首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyphenol oxidase (PPO) is a major cause of time-dependent darkening and discoloration in Asian noodles and other wheat-based products. One of the best ways to reduce this undesirable darkening is to breed new wheat cultivars with low PPO activity using efficient and reliable markers. Based on the sequence of a PPO gene SSPPO-B1 (GenBank accession no. AB254804) located on chromosome 2B of common wheat, 26 pairs of primers were designed to detect polymorphisms between wheat cultivars with low and high PPO activity. F-8, one of these primer pairs, amplified double fragments (band ??a?? of approximately 400?bp and band ??b?? of approximately 600?bp) in the cultivars with low PPO activity, and a single fragment (only band a) in the cultivars with high PPO activity. The differences between the fragments a and b include five indels and several single nucleotide polymorphisms, which occurred in intron II of the PPO gene. F-8 can be used as a sequence-tagged site marker to discriminate between two alleles Ppo-B1a (GQ303713) and Ppo-B1b (AB254804). The screening of 284 accessions of the core collection of Chinese wheat germplasms using the marker F-8 showed that the double fragments were present in 188 accessions, and the single fragments were present in the remaining 96 accessions. Statistical analysis revealed that the cultivars with the double fragments had significantly lower mean PPO activity than those with the single fragments. We also screened the 284 accessions using two additional markers, PPO18 for Ppo-A1 on chromosome 2A and STS01 for Ppo-D1 on chromosome 2D. Results showed that the combination of markers F-8, PPO18, and STS01 could reliably predict PPO activity. These markers can be used in wheat breeding programs for low PPO activity selection to improve the quality of wheat-based products.  相似文献   

2.
A Novel STS Marker for Polyphenol Oxidase Activity in Bread Wheat   总被引:19,自引:0,他引:19  
The enzyme activity of polyphenol oxidase (PPO) in grain has been related to undersirable brown discoloration of bread wheat (Triticum aestivum L.) based end-products, particularly for Asian noodles. Breeding wheat cultivars with low PPO activity is the best approach to reduce the undesirable darkening. Molecular markers could greatly improve selection efficiency in breeding programs. Based on the sequences of PPO genes (GenBank Accession Numbers AY596268, AY596269 and AY596270) conditioning PPO activity during kernel development, 28 pairs of primers were designed using the software ‘DNAMAN’. One of the markers from AY596268, designated as PPO18, can amplify a 685-bp and an 876-bp fragment in the cultivars with high and low PPO activity, respectively. The difference of 191-bp size was detected in the intron region of the PPO gene. The STS marker PPO18 was mapped to chromosome 2AL using a DH population derived from a cross Zhongyou 9507× CA9632, a set of nulli-tetrasomic lines and ditelosomic line 2AS of Chinese Spring. QTL analysis indicated that the PPO gene co-segregated with the STS marker PPO18 and is closely linked to Xgwm312 and Xgwm294 on chromosome 2AL, explaining 28–43% of phenotypic variance for PPO activity across three environments. A total of 233 Chinese wheat cultivars and advanced lines were used to validate the correlation between the polymorphic fragments of PPO18 and grain PPO activity. The results showed that PPO18 is a co-dominant, efficient and reliable molecular marker for PPO activity and can be used in wheat breeding programs targeted for noodle quality improvement.  相似文献   

3.
Polyphenol oxidase (PPO) activity is highly related to the undesirable browning of wheat-based end products, especially Asian noodles. Characterization of PPO genes and the development of their functional markers are of great importance for marker-assisted selection in wheat breeding. In the present study, complete genomic DNA sequences of two PPO genes, one each located on chromosomes 2A and 2D and their allelic variants were characterized by means of in silico cloning and experimental validation. Sequences were aligned at both DNA and protein levels. Two haplotypes on chromosome 2D showed 95.2% sequence identity at the DNA level, indicating much more sequence diversity than those on chromosome 2A with 99.6% sequence identity. Both of the PPO genes on chromosomes 2A and 2D contain an open reading frame (ORF) of 1,731 bp, encoding a PPO precursor peptide of 577 amino acids with a predicted molecular mass of ∼64 kD. Two complementary dominant STS markers, PPO16 and PPO29, were developed based on the PPO gene haplotypes located on chromosome 2D; they amplify a 713-bp fragment in cultivars with low PPO activity and a 490-bp fragment in those with high PPO activity, respectively. The two markers were mapped on chromosome 2DL using a doubled haploid population derived from the cross Zhongyou 9507/CA9632, and a set of nullisomic–tetrasomic lines and ditelosomic line 2DS of Chinese Spring. QTL analysis indicated that the PPO gene co-segregated with the two STS markers and was closely linked to SSR marker Xwmc41 on chromosome 2DL, explaining from 9.6 to 24.4% of the phenotypic variance for PPO activity across three environments. In order to simultaneously detect PPO loci on chromosomes 2A and 2D, a multiplexed marker combination PPO33/PPO16 was developed and yielded distinguishable DNA patterns in a number of cultivars. The STS marker PPO33 for the PPO gene on chromosome 2A was developed from the same gene sequences as PPO18 that we reported previously, and can amplify a 481-bp and a 290-bp fragment from cultivars with low and high PPO activity, respectively. A total of 217 Chinese wheat cultivars and advanced lines were used to validate the association between the polymorphic fragments and grain PPO activity. The results showed that the marker combination PPO33/PPO16 is efficient and reliable for evaluating PPO activity and can be used in wheat breeding programs aimed for noodle and other end product quality improvement.  相似文献   

4.
Polyphenol oxidases (PPOs) are involved in the time-dependent darkening and discolouration of Asian noodles and other wheat end products. In this study, a doubled haploid (DH) population derived from Chara (moderately high PPO activity)/WW2449 (low PPO activity) was screened for PPO activity based on l-DOPA and l-tyrosine assays using whole seeds. Both these assays were significantly genetically correlated (r=0.91) in measuring the PPO activity in this DH population. Quantitative trait loci (QTLs) analysis utilising a skeleton map enabled us to identify a major QTL controlling PPO activity based on l-DOPA and l-tyrosine on the long arm of chromosome 2A. The simple sequence repeat (SSR) marker GWM294b explained over 82% of the line mean phenotypic variation from samples collected in both 2000 and 2003. Four SSR markers were validated for PPO linkage in genetically diverse backgrounds and proven to correctly predict the PPO activity in more than 92% of wheat lines. Physical mapping using deletion lines of Chinese Spring has confirmed the location of the GWM294b, GWM312 and WMC170 on chromosome 2AL, between deletion breakpoints 2AL-C to 0.85. In order to identify functional gene markers, data searches for alignments between rice BAC/PAC clones assembled on chromosome 1 and 4, chromosome 7, and (1) the wheat expressed sequence tags mapped in deletion bin (2AL-C to 0.85) and (2) the coding sequence of a previously cloned wheat PPO gene were made and found significant sequence similarities with the PPO gene or common central domain of tyrosinase. Available PPO gene sequences in the National Centre for Biotechnology Information (NCBI) database have revealed that there is a significant molecular diversity at the nucleotide and amino acid level in the wheat PPO genes.Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

5.
Grain polyphenol oxidase (PPO) activity can cause discoloration of wheat (Triticum aestivum L.) food products. Five crosses (PI 117635/Antelope; Fielder/NW03681; Fielder/Antelope; NW07OR1070/Antelope; NW07OR1066/OR2050272H) were selected to study the genetic inheritance of PPO activity. STS markers, PPO18, PPO29 and STS01, were used to identify lines with putative alleles at the Ppo-A1 and Ppo-D1 loci conditioning low or high PPO activity. ANOVA showed significant genotypic effects on PPO activity (P?<?0.0001) in all populations. The generations and generation?×?genotype effects were not significant in any population. A putative third (null) genotype at Ppo-A1 (no PCR fragments for PPO18) was discovered in NW07OR1066 and NW07OR1070 derived populations, and these had the lowest mean PPO activities. Results demonstrated that both Ppo-A1 and Ppo-D1 loci affect the kernel PPO activity, but the Ppo-A1 has the major effect. In three populations, contrary results were observed to those predicted from previous work with Ppo-D1 alleles, suggesting the markers for Ppo-D1 allele might give erroneous results in some genetic backgrounds or lineages. Results suggest that selection for low or null alleles only at Ppo-A1 might allow development of low PPO wheat cultivars.  相似文献   

6.
In order to develop more specific markers that characterize particular regions of the pea genome, the data on nucleotide sequences of RAPD fragments were used for choosing more extended primers, which may be helpful in amplifying a fragment corresponding to the particular DNA region. Of the 14 STS markers obtained from 14 polymorphic RAPD fragments, 12 were polymorphic, i.e., they are SCAR markers that can be used in genetic analysis. The transition from complex RAPD spectra to amplification of a particular SCAR marker substantially facilitates analysis of large samples for the presence or absence of the examined fragment. Inheritance of the developed SCAR markers was studied in F1 and F2. SCAR markers were used to identify various pea lines, cultivars, and mutants. It was established that the study of amplification of STS markers in various pea genotypes at varying temperatures of annealing and the comparison with amplification of the original RAPD fragments in the same genotypes provide an approach for analysis of RAPD polymorphism origin.  相似文献   

7.
Koveza OV  Gostimskiĭ SA 《Genetika》2005,41(11):1522-1530
In order to develop more specific markers that characterize particular regions of the pea genome, the data on nucleotide sequences of RAPD fragments were used for choosing more extended primers, which may be helpful in amplifying a fragment corresponding to the particular DNA region. Of the 14 STS markers obtained from 14 polymorphic RAPD fragments, 12 were polymorphic, i.e., they are SCAR markers that can be used in genetic analysis. The transition from complex RAPD spectra to amplification of a particular SCAR marker substantially facilitates analysis of large samples for the presence or absence of the examined fragment. Inheritance of the developed SCAR markers was studied in F1 and F2. SCAR markers were used to identify various pea lines, cultivars, and mutants. It was established that the study of amplification of STS markers in various pea genotypes at varying temperatures of annealing and the comparison with amplification of the original RAPD fragments in the same genotypes provide an approach for analysis of RAPD polymorphism type.  相似文献   

8.
The quality of durum wheat (Triticum turgidum ssp. durum) is influenced by polyphenol oxidase(PPO) activity and its corresponding substrates. A saturated molecular-marker linkage map was constructed previously by using a set of recombinant inbred (RI) lines, derived from a cross between durum wheat cultivars Jennah Khetifa and Cham 1. Quantitative trait loci (QTL) for PPO activity in seeds were mapped in this population. PPO activity in seeds of the parents and 110 RI lines was measured spectrophotometrically. The PPO activity of Cham 1 was significantly lower than that of Jennah Khetifa. QTL analysis of these data indicated that most of PPO activity was associated with major loci on the long arm of chromosome 2A. The trait was found to be strongly associated with the SSR marker Xgwm312@2A. With this knowledge, marker-assisted selection can be used to select genotypes with lower PPO activity in durum wheat populations.  相似文献   

9.
10.
Higher polyphenol oxidase (PPO) activity in wheat kernels and flour has been implicated in the time dependent darkening of various end-products. Previous study conducted on a bread wheat (Triticum aestivum L.) doubled haploid (DH) mapping population derived from Chara (medium-high PPO) and WW2449 (low PPO) identified a major QTL for PPO activity located on the long arm of chromosome 2A. Physical mapping of SSR markers accounting for up to 84% of phenotypic variation for PPO activities suggests that the candidate PPO locus is localised in the deletion bin delimited by 2AL 0.77–0.85. In order to develop functional gene markers, nine wheat ESTs mapped to this deletion bin and partial PPO reference genes were explored for their sequence identities and linkage with PPO locus in a mapping population. In the present study, two markers: one SNP and one CAPS based upon BQ161439 sequence variation between the parents were identified which exhibited a tight linkage (0–0.6 cM) with the PPO loci designated as XTc1 and XPPO- LDOPA. We also mapped the reference PPO gene (GenBank AY526268) characterised from developing kernels of wheat, on the long arm of chromosome 2A which exhibited a complete linkage with XPPO- L DOPA locus. Results suggest that PPO variation displayed in the DH population from Chara/WW2449 is due to the same reference PPO gene. Allelic homoplasy of tightly linked markers, indicated that these markers are ‘diagnostic’ for the selection of low PPO gene in a range of germplasm being used in different Australian breeding programs. Identification and validation of ‘functional gene markers’ would facilitate in enhancing the selection efficiency for low PPO activity in wheat breeding programs.  相似文献   

11.
The effect of elicitor from mycelial walls of Magnaporthe grisea, the rice blast fungus and α-picolinic acid, one of the toxins produced by M. grisea on induction of peroxidase (PO), polyphenol oxidase (PPO) in suspension-cultured rice (Oryza sativa L.) cells was studied. Cultured cells of blast resistant (Usen) and susceptible (CO39) rice genotypes were treated with elicitor (50?μg of glucose equivalents per ml) or α-picolinic acid (400?ppm). The cells were harvested at different time intervals and analysed for the induction of PO and PPO. PO isozyme analysis indicated that the elicitor strongly induced the activities of PO-2 and PO-3 in cultured cells of Usen 3?days after treatment. In Usen, toxin also induced the activities of PO-3 and PO-4. However, similar levels of activities corresponding to these isozymes were recorded 7?days after treatment. In CO39, the activities of PO-1 and PO-2 were induced 3?days after elicitor treatment. In contrast, the toxin suppressed the activity of PO-2. The elicitor induced the activities of PPO-1, PPO-2 and PPO-3 in both Usen and CO39. In Usen, steady increase of PPO-3 was observed and higher level of activity was recorded 5?days after treatment. In CO39, higher level of PPO-3 was observed 1?day after treatment and declined thereafter. However, the activities of PPO-1 and PPO-2 increased 3?days after treatment in CO39. In the toxin-treated cells of Usen, higher level of activity of PPO-3 was observed 3?days after treatment.  相似文献   

12.
Bruchid, Callosobruchus chinensis (L.) is an important pest of Vigna radiata during storage. RFLP and PCR based markers identified, linked with bruchid resistance gene in wild accession of greengram (V. radiata var. Sublobata) either collected from Madagaskar or Australia. Whether these markers will be useful for marker assisted introgression of bruchid resistance gene from the Indian accession into the existing cultivars are not known. Here, we employed two STS based markers which were found earlier, to be linked with bruchid resistance gene in Australian accession ACC41. Only one primer pair, STSbr1 showed polymorphism among Indian Sublobata accession (Sub2) and other twelve green gram cultivars. Analysis of 113 segregating lines (F6) of a cross between a popular cultivar of West Bengal, B1 and Sub2 showed a cent percent co-segregation of resistant locus with the polymorphic fragment. STSbr1 behave as a dominant marker among Indian genotypes although it has been shown earlier a co-dominant banding pattern between ACC41 and other Australian Susceptible cultivars. Other STS marker, STSbr2, does not produce any polymorphic fragment among Sub2 and 18 greengram genotypes. STSbr1 employed in screening of 50 green gram accessions and found high efficiency in screening of bruchid resistant genotypes also. So STSbr1 will be useful for marker assisted selection and germplasm screening for development of bruchid resistant greengram.  相似文献   

13.
The gene Yr26 confers resistance to all races of Puccinia striiformis f. sp. tritici (PST), the casual pathogen of wheat stripe rust in China. Here, we report development of a molecular marker closely linked to Yr26 using a resistance gene-analog polymorphism (RGAP) technique. A total of 787 F2 plants and 165 F3 lines derived from the cross Chuanmai 42/Taichung 29 were used for linkage analysis. Eighteen near-isogenic lines (NILs) and 18 Chinese wheat cultivars and advanced lines with different genes for stripe rust resistance were employed for the validation of STS markers. A total of 1,711 RGAP primer combinations were used to test the parents and resistant and susceptible bulks. Five polymorphic RGAP markers were used for genotyping all F2 plants. Linkage analysis showed that the five RGAP markers were closely linked to Yr26 with genetic distances ranging from 0.5 to 2.9 cM. These markers were then converted into STS markers, one, CYS-5, of which was located 0.5 cM to Yr26 and was closely associated with the resistance gene when validated over 18 NILs and 18 Chinese wheat cultivars and lines. The results indicated that CYS-5 can be used in marker-assisted selection targeted at pyramiding Yr26 and other genes for stripe rust resistance.  相似文献   

14.
We used bulked segregant analysis (BSA) to identify microsatellite markers associated with water-stress tolerance in wheat. Two DNA pools (tolerant and sensitive) were established from the selected F2 individuals of crosses between water-stress-tolerant and -sensitive wheat parental genotypes on the basis of the paraquat (PQ) tolerance, leaf size, and relative water content. All three traits were previously shown to be associated with water-stress tolerance on segregating F2 progeny of the wheat crosses used in this study. Microsatellite analysis was then performed on the established DNA pools, using 35 primer pairs that included all of the chromosome group 5 (5A, 5B, 5D) markers, to detect microsatellite fragments that were present, absent, or both in the DNA pools and their parental lines. We identified one microsatellite fragment that was present in tolerant parent wheat and the tolerant bulk but absent in the sensitive parent wheat and sensitive bulk. We then followed the segregation of this marker in the tolerant F2 individuals. Use of this marker may significantly enhance the success of selection for PQ- and water-stress-tolerant genotypes in wheat breeding programs.  相似文献   

15.
Five accessions of Aegilops speltoides and 67 European wheat cultivars (winter and spring) originating from the Czech Republic, Germany, Poland, Russia, Slovakia, United Kingdom, and 4 non-European wheat cultivars from Brazil and the USA were examined with molecular Sequence Tagged Site (STS) markers for resistance genes to powdery mildew: Pm 1, Pm 2, Pm 3 and Pm 13. All markers gave clear, repeatable results, although three of them (Pm 1, Pm 2 and Pm 3) appeared as not specific for resistance genes. Comparison of STS analysis results with Pm genes, postulated as the reaction type after inoculation with differential isolates of Erysiphe graminis f.sp. tritici (Blumeria graminis), revealed a high number of disparities. The marker for Pm 13 was not detected in any examined cultivar but was present in five accessions of Aegilops speltoides.  相似文献   

16.
《Genomics》2020,112(6):4690-4700
Time-dependent darkening and discoloration of wheat product caused by high polyphenol oxidase enzymes (PPO) activity is the most undesirable character in wheat processing industry. We performed GWAS of PPO activity in wheat grains utilizing an association panel and identified 22 significant SNPs. The most significant GWAS peak on chromosome 2A was verified by QTL analysis of PPO activity. The candidate gene for this GWAS peak was identified as TaPPO2A-1, which was the highest expressed PPO gene in wheat grains. The expression level of TaPPO2A-1 was significantly correlated with PPO activity. The most significant association signal for GWAS of the expression values of TaPPO2A-1 pinpointed to the genomic region containing TaPPO2A-1. The results suggested that cis regulation of TaPPO2A-1 expression is the key factor in regulation of PPO activity in wheat grains. The conclusion was further enhanced by haplotype analysis of seven SNPs in the promoter of TaPPO2A-1.  相似文献   

17.
《Genomics》2022,114(4):110432
Soyasaponin is a type of glycoside such as steroids, steroidal alkaloids or triterpenes, which enhance the body immunity. In order to efficiently identify genes and markers related to the soyasaponin, we used a 180K Axiom® SoyaSNP array and whole genome resequencing data from the Korean soybean core collection. As a result of conducting GWAS for group A soyasaponin (Aa and Ab derivatives), 16 significant common markers associated with Aa and Ab derivatives were mapped to chromosome 7, and three candidate genes including Glyma.07g254600 were detected. The functional haplotypes for candidate genes showed that Aa and Ab contents were mainly determined by alleles of AX-90322128, the marker of Glyma.07g254600. In addition, 14 novel SNPs variants closely associated with Aa and Ab derivatives were discovered for Glyma.07g254600. Therefore, the results of this study that identified soyasaponin-associated markers and useful genes utilizing various genomic information could provide insight into functional soybean breeding.  相似文献   

18.
Lu Y  Curtiss J  Miranda D  Hughs E  Zhang J 《Plant cell reports》2008,27(10):1645-1653
Amplified fragment length polymorphism (AFLP) marker system has had broad applications in biology. However, the anonymous AFLP markers are mainly amplified from non-coding regions, limiting their usefulness as a functional marker system. To take advantages of the traditional AFLP techniques, we propose substitution of a restriction enzyme that recognizes a restriction site containing ATG, called ATG-anchored AFLP (ATG-AFLP) analysis. In this study, we chose NsiI (recognizing ATGCAT) to replace EcoRI in combination with MseI to completely digest genomic DNA. One specific adaptor, one pre-selective primer and six selective amplification primers for the NsiI site were designed for ligation and PCR. Six NsiI and eight MseI primers generated a total of 1,780 ATG-AFLP fragments, of which 750 (42%) were polymorphic among four genotypes from two cultivated cotton species (Upland cotton, Gossypium hirsutum and Pima cotton, G. barbadense). The number of ATG-AFLP markers was sufficient to separate the four genotypes into two groups, consistent with their evolutionary and breeding history. Our results also showed that ATG-AFLP generated less number of total and polymorphic fragments per primer combination (2-3 vs. 4-5) than conventional AFLP within Upland cotton. Using a recombination inbred line (RIL) population, 62 polymorphic ATG-AFLP markers were mapped to 19 linkage groups with known chromosome anchored simple sequence repeat (SSR) markers. Of the nine ATG-AFLP fragments randomly chosen, three were found to be highly homologous to cotton cDNA sequences. An in-silico analysis of cotton and Arabidopsis cDNA confirmed that the ATG-anchored enzyme combination NsiI/MseI did generate more fragments than the EcoRI/MseI combination.  相似文献   

19.
The use of random amplified polymorphic DNA markers in wheat   总被引:43,自引:0,他引:43  
Summary An evaluation was made of the use of random amplified polymorphic DNA (RAPD) as a genetic marker system in wheat. Reproducible amplification products were obtained from varietal, homozygous single chromosome recombinant line and wheat/alien addition line genomic DNA with selected primers and rigorously optimized reaction conditions. Factors influencing the RAPD patterns are DNA concentration, Mg2+ concentration, polymerase concentration and denaturing temperature. In wheat, the non-homoeologous, non-dose responsive and dominant behaviour of RAPD products devalues their use as genetic markers for the construction of linkage maps, and the high probability that the amplified fragments derive from repetitive DNA limits their use as a source of conventional RFLP probes. However, RAPD markers will most certainly find many applications in the analysis of genotypes where single chromosomes or chromosome segments are to be manipulated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号