首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
在青藏高原东北缘高寒草甸设置6个放牧强度样地,连续4年研究10个多样性指数(Richness和Abundance 2个实测指数,优势度指数、均匀度指数、丰富度指数和综合指数各2个)对放牧强度和年限影响植物群落的解释能力.结果表明: 相对于重要值,利用多度计算的多样性指数对放牧干扰更敏感.优势度指数(Berger-Parker、Dominance)与放牧强度和年限均无关,不能将放牧干扰对群落优势种的影响有效区分.均匀度指数(Equitability、Evenness)均与放牧强度无关,但Evenness指数与放牧年限呈显著负相关,不受偶见种影响且与物种多度的变异系数呈显著正相关,在基于时间尺度的均匀度比较中可以选择Evenness指数.丰富度指数(Menhinick、Margalef)均与放牧年限无关,但Margalef指数与放牧强度呈显著正相关,且不受偶见种影响.综合指数(Shannon、Simpson)均与放牧强度无关,但Shannon指数与物种丰富度和多度呈显著正相关,且随放牧年限增加而显著升高,不受偶见种影响,Shannon指数可用于在长时间尺度下比较物种多样性变化.在所有多样性指数中,只有实测物种丰富度和多度均与放牧强度呈显著负相关,与放牧年限呈显著正相关,且不受偶见种影响,故实测物种丰富度和多度相结合可作为放牧干扰下多样性比较的首选指标.此外,多样性指数选择须考虑放牧干扰的强度与时间特征、多样性组分和研究目的.  相似文献   

2.
青藏高原高寒灌丛植被对长期放牧强度试验的响应特征   总被引:1,自引:1,他引:0  
在青藏高原中国科学院海北高寒草甸生态系统定位研究站对金露梅高寒灌丛草场植被开展了长期不同放牧强度试验,分别在短期(4年)、中期(11年)和长期(18年)放牧阶段研究不同放牧干扰强度对草地植物物种多样性、群落结构、地上生物量和草场质量的影响.研究表明,在不同放牧阶段,随着放牧强度增加植物群落的高度和盖度都降低.在中期放牧干扰阶段,物种多样性数和均匀度指数随着放牧强度增加呈现典型的单峰曲线模式;在长期放牧干扰阶段,随着放牧强度增加,占优势地位的灌木和禾草被典型杂类草替代,其中的重度放牧干扰简化了高寒灌丛植被群落结构,减少了地上现存生物量,特别是可食优良牧草生物量.植被对放牧的响应除了与放牧强度和放牧时间阶段密切相关外,还与该地区水热条件的变化有一定的相关性.针对长期放牧干扰的反应特性可将金露梅灌丛草场中植物划分为增加型、敏感型、忍耐型和无反应型4种类型.除了丰富度指数、多样性指数和均匀度指数外,其它一些特征参数并不支持著名的中度干扰假说.本研究发现,长期重度放牧促进了青藏高原高寒草地退化,适度放牧有利于高寒灌丛草场的生物多样性保护和牧草利用;"取半留半"的放牧原则在青藏高原草场放牧管理实践中值得推荐,它将有利于防止草场退化,提高牧草利用率和维持较高的生物多样性.  相似文献   

3.
为明晰放牧强度对高寒草甸物种、生活型以及功能群多样性和生物量的时间累积作用以及对多样性与生物量之间相互关系的影响。选择青藏高原东北缘高寒草甸,在6个放牧强度样地连续4 a(2012—2015)进行物种、生活型、功能群多样性和生物量调查。采用重复测量方差分析和线性回归法分析放牧强度和放牧年份对物种、生活型、功能群多样性以及多样性与生物量之间的相关关系的影响。结果表明:(1)放牧强度和放牧年份均对生物量产生显著影响。随放牧强度增加,生物量显著降低。但随放牧年份延长,不同放牧强度区生物量无一致的变化规律。(2)放牧年份对物种、生活型和功能群丰富度、均匀度和优势度的影响均达到显著水平。但放牧强度和放牧年份只对物种丰富度产生交互作用,放牧强度对物种丰富度的影响具有时间的累积效应。(3)放牧干扰下不同层次多样性,仅物种丰富度与所有多样性指数显著相关,物种丰富度可以作为物种多样性测度的代表性指标。(4)多样性与生物量关系的研究,对丰富度而言,仅低放牧强度样地(Plot2)中物种丰富度随生物量增加而显著降低,其余放牧强度样地的物种、生活型和功能群丰富度均与生物量无关。对均匀度而言,高放牧强度样地(Plot4、Plot5、Plot6)生活型均匀度随生物量的增加而显著降低。对优势度而言,高放牧强度样地生活型优势度随生物量的增加而显著增加。生活型多样性可作为放牧干扰下生物量变化快速预测的有效指标。  相似文献   

4.
不同干扰类型对高寒草甸群落结构和植物多样性的影响   总被引:51,自引:6,他引:45  
对高寒草甸天然草地进行了施肥、围栏和放牧 中牧和重牧 处理,研究不同干扰类型对草地植物多样性的影响.结果表明,施肥使草地植物群落物种组成贫乏,群落结构趋于简单,物种多样性减少;中等程度放牧增加了群落结构的复杂性,丰富度指数和多样性指数均最高,支持 中度干扰理论 ;重度放牧,由于干扰过于剧烈而减少了物种优势度和多样性;而轻度干扰的围栏草地,群落由少数优势种所统治,多样性也不高.物种数 S 、丰富度指数 Ma 、Shannon-Wiener指数 H' 、Simpson指数 D 的排列顺序均为:施肥草地<围栏草地<重牧草地<中牧草地;均匀度指数 Jsw 的变化趋势与上述各指数相同;优势度指数的变化趋势则相反,为施肥草地>围栏草地>重牧草地>中牧草地.4种干扰类型草地群落的生活型功能群基本一致,均由多年生禾草、多年生杂类草和莎草类组成,但各功能群在群落中所占比重及各功能群内所含物种数则大不相同.说明不同干扰类型对草地植物群落的物种组成、多样性格局及系统功能等方面产生不同的影响.  相似文献   

5.
以青藏高原东北缘高寒草甸为对象,研究不同放牧强度下植物群落和土壤因子的变化,以及群落物种分布与土壤物理结构和化学养分因子的定量关系.结果表明: 放牧导致优势种为垂穗披碱草和大针茅的原植物群落发生分异,高强度放牧样地优势种变为矮生嵩草和阴山扁蓿豆,低强度放牧样地变为垂穗披碱草和冷地早熟禾.随放牧强度增加,物种丰富度、重要值和生物量均显著降低.各放牧强度样地重要值的物种序列均可用对数模型进行拟合;随放牧强度增加,植物重要值累积到占整个群落重要值50%时,需要的物种数降低.土壤速效P、速效K、紧实度、含水量、稳定入渗速率和大团聚体指标随放牧强度显著变化,但变化规律不一致.CCA排序表明,土壤紧实度是放牧作用下影响群落物种分布格局的最关键因子.方差分解表明,土壤因子共解释群落物种分布变异的30.5%,其中土壤物理性状单独解释群落物种分布的22.8%,对群落物种分布的贡献率最高,主要影响放牧干扰下高寒草甸植物群落物种的分布格局.  相似文献   

6.
放牧通过改变草地群落物种组成和生物多样性,进而影响草地群落结构,对草地生态系统服务和功能产生深远的影响。然而,有关系统发育多样性和系统发育群落结构对长期放牧干扰的响应和适应的研究仍然很少,尤其是对于分布在极端环境中的生态系统。我们在青藏高原高寒草地上开展了多放牧强度的试验,探讨放牧干扰对植物系统发育多样性和群落结构的影响。研究发现,放牧干扰增加了植物群落的物种丰富度,促进了群落物种周转,从而改变了群落物种组成。低强度放牧对系统发育多样性和群落结构没有显著影响,而高强度放牧促使群落结构由分散向聚集变化。高强度放牧通过强烈的环境过滤作用,选择了一些耐牧的草地植物物种。在高强度放牧条件下,草地群落的聚集结构由近缘种的入侵和远缘种的丢失共同驱动。在植物功能性状水平上,我们发现与低强度放牧相比,高强度放牧通过改变根系深度对物种入侵产生影响,在很大程度上提升了物种的入侵性。我们的研究强调,仅仅利用物种丰富度和多样性并不能全面反映放牧干扰对草地群落的影响,而且在以后的放牧生态学研究中应该更加关注物种周转对群落系统发育多样性和群落结构的影响。  相似文献   

7.
围封会促进退化高寒草甸植被和土壤环境恢复,长期围封也会导致生物多样性及其功能下降,影响高寒草甸生态系统的稳定,但这种影响会随着季节和生境条件变化而异。为了探究不同退化程度高寒草甸地表节肢动物群落变化对围封禁牧的响应,利用陷阱法调查了疏勒河源区沼泽化草甸、草甸和草原化草甸3种不同退化梯度高寒草甸围封禁牧和自由放牧处理下地表节肢动物群落结构变化。结果表明:围封禁牧对高寒草甸地表节肢动物群落组成及多样性的影响随生境条件不同而异。禁牧降低了沼泽化草甸地表节肢动物的物种丰富度,而提高了草甸和草原化草甸地表节肢动物的物种丰富度;围封禁牧对沼泽化草甸地表节肢动物群落结构影响较小,显著降低了草甸生境地表节肢动物活动密度、提高了地表节肢动物多样性和均匀度,相反,禁牧显著提高了草原化草甸生境地表节肢动物活动密度、降低其多样性和均匀度;豹蛛属1种是高寒草甸主要的地表节肢动物类群(相对多度为67.0%),高寒草甸土壤水分有效性等生境条件不同影响了豹蛛属1种对围封禁牧的响应模式,进而影响了地表节肢动物群落结构变化。总之,高寒草甸退化程度影响了地表节肢动物多样性对禁牧和放牧的响应模式,沼泽化草甸适度放牧有利于提高地表节肢动物多样性及其功能。  相似文献   

8.
亚高寒草甸植物群落的中性理论验证   总被引:1,自引:1,他引:0       下载免费PDF全文
 该文以物种组成较为复杂的青藏高原东部亚高寒草甸为背景,结合最新的群落中性理论,以解释亚高寒草甸草本植物群落的物种分布格局和生物多样性的维持机制。通过对阴坡、阳坡和滩地3个生境进行随机取样调查,用中性模型对所得多样性数据进行拟合,并分别应用置信区间检验、拟合优度检验和多样性指数检验3种方法对拟合效果进行检验。研究结果表明,在拟合优度检验中,3个生境中中性理论预测和实际物种多度分布之间没有显著差异(p>0.05);实际观测值基本全部落入模型预测分布的95%的置信区间之内(仅滩地草本植物群落的63个物种中的1个以及阴坡草本植物群落75个物种中的2个偏离95%的置信区间);对群落多样性的预测也和实际观测没有显著差异,其中丰富度预测拟合得最好(0.49相似文献   

9.
【目的】气候变化与过度放牧正在不同程度地威胁着青藏高原高寒草地生态系统功能。大型食草动物放牧活动与地上节肢动物多样性在理论上存在着紧密联系,然而目前对其关联仍不清楚。【方法】本研究选用青藏高原极具代表性的本土大型食草动物——牦牛Bos grunniens作为放牧牲畜,利用metabarcoding技术结合传统植物样方调查手段,在青藏高原典型高寒草地调查了重度放牧(3头/hm2)、中度放牧(2头/hm2)、轻度放牧(1头/hm2)和禁牧4种放牧强度下草地地上节肢动物α多样性(Simpson, Chao1, ACE和Shannon-Wiener)、相对丰度、β多样性、植物群落α多样性(Shannon-Wiener多样性指数、物种丰富度和Pielou均匀度指数)以及地上节肢动物α多样性与植物群落α多样性的关系。【结果】结果表明,不同放牧强度下典型高寒草地地上节肢动物α多样性均无显著差异,但中度放牧有增加节肢动物多样性的趋势;各放牧强度下地上节肢动物的优势目均为直翅目(Orthoptera),禁牧、轻度放牧、中度放牧和重度放牧下...  相似文献   

10.
气候变化和放牧活动对草地植物物种多样性和生产力具有重要影响。为探索藏北高寒草地植物物种多样性和生产力对增温、放牧及其交互作用的响应, 于2011年在藏北高原开始建立增温实验平台, 2016年起增设放牧、增温+放牧实验, 连续2年(2016-2017年)观测了植物群落特征、群落组成、生产力和物种多样性。结果表明, 增温和放牧对高寒草地植物高度和净初级生产力具有显著交互作用。在放牧条件下, 增温对植物高度无显著影响; 但在不放牧条件下, 增温却显著增加了植物高度。在放牧条件下, 增温对净初级生产力的影响存在年际差异, 2016年增温对生产力无显著影响, 2017年增温显著降低了植物净初级生产力; 但在不放牧条件下, 增温对植物净初级生产力无显著影响。增温和放牧对高寒草地植物物种丰富度、盖度、重要值及多样性均无显著交互作用。植物盖度在增温和放牧条件下显著降低, 杂类草物种比例显著增加, 但物种多样性均无显著变化。研究表明, 增温和放牧显著改变高寒草地群落结构。未来气候变化条件下, 放牧活动加剧有可能导致高寒草地生产力降低。  相似文献   

11.
不同放牧强度下高寒草甸植被演替规律的数量分析   总被引:20,自引:0,他引:20       下载免费PDF全文
 本文采用数量分析方法,研究了不同放牧强度下高寒草甸植被的演替规律。聚类分析的结果,当相关系数R>0.850时,组成群落的24种植物聚合为6类,它们分别属于植物群落不同演替阶段的建群种,优势种或主要伴生种,当R>0.870时,6个放牧强度下的群落聚合为2类,分别属于以禾草植物为共建种的两层结构的植物群落和以矮嵩草(Kobresia humilis)以及 杂类草为共建种的单层结构的植物群落。  相似文献   

12.
 本文应用多样性指数、聚类分析等数学方法,研究了不同放牧强度下高寒灌丛群落特征的变化,用主分量分析方法,研究了不同放牧强度下高寒灌丛的演替规律。多样性分析结果表明,植物多样性指数在放牧强度为C组的草场达到最大。聚类分析结果,当相关系数R≥0.90 时,以重要值为特征的植物聚合为10类,它们分别属于植物群落不同演替阶段的建群种、优势种和伴生种。主分量分析表明,5个不同放牧强度的高寒灌丛群落聚合为3类,A和B组草场属于以灌木和杂类草为优势植物的2层结构的植物群落,C组草场属于以灌木为建群植物、杂类草和耐牧的莎草为共优势植物的2层结构的植物群落,D和E组草场属于以灌木为建群植物、禾草和莎草为共优势植物的3层结构的植物群落。  相似文献   

13.
 不同放牧强度下高寒灌丛植物在生长发育、生理生态,物质生产和群落结构等方面主要有以下变化:1.在高寒灌丛草场,禾草类、莎草类和灌丛类植物的叶面积指数和平均生长速率随着放牧强度的减轻而增大;随着放牧强度的增加而减小。植株平均高度,植被盖度水平也与放牧强度呈负相关(p<0.01)。2.各项生长分析参数中:叶面积比率(LAR)、叶面积干重比(SLA)和叶干重比(LWR)与放牧强度之间存在负相关。叶面积指数(LAI)与地上生物量呈正相关(p<0.5),地上部现存在量与放牧强度呈负相关(p<0.01)。3.不同放牧强度条件下,高寒灌丛中的禾草类、莎草类、灌丛类和杂类草植物的种类组成和数量变化明显。其中禾草类和莎草类、灌丛类植物的生物量和种类组成比例在重度放牧下减少,在轻度放牧下增大。反之,重度放牧下杂类草的组成和数量明显增加,而轻度放牧下其比例降低。  相似文献   

14.
 Mt. St. Helens is an active volcano on the western flank of the Cascade: range in the southwestern Washington State, USA. It is located at lat. 46˚00′—46˚30′N, long 121˚52′—122˚40′W.We had investigated the alpine vegetation at Pine Creek, Butte Camp on Mt. St. Helens for three times, totaling ten days during August and eptember of 1983.The volcano had erupted sending out much pyroclastic, pumice and lava, which devdstated the vegetation around the crater. They not only mechanically destroyed plants tissue, but also buried entirely or partly of the plants.The radiant heat from the volcanic eruption caused the melting of ice and snow, creating huge mudflows, which estroyed and buried vegetation. The high temperture from direct radiant heat incinerated and scorched all the plants. On the other hand, the higher the elevation is, the stronger the wind and the lower the temperture; also snow was present on the alpine range, and this provided a lee for plants, and consequently some plants survived, and new ones row out of the ground. The alpine vegetation on Mt. St. Helens bears both the characteristic of alpine plants and the brand of volcanic activities: vegetation is sparse, species composition of plants limited, structure of community simple, production low and vegetation propagation being the main type of vegetative reproduction.The different types of lpine vegetation grow in different habitats: The community of Luekea pectinata grow in places covered by ice and snow; the community of Polygonum newberryi, Eriogonum pyroleafolium in localities covered by mudflow; the community of Phyllodace empetriformis on slopes of steep rocks and the community of grasses and sedges on low hills and plains. Hese are the four main communities on Mt. St. Helens. The recovery and succession of the alpine vegetation has been discussed. There are two types of succession, the primary and the secodary, with the secondary being the main one.Finally, the paper has analysed the reason why no forest occurs, on Mt. St. Helens. We think that it is a result of the ctive period of the volcano and that the climate conditions are favouable for forest. Also, we have suggested that some herbaceous plants be sown as soon as possible for they can accelerate the recovery of vegetation, and prevent the runoff of soil and water.  相似文献   

15.
森林群落物种多样性格局和动态一直是生态学的研究热点,人工林弃管后演替进程中物种多样性变化也很值得研究。杉木(Cunninghamia lanceolata)作为我国南方林区人工栽培最广、经济价值最高的用材树种之一,其人工林分布面积很大,通常群落结构简单、物种多样性低,然而群落中杉木数量如何影响植物物种多样性,迄今缺乏研究。在浙江省自然保护区内,选择不同疏伐强度和弃管时间的杉木人工林,建立了6个1 hm~2长期动态监测样地,在10 m×10 m、20 m×20 m、50 m×50 m和100 m×100 m尺度下,探究群落物种多样性(物种丰富度、Simpson指数、Shannon-Wiener指数和Pielou均匀度指数)的变化规律,分析杉木数量(多度和相对多度)对物种多样性的影响。结果显示:弃管前对杉木林的疏伐强度越高,演替恢复后的群落物种多样性越高。相同疏伐程度下,物种多样性随演替时间的延长有先升高后降低的趋势。取样尺度小于100 m×100 m时,杉木数量与物种多样性呈极显著负相关;100 m×100 m尺度下仅杉木相对多度与3种多样性指数呈显著负相关,杉木多度与各物种多样性均无显...  相似文献   

16.
高寒草甸植物群落中物种多样性与生产力关系研究   总被引:11,自引:0,他引:11       下载免费PDF全文
通过对高寒草甸植物群落中物种多样性(Shannon多样性指数)与生产力(地上生物量)的关系的研究表明多样性与生产力的总体关系呈对数线性增加关系,随着观测时间和环境条件(生境)的改变,多样性与生产力的关系会发生一些变化,这是因为当观测时间和环境条件不同时,物种丰富度和物种构成以及其它的生物或非生物条件发生了相应的变化,而它们对多样性和生产力各自造成的影响是非同步性的(这种非同步实际上就是物种在时间和空间生态位上的分化);而可能由于高寒草甸生态系统的生长季较短,环境条件的改变比观测时间改变对多样性与生产力关系造成的影响更显著.观测时间和环境条件的不同可能是造成许多实验研究中得不到一个一致的多样性与生产力关系的主要原因.此外,通过对各种多样性指标进行综合分析可以对多样性与生产力的关系有一个更加全面的了解,并从中得到一些关于产生这种关系的机制的一些启示.  相似文献   

17.
放牧强度引起的草原植物群落物种多样性与地上生物量变化是近年来草地生态系统研究的热点问题。以内蒙古锡林郭勒克氏针茅草原为研究对象,探究植物群落结构特征、物种多样性与地上生物量之间相互关系及其对不同放牧强度的响应。结果表明:随着放牧强度的增加植物群落结构逐步向退化方向演替;植物群落高度逐渐降低(P<0.05),密度逐渐增加(P<0.05),盖度总体呈下降趋势(P<0.05);植物群落和原有群落优势种地上生物量总体呈下降趋势(P<0.05),而退化指示物种的地上生物量逐渐增加(P<0.05);轻度、中度放牧条件下群落物种Margalef指数、Pielou指数、Simpson指数均显著高于重度放牧(P<0.05);地上生物量与Shannon-Wiener指数、Margalef指数和Pielou指数呈正相关关系,而与Simpson指数呈负相关关系。综上所述,克氏针茅草原植物群落结构和功能在不同放牧强度下产生不同的响应,适度放牧有利于提高群落物种多样性与生物量。  相似文献   

18.
The response of grassland soil bacterial community characteristics to different grazing intensities is central ecological topics. However, the underlying mechanisms between bacterial abundance, diversity index, and grazing intensity remain unclear. We measured alpine meadow soil bacterial gene richness and diversity index under four grazing intensities using 16S rDNA sequence analysis on the Tibetan Plateau. The results suggest that extreme grazing significantly decreased alpine meadow both bacterial gene abundance and diversity index (p < .05). The lowest operational taxonomic unit numbers were 3,012 ± 447 copies under heavy grazing in the growing season. It was significantly lower than heavy grazing with approximately 3,958 ± 119 copies (p < .05). The Shannon index for medium and high grazing grassland bacterial diversity was slightly higher than for light grazing in the growing season. Furthermore, the lowest index was approximately 9.20 ± 0.50 for extreme grazing of grassland in the growing season. The average bacterial gene abundance and diversity index in the dormancy period were slightly higher than that in the growing season. Soil bulk density, pH, ammonium, and nitrate nitrogen were the main positive factors driving grazed grassland bacterial communities. Our study provides insight into the response of alpine meadows to grazing intensity, demonstrating that moderate grazing increases bacterial community diversity in grazed grasslands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号