min of ischemia and 24 h of reperfusion resulted in decreased CuZnSOD activity. These studies suggest that the antioxidant enzymes of various subcellular compartments respond to ischemia/reperfusion in an organelle or compartment specific manner and that the regulation of antioxidant enzyme activity in peroxisomes may differ from that in mitochondria and microsomes. The compartmentalized changes in hepatic antioxidant enzyme activity may be crucial determinant of cell survival and function during ischemia/reperfusion. Finally, a progressive decline in the level of hepatic reduced glutathione (GSH) and concomitant increase in serum glutamate pyruvate transaminase (SGPT) activity also suggest that greater tissue damage and impairment of intracellular antioxidant activity occur with longer ischemia periods, and during reperfusion.  相似文献   

20.
中药提取物对酵母菌抗真菌活性研究   总被引:3,自引:0,他引:3  
目的探讨6味中药2种方法提取成分对酵母菌的抑菌和杀菌作用。方法采用药基琼脂稀释法,测定6味中药水提和醇提成分对白念珠菌和糠秕马拉色菌的MIC和MFC。结果对白念珠菌:水提黄连、醇提黄柏、醇提土槿皮MIC范围分别为0.625—1.25mg/mL、0.625~1.25mg/mL、0.313—0.625mg/mL;均值均为0.625mg/mL;对糠秕马拉色菌:水提和醇提黄连MIC范围分别为0.625~1.25mg/mL和1.25mg/mL,均值均为1.25mg/mL。对白念珠菌:醇提土槿皮MFC范围0.625~2.5mg/mL,均值0.625rag/mL。结论水提黄连、醇提黄柏和土槿皮对白念珠菌有较强抑菌作用,其中醇提土槿皮有较强杀菌作用。水提和醇提黄连对糠秕马拉色菌有较强抑菌作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号