首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 311 毫秒
1.
2.

Background  

Network motifs are small modules that show interesting functional and dynamic properties, and are believed to be the building blocks of complex cellular processes. However, the mechanistic details of such modules are often unknown: there is uncertainty about the motif architecture as well as the functional form and parameter values when converted to ordinary differential equations (ODEs). This translates into a number of candidate models being compatible with the system under study. A variety of statistical methods exist for ranking models including maximum likelihood-based and Bayesian methods. Our objective is to show how such methods can be applied in a typical systems biology setting.  相似文献   

3.

Background

Discovering causal genetic variants from large genetic association studies poses many difficult challenges. Assessing which genetic markers are involved in determining trait status is a computationally demanding task, especially in the presence of gene-gene interactions.

Results

A non-parametric Bayesian approach in the form of a Bayesian neural network is proposed for use in analyzing genetic association studies. Demonstrations on synthetic and real data reveal they are able to efficiently and accurately determine which variants are involved in determining case-control status. By using graphics processing units (GPUs) the time needed to build these models is decreased by several orders of magnitude. In comparison with commonly used approaches for detecting interactions, Bayesian neural networks perform very well across a broad spectrum of possible genetic relationships.

Conclusions

The proposed framework is shown to be a powerful method for detecting causal SNPs while being computationally efficient enough to handle large datasets.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0368-0) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background  

A central question for the understanding of biological reaction networks is how a particular dynamic behavior, such as bistability or oscillations, is realized at the molecular level. So far this question has been mainly addressed in well-mixed reaction systems which are conveniently described by ordinary differential equations. However, much less is known about how molecular details of a reaction mechanism can affect the dynamics in diffusively coupled systems because the resulting partial differential equations are much more difficult to analyze.  相似文献   

5.

Objectives

Hip fractures commonly result in permanent disability, institutionalization or death in elderly. Existing hip-fracture predicting tools are underused in clinical practice, partly due to their lack of intuitive interpretation. By use of a graphical layer, Bayesian network models could increase the attractiveness of fracture prediction tools. Our aim was to study the potential contribution of a causal Bayesian network in this clinical setting. A logistic regression was performed as a standard control approach to check the robustness of the causal Bayesian network approach.

Setting

EPIDOS is a multicenter study, conducted in an ambulatory care setting in five French cities between 1992 and 1996 and updated in 2010. The study included 7598 women aged 75 years or older, in which fractures were assessed quarterly during 4 years. A causal Bayesian network and a logistic regression were performed on EPIDOS data to describe major variables involved in hip fractures occurrences.

Results

Both models had similar association estimations and predictive performances. They detected gait speed and mineral bone density as variables the most involved in the fracture process. The causal Bayesian network showed that gait speed and bone mineral density were directly connected to fracture and seem to mediate the influence of all the other variables included in our model. The logistic regression approach detected multiple interactions involving psychotropic drug use, age and bone mineral density.

Conclusion

Both approaches retrieved similar variables as predictors of hip fractures. However, Bayesian network highlighted the whole web of relation between the variables involved in the analysis, suggesting a possible mechanism leading to hip fracture. According to the latter results, intervention focusing concomitantly on gait speed and bone mineral density may be necessary for an optimal prevention of hip fracture occurrence in elderly people.  相似文献   

6.

Background  

Phenomenological information about regulatory interactions is frequently available and can be readily converted to Boolean models. Fully quantitative models, on the other hand, provide detailed insights into the precise dynamics of the underlying system. In order to connect discrete and continuous modeling approaches, methods for the conversion of Boolean systems into systems of ordinary differential equations have been developed recently. As biological interaction networks have steadily grown in size and complexity, a fully automated framework for the conversion process is desirable.  相似文献   

7.
8.

Background

Knowledge regarding causal relationships among traits is important to understand complex biological systems. Structural equation models (SEM) can be used to quantify the causal relations between traits, which allow prediction of outcomes to interventions applied to such a network. Such models are fitted conditionally on a causal structure among traits, represented by a directed acyclic graph and an Inductive Causation (IC) algorithm can be used to search for causal structures. The aim of this study was to explore the space of causal structures involving bovine milk fatty acids and to select a network supported by data as the structure of a SEM.

Results

The IC algorithm adapted to mixed models settings was applied to study 14 correlated bovine milk fatty acids, resulting in an undirected network. The undirected pathway from C4:0 to C12:0 resembled the de novo synthesis pathway of short and medium chain saturated fatty acids. By using prior knowledge, directions were assigned to that part of the network and the resulting structure was used to fit a SEM that led to structural coefficients ranging from 0.85 to 1.05. The deviance information criterion indicated that the SEM was more plausible than the multi-trait model.

Conclusions

The IC algorithm output pointed towards causal relations between the studied traits. This changed the focus from marginal associations between traits to direct relationships, thus towards relationships that may result in changes when external interventions are applied. The causal structure can give more insight into underlying mechanisms and the SEM can predict conditional changes due to such interventions.  相似文献   

9.

Background

Increasingly available multilayered omics data on large populations has opened exciting analytic opportunities and posed unique challenges to robust estimation of causal effects in the setting of complex disease phenotypes. The GAW20 Causal Modeling Working Group has applied complementary approaches (eg, Mendelian randomization, structural equations modeling, Bayesian networks) to discover novel causal effects of genomic and epigenomic variation on lipid phenotypes, as well as to validate prior findings from observational studies.

Results

Two Mendelian randomization studies have applied novel approaches to instrumental variable selection in methylation data, identifying bidirectional causal effects of CPT1A and triglycerides, as well as of RNMT and C6orf42, on high-density lipoprotein cholesterol response to fenofibrate. The CPT1A finding also emerged in a Bayesian network study. The Mendelian randomization studies have implemented both existing and novel steps to account for pleiotropic effects, which were independently detected in the GAW20 data via a structural equation modeling approach. Two studies estimated indirect effects of genomic variation (via DNA methylation and/or correlated phenotypes) on lipid outcomes of interest. Finally, a novel weighted R2 measure was proposed to complement other causal inference efforts by controlling for the influence of outlying observations.

Conclusions

The GAW20 contributions illustrate the diversity of possible approaches to causal inference in the multi-omic context, highlighting the promises and assumptions of each method and the benefits of integrating both across methods and across omics layers for the most robust and comprehensive insights into disease processes.
  相似文献   

10.

Background  

Signal transduction pathways are usually modelled using classical quantitative methods, which are based on ordinary differential equations (ODEs). However, some difficulties are inherent in this approach. On the one hand, the kinetic parameters involved are often unknown and have to be estimated. With increasing size and complexity of signal transduction pathways, the estimation of missing kinetic data is not possible. On the other hand, ODEs based models do not support any explicit insights into possible (signal-) flows within the network. Moreover, a huge amount of qualitative data is available due to high-throughput techniques. In order to get information on the systems behaviour, qualitative analysis techniques have been developed. Applications of the known qualitative analysis methods concern mainly metabolic networks. Petri net theory provides a variety of established analysis techniques, which are also applicable to signal transduction models. In this context special properties have to be considered and new dedicated techniques have to be designed.  相似文献   

11.

Background  

In computational biology, one often faces the problem of deriving the causal relationship among different elements such as genes, proteins, metabolites, neurons and so on, based upon multi-dimensional temporal data. Currently, there are two common approaches used to explore the network structure among elements. One is the Granger causality approach, and the other is the dynamic Bayesian network inference approach. Both have at least a few thousand publications reported in the literature. A key issue is to choose which approach is used to tackle the data, in particular when they give rise to contradictory results.  相似文献   

12.

Background  

Ordinary differential equations (ODEs) are an important tool for describing the dynamics of biological systems. However, for ODE models to be useful, their parameters must first be calibrated. Parameter estimation, that is, finding parameter values given experimental data, is an inference problem that can be treated systematically through a Bayesian framework.  相似文献   

13.

Background

Protein domains can be viewed as portable units of biological function that defines the functional properties of proteins. Therefore, if a protein is associated with a disease, protein domains might also be associated and define disease endophenotypes. However, knowledge about such domain-disease relationships is rarely available. Thus, identification of domains associated with human diseases would greatly improve our understandingof the mechanism of human complex diseases and further improve the prevention, diagnosis and treatment of these diseases.

Methods

Based on phenotypic similarities among diseases, we first group diseases into overlapping modules. We then develop a framework to infer associations between domains and diseases through known relationships between diseases and modules, domains and proteins, as well as proteins and disease modules. Different methods including Association, Maximum likelihood estimation (MLE), Domain-disease pair exclusion analysis (DPEA), Bayesian, and Parsimonious explanation (PE) approaches are developed to predict domain-disease associations.

Results

We demonstrate the effectiveness of all the five approaches via a series of validation experiments, and show the robustness of the MLE, Bayesian and PE approaches to the involved parameters. We also study the effects of disease modularization in inferring novel domain-disease associations. Through validation, the AUC (Area Under the operating characteristic Curve) scores for Bayesian, MLE, DPEA, PE, and Association approaches are 0.86, 0.84, 0.83, 0.83 and 0.79, respectively, indicating the usefulness of these approaches for predicting domain-disease relationships. Finally, we choose the Bayesian approach to infer domains associated with two common diseases, Crohn’s disease and type 2 diabetes.

Conclusions

The Bayesian approach has the best performance for the inference of domain-disease relationships. The predicted landscape between domains and diseases provides a more detailed view about the disease mechanisms.
  相似文献   

14.
15.

Background

A condition to predict unbiased estimated breeding values by best linear unbiased prediction is to use simultaneously all available data. However, this condition is not often fully met. For example, in dairy cattle, internal (i.e. local) populations lead to evaluations based only on internal records while widely used foreign sires have been selected using internally unavailable external records. In such cases, internal genetic evaluations may be less accurate and biased. Because external records are unavailable, methods were developed to combine external information that summarizes these records, i.e. external estimated breeding values and associated reliabilities, with internal records to improve accuracy of internal genetic evaluations. Two issues of these methods concern double-counting of contributions due to relationships and due to records. These issues could be worse if external information came from several evaluations, at least partially based on the same records, and combined into a single internal evaluation. Based on a Bayesian approach, the aim of this research was to develop a unified method to integrate and blend simultaneously several sources of information into an internal genetic evaluation by avoiding double-counting of contributions due to relationships and due to records.

Results

This research resulted in equations that integrate and blend simultaneously several sources of information and avoid double-counting of contributions due to relationships and due to records. The performance of the developed equations was evaluated using simulated and real datasets. The results showed that the developed equations integrated and blended several sources of information well into a genetic evaluation. The developed equations also avoided double-counting of contributions due to relationships and due to records. Furthermore, because all available external sources of information were correctly propagated, relatives of external animals benefited from the integrated information and, therefore, more reliable estimated breeding values were obtained.

Conclusions

The proposed unified method integrated and blended several sources of information well into a genetic evaluation by avoiding double-counting of contributions due to relationships and due to records. The unified method can also be extended to other types of situations such as single-step genomic or multi-trait evaluations, combining information across different traits.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-014-0059-3) contains supplementary material, which is available to authorized users.  相似文献   

16.

Background  

Stochastic and asymptotic methods are powerful tools in developing multiscale systems biology models; however, little has been done in this context to compare the efficacy of these methods. The majority of current systems biology modelling research, including that of auxin transport, uses numerical simulations to study the behaviour of large systems of deterministic ordinary differential equations, with little consideration of alternative modelling frameworks.  相似文献   

17.

Background  

This paper presents a method for modelling dynamical biochemical networks with intrinsic time delays. Since the fundamental mechanisms leading to such delays are many times unknown, non conventional modelling approaches become necessary. Herein, a hybrid semi-parametric identification methodology is proposed in which discrete time series are incorporated into fundamental material balance models. This integration results in hybrid delay differential equations which can be applied to identify unknown cellular dynamics.  相似文献   

18.
19.
20.

Background  

Explicit evolutionary models are required in maximum-likelihood and Bayesian inference, the two methods that are overwhelmingly used in phylogenetic studies of DNA sequence data. Appropriate selection of nucleotide substitution models is important because the use of incorrect models can mislead phylogenetic inference. To better understand the performance of different model-selection criteria, we used 33,600 simulated data sets to analyse the accuracy, precision, dissimilarity, and biases of the hierarchical likelihood-ratio test, Akaike information criterion, Bayesian information criterion, and decision theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号