首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Stomatal conductance of unstrossed, soil drought, and previously drought (predrought) Gmelina arborea seedlings increased in the morning and decreased before or immediately after midday. In the unstressed and predrought seedlings, leaf water potential decreased with increases in transpiration. In soil drought seedlings, there was some evidence of decreased hydraulic conductivity from soil to the plant, as indicated by the shape in the slope of the water potential/transpiration relationship. Root growth of drought plants was greater than in their unstressed counterparts at the lowest soil segment of a pot. The partial recovery of predrought seedlings was attributed to this subtantial root growth in the lowest soil segment.In the second experiment, Gmelina arborea seedlings were partially waterlogged, by flooding the polyethylene bag to half its length, for a period of 23 days. Waterlogging induced stomatal closure and reduction in leaf water potential but there was some evidence of tolerance to waterlogging towards the end of treatment. Root growth, shoot and root dry weights were slightly reduced below those of controls. After 9 days of waterlogging, adventitious roots began to form which correlated with depletion of soluble sugars in the shoot but with an increase in the roots.It is suggested that the tolerance of Gmelina plants to either soil drought or waterlogging may partly be due to partitioning of the soluble sugars from shoot to roots for production of roots and formation of adventitious roots respectively which are likely to enhance the flow of water from the soils to the plant. Therefore the plant response is very similar under conditions of increased deficits and surplus of soil water.  相似文献   

2.
Summary The effects of winter waterlogging and a subsequent drought on the growth of winter barley and winter wheat have been examined. We used lysimeters containing soil monoliths with facilities to control the water table and a mobile shelter to control rainfall. Winter wheat was grown on a clay and on a sandy loam, but winter barley only on the clay soil. Lysimeters were either freely-drained during the winter or waterlogged with the water table 10 cm below the soil surface from 2 December until 31 March (that could occur by rainfall with a return period of 2 to 3 years). The lysimeters then were either irrigated so that the soil moisture deficit did not exceed 84 mm, or subjected to drought by limiting rainfall (equivalent to a 1 in 10 dry year in the driest area of England) so that the deficits reached maximum values of 150 mm in the clay and 159 mm in the sandy loam by harvest.Winter waterlogging restricted tillering and restricted the number of ears for all crops; grain yield of the winter barley was decreased by 219 g/m2 (30%), and that of winter wheat by 170 g/m2 (24%) and 153 g/m2 (21% on the clay and sandy loam respectively.The drought treatment reduced the straw weight of winter barley by 75 g/m2 (12%) but did not significantly depress the grain yield. For winter wheat on the clay, where the soil was freely-drained during the winter, drought depressed total shoot weight by 344 g/m2 (17%) and grain weight by 137 g/m2 (17%), but after winter waterlogging, drought did not further depress total or grain weight. In contrast, the winter wheat on the sandy loam was not significantly affected by drought.From these results, which are discussed in relation to other experiments in the United Kingdom, it seems that winter waterlogging is likely to cause more variation in the yield of winter barley and winter wheat than drought.  相似文献   

3.
Soils under field conditions may experience fluctuating soil water regimes ranging from drought to waterlogging. The inability of roots to acclimate to such changes in soil water regimes may result in reduced growth and function thereby, dry matter production. This study compared the root and shoot growth, root aerenchyma development, and associated root oxygen transport of aerobic and irrigated lowland rice genotypes grown under well-watered (control), waterlogged, and droughted soil conditions for 30 days. The aerobic genotypes were as tolerant as the irrigated lowland genotypes under waterlogging because of their comparable abilities to enhance aerenchyma that effectively facilitated O2 diffusion to the roots for maintaining root growth and dry matter production. Under drought, aerobic genotypes were more tolerant than the irrigated lowland genotypes due to their higher ability to maintain nodal root production, elongation, and branching, thus, less reduction in dry matter production. Aerenchyma was also formed in droughted roots regardless of genotypes, but was resistant to internal O2 transport under O2 deficiency. The ability of roots to resist temporal variations in drought and waterlogging stresses might have strong implications for the adaptation of rice growing in environments with fluctuating soil water regimes.  相似文献   

4.
Seedlings of Lotus glaberMill., were grown in a native saline-sodic soil in a greenhouse for 50 days and then subjected to waterlogging for an additional period of 40 days. The effect of soil waterlogging was evaluated by measuring plant growth allocation, mineral nutrition and soil chemical properties. Rhizobiumnodules and mycorrhizal colonisation in L. glaberroots were measured before and after waterlogging. Compared to control plants, waterlogged plants had decreased root/shoot ratio, lower number of stems per plant, lower specific root length and less allocation of P and N to roots. Waterlogged plants showed increased N and P concentrations in plant tissues, larger root crown diameter and longer internodes. Available N and P and organic P, pH and amorphous iron increased in waterlogged soil, but total N, EC and exchangeable sodium were not changed. Soil waterlogging decreased root length colonised by arbuscular mycorrhizal (AM) fungi, arbuscular colonisation and number of entry points per unit of root length colonised. Waterlogging also increased vesicle colonisation and Rhizobium nodules on roots. AM fungal spore density was lower at the end of the experiment in non-waterlogged soil but was not reduced under waterlogging. The results indicate that L. glaber can grow, become nodulated by Rhizobium and colonised by mycorrhizas under waterlogged condition. The responses of L. glaber may be related its ability to form aerenchyma.  相似文献   

5.
Effects of waterlogging were studied in the field and under glasshouse conditions on two clonal lines of Eucalyptus camaldulensis Dehnh (river red gum), which are used in the rehabilitation of damaged agricultural catchments in Western Australia. The plantation of 9-year-old trees was in a position that covered a range of waterlogging and salinity conditions. Up-slope the water table was deeper (0.65–1.5 m), whereas the water table was closer to the ground surface down-slope (0.45 m in winter; 1.25 m in summer). Salinity was greater downslope and increased at the end of the dry summer, remaining high until diluted by the winter rains. Trees of both clonal lines were smaller downslope and used less water over the year. Clone M80 used more water in winter; clone M66 more in summer. In the field, the roots of clone M80 were evenly distributed through the soil profile, while roots of clone M66 decreased with increasing depth. Production of new root terminals varied with season. Greatest production was in spring and early summer, with much lower production over late autumn and winter. Only clone M66 produced new root terminals at depth (60–75 cm) during the drier months of late summer and early autumn. At this time, saline ground-water was the main source for water uptake. To explore clonal differences more closely, the effects of prolonged waterlogging were studied under glasshouse conditions. Clone M80 grew similarly under freely drained and continuously waterlogged conditions for the experimental period (21 weeks). The response under continuously waterlogged conditions was achieved through adventitious root production. By contrast, growth of clone M66 was suppressed under continuous waterlogging, a response associated with the lack of adventitious root production. The results from field and glasshouse studies suggest that clone M80 is more adapted to waterlogging by relatively fresh water than clone M66, but that clone M66 may use water of higher salinity than clone M80. Clone M80 would be better suited to higher positions in partially cleared catchments, where rainfall provides relatively fresh soil water. Clone M66 is better suited to lower catchment positions due to its ability to utilize more saline groundwater. Restoration of the water balance of damaged agricultural catchments can be best managed by matching specialized genotypes with particular catchment positions.  相似文献   

6.
Responses to soil flooding and oxygen shortage were studied in field, glasshouse and controlled environment conditions. Established stools ofSalix viminalis L., were compared at five field sites in close proximity but with contrasting water table levels and flooding intensities during the preceding winter. There was no marked effect of site on shoot extension rate, time to half maximum length or final length attained. When rooted cuttings were waterlogged for 4 weeks in a glasshouse, soil redox potentials quickly decreased to below zero. Shoot extension was slowed after a delay of 20 d, while, in the upper 100 mm of soil, formation and outgrowth of unbranched adventitious roots with enhanced aerenchyma development was promoted after 7 d. At depths of 100–200 mm and 200–300 mm, extension by existing root axes was halted by soil flooding, while adventitious roots from above failed to penetrate these deeper zones. After 4 weeks waterlogging, all arrested root tips recommenced elongation when the soil was drained; their extension rates exceeding those of roots that were well-drained throughout. Growth in fresh mass was also stimulated. The additional aerenchyma found in adventitious roots in the upper 100 mm of soil may have been ethylene regulated since gas space development was inhibited by silver nitrate, an ethylene action inhibitor. The effectiveness of aerenchyma was tested by blocking the entry of atmospheric oxygen into plants with lanolin applied to lenticels of woody shoots of plants grown in solution culture. Root extension was halved, while shoot growth remained unaffected. H Lambers Section editor  相似文献   

7.
Summary Sorghum and sunflower were waterlogged for nine days during the vegetative, floral initiation/buds-visible or anthesis stage of growth under glasshouse conditions to observe the effects on root growth and development. In addition, some plants were waterlogged at all three stages to observe any adaptations induced by waterlogging. The most marked effects occurred at the initiation/buds-visible stage where a 30% reduction in root length and a 40% reduction in root dry weight of sorghum occurred with comparable figures for sunflower being 50 and 60% respectively. Generally, sorghum roots had a higher porosity than sunflower which may contribute to its greater tolerance to waterlogging. The observed changes in root growth are discussed in relation to previously documented effects of waterlogging on growth of the two species and changes which occur in the soil environment.  相似文献   

8.
The responses of seedling root systems of three species of oaks in California to two experimental soil moisture regimes were studied by comparing lateral root development, root and shoot weights, and root: shoot ratios. In the first soil moisture treatment the taproot was allowed to extend into moist soil throughout the duration of the experiment (control), while in the second treatment (shallow) the taproot grew into a dry substrate below 30 cm of moist soil. The treatments were intended to approximate soil moisture conditions experienced by oak seedlings in the field when deep soil water sources vary in their accessibility (control: accessible, shallow: inaccessible). Lateral root growth of Quercus agrifolia did not increase significantly when the primary root tip died in the shallow treatment, resulting in an overall decrease in the percent of the root system composed of lateral roots. Q. douglasii and Q. lobata increased lateral root weights by 80% and 70%, respectively, on the upper 30 cm of the primary root when the primary root tip died. Q. lobata was the only species that decreased in shoot and root weight (25% and 21%, respectively) with the loss of the root tip, indicating that, unlike the other species, it was dependent on the primary root for maximum growth. The morphological responses of these species correspond with their distributions and also may be a factor that influences their interactions with other species.  相似文献   

9.
The role of roots penetrating various undisturbed soil horizons beneath loose layer in water use and shoot growth of maize was evaluated in greenhouse experiment. 18 undisturbed soil columns 20 cm in diameter and 20 cm in height were taken from the depths 30–50 cm and 50–70 cm from a Brown Lowland soil, a Pseudogley and a Brown Andosol (3 columns from each depth and soil). Initial resistance to penetration in undisturbed soil horizons varied from 2.5 to 8.9 MPa while that in the loose layer was 0.01 MPa. The undisturbed horizons had a major effect on vertical arrangement of roots. Root length density in loose layer varied from 96 to 126 km m-3 while in adjacent stronger top layers of undisturbed horizons from 1.6 to 20.0 km m-3 with higher values in upper horizons of each soil. For specific root length, the corresponding ranges were 79.4–107.7 m g-1 (on dry basis) and 38.2–63.7 m g-1, respectively. Ratios of root dry weight per unit volume of soil between loose and adjacent undisturbed layers were much lower than those of root length density indicating that roots in undisturbed horizons were produced with considerably higher partition of assimilates. Root size in undisturbed horizons relative to total roots was from 1.1 to 38.1% while water use from the horizons was from 54.1 to 74.0%. Total water use and shoot growth were positively correlated with root length in undisturbed soil horizons. There was no correlation between shoot growth and water use from the loose layers.  相似文献   

10.
本文对一个25年生大冷杉林在伪潜育土至45cm矿质土壤里,从1987年晚秋滞水期至1988年生长旺盛期的毫根量动态及化学组成变化进行了研究。 滞水期土壤中死根量(5558kg DS/ha)显著高于活根量(3594kg DS/ha)。生长旺盛期初,活根量增加约50%,死根量降低约27%。经过夏季至生长旺盛期末,活根量仍略有增加,死根量继续降低。毫根化学组成分析显示,滞水期活根中K、Mg及Zn离子含量显著低于生长旺盛期,Mn离子含量则明显高于生长旺盛期。这一结果表明,除了与季节性相关的生长节奏因素外,大冷杉毫根生物量的变化主要是由滞水状况所致。  相似文献   

11.
M. Ashraf  S. Mehmood 《Plant and Soil》1990,121(2):203-209
Waterlogging tolerance of four Brassica species, Brassica campestris L., B. carinata A. Br., B. juncea (L.) Czern and Coss., and B. napus L. was assessed after 4 weeks growth in greenhouse at two waterlogging treatments, unflooded control soil, and fully waterlogged soil.Shoot fresh and dry biomass, in both mean and relative terms, was highest in B. juncea and lowest in B. napus at waterlogging treatment. B. carinata was as good as B. juncea in mean shoot fresh and dry matter but it had almost same relative shoot fresh matter as that in B. campestris, but was second highest in relative shoot dry weight.Waterlogging treatment caused a marked reduction in chlorophyll content in all four species but the species difference was not evident. However, B. juncea and B. napus had lower relative total chlorophyll than the other species.A marked increase in soluble protein content of B. juncea and a significant increase in total amino acids in B. carinata was observed under waterlogged conditions as compared to the other species.At the waterlogging regime, an increase in iron content in both shoots and roots was observed in all four species. B. juncea accumulated lower amount of iron in both shoots and roots as compared to the other species, whereas B. carinata had also lower iron in the roots. The species did not differ for shoot manganese content but B. carinata had significantly higher manganese in the roots as compared to the other species.  相似文献   

12.
Drought and waterlogging are important abiotic stresses negatively affecting plant growth and development. They are transiently recurring in rainfed lowlands and in water-saving system practicing intermittent irrigation. This study aimed to determine the contribution of plastic development and associated physiological responses of roots to shoot dry matter production under transient soil moisture stresses. To minimize effect of genetic confounding, a selected line (CSSL47) drawn from 54 chromosome segment substitution lines (CSSL) of Nipponbare (japonica type) carrying an overlapping chromosome segments of Kasalath (indica type), was used and compared with the recurrent parent Nipponbare. Under transient droughted-to-waterlogged (D–W) conditions, CSSL47 showed greater shoot dry matter production than Nipponbare. This was due largely to its greater root system development through high induction of aerenchyma formation. Consequently, aerenchyma development effectively facilitated the internal diffusion of oxygen (O2) to the root tips under sudden waterlogged condition supporting rapid recovery of stomatal conductance, transpiration, and photosynthesis. Likewise, CSSL47 showed greater shoot dry matter production than Nipponbare under transient waterlogged-to-droughted (W–D) conditions. This was due to CSSL47’s greater root system development through more initiation of L type lateral roots that effectively maintained soil water uptake. This in turn sustained higher stomatal conductance, transpiration, and photosynthesis. Results implied that utilization of CSSLs could precisely reveal that root plastic development in response to transient soil moisture stresses contributed to the maintenance of shoot dry matter production.  相似文献   

13.
In the greenhouse growth of two coffee-tree varieties, Catuaí (sensitive) and Icatu (tolerant) to aluminum, was evaluated in surface-fertilized and limed soil following subsurface treatment with seven lime levels (0.0; 0.49; 1.7; 2.9; 4.1; 6.6 and 9.3 t/ha). Plants were grown for 6.5 months in soils in PVC columns, subdivided into two horizons. In the lower 12 – 34 cm depth horizon, soil Al saturation varied between 93 and 0%. For both varieties evaluated, shoot dry weight and leaf area remained unchanged following limestone application. This fact shows that surface layer correction permitted normal shoot growth. High Al saturation resulted in decrease of root dry weight percent, root length percent and root surface percent in the 12–34 cm horizon, which were compensated by higher percentages of these properties in the upper 0–12 cm horizon. The ratio between root surface – root dry matter (cm2/g) of Catuaí variety was increased by limestone application to the lower soil horizons, indicating that roots turn longer and thinner, when Al soil saturation decreased. This also shows a great sensitivity to Al of the Catuaí variety. In contrast, in the Icatu variety, all root characteristics remained stable at all levels of Al tested.  相似文献   

14.
Poot  Pieter  Lambers  Hans 《Plant and Soil》2003,253(1):57-70
We investigated the responses of seven woody Hakea (Proteaceae) species (two populations of each), to two months of waterlogging and subsequent drainage, in a controlled glasshouse experiment. The species originated from contrasting environments (winter-wetland versus non-wetland habitats), and differed in abundance (endangered ironstone species versus common species). Waterlogging arrested growth of the main root system, and stimulated the formation of superficial adventitious roots just below the root/shoot junction in all species. Wetland species produced at least twice the amount of adventitious root dry mass of that of non-wetland species, due to differences in number, length or degree of branching. Their adventitious roots also tended to have higher porosities (7–10% versus 5–6% gas spaces). The relative amount of adventitious roots formed was strongly, positively correlated with the maintenance of shoot growth, and only the non-wetland species showed significant shoot growth reductions (19%) upon waterlogging. Dry mass percentage of stems and leaves, and leaf dry mass per area (LMA) increased considerably during waterlogging in all species (averages of 15, 29 and 27%, respectively), returning to the values of continuously drained control plants after drainage. Similarly, upon drainage, a suppression of shoot growth (average 35%) and a stimulation of root growth (average 50%) restored the root mass ratios to those of control plants. We found a negative correlation between the maintenance of growth during waterlogging versus that after waterlogging, suggesting a trade-off in functioning of the superficial adventitious roots between waterlogged and drained conditions. The rare winter-wet ironstone endemics resembled the common winter-wet species in most of their responses to waterlogging and drainage. Therefore, the results presented here cannot offer an explanation for their different distribution patterns. Our results suggest that non-wetland species may be disadvantaged in a wetland environment, due to their lower capacity to form adventitious roots resulting in stronger growth reductions.  相似文献   

15.
Anaerobic (anoxic) solution cultures were used to investigatethe effect of a restricted oxygen supply to roots on the developmentof symptoms of waterlogging damage in young wheat plants, especiallyeffects on growth and nutrient uptake by the shoots. Anaerobicconditions produced by bubbling solutions with oxygen-free nitrogengas caused premature senescence of the lower leaves, slowedshoot fresh weight accumulation, and arrested the growth ofthe seminal roots. However the shoot dry weight initially increasedabove that of the aerobic controls. Nutrient accumulation bythe shoot was severely inhibited by anoxia, the uptake of nitrate,phosphate, and potassium being more affected than that of calciumand magnesium. The calculated concentrations in the xylem streamof all these ions (except nitrate) were equal to, or less than,those in the external solution, suggesting that the slow butcontinuous accumulation of nutrients in the shoot could haveoccurred passively by the mass flow of solution across damagedroots in response to transpiration. Aerenchymatous nodal rootsextended into the anoxic solutions to a maximum length of 12cm but there were few produced, and the size of the root systemremained small and may have limited shoot growth. Inclusionof carbon dioxide (10 kPa partial pressure) in the nitrogengas stream had little additional effect on plants to that causedby anoxia alone. All the responses of wheat to the anaerobic solutions were similarto those observed previously in waterlogged soil, indicatingthat many of the early symptoms of waterlogging damage to wheatcan be caused simply by the direct effects of inadequate oxygensupply to the roots. The results are discussed in relation tocurrent views of the mechanisms contributing to waterloggingdamage to plants.  相似文献   

16.

Background and Aims

Two main strategies that allow plants to cope with soil waterlogging or deeper submergence are: (1) escaping by means of upward shoot elongation or (2) remaining quiescent underwater. This study investigates these strategies in Lotus tenuis, a forage legume of increasing importance in areas prone to soil waterlogging, shallow submergence or complete submergence.

Methods

Plants of L. tenuis were subjected for 30 d to well-drained (control), waterlogged (water-saturated soil), partially submerged (6 cm water depth) and completely submerged conditions. Plant responses assessed were tissue porosity, shoot number and length, biomass and utilization of water-soluble carbohydrates (WSCs) and starch in the crown.

Key Results

Lotus tenuis adjusted its strategy depending on the depth of submergence. Root growth of partially submerged plants ceased and carbon allocation prioritized shoot lengthening (32 cm vs. 24·5 cm under other treatments), without depleting carbohydrate reserves to sustain the faster growth. These plants also developed more shoot and root porosity. In contrast, completely submerged plants became quiescent, with no associated biomass accumulation, new shoot production or shoot elongation. In addition, tissue porosity was not enhanced. The survival of completely submerged plants is attributed to consumption of WSCs and starch reserves from crowns (concentrations 50–75 % less than in other treatments).

Conclusions

The forage legume L. tenuis has the flexibility either to escape from partial submergence by elongating its shoot more vigorously to avoid becoming totally submerged or to adopt a non-elongating quiescent strategy when completely immersed that is based on utilizing stored reserves. The possession of these alternative survival strategies helps to explain the success of L. tenuis in environments subjected to unpredictable flooding depths.  相似文献   

17.
A greenhouse experiment was conducted to determine P uptake at different growth stages by cotton plants from upper and lower 30 cm layers of 60 cm deep uniform soil columns. A radioisotope tracer technique was used to separate uptake from the two soil layers. Root lengths were measured in both layers at each growth stage. P fluxes were calculated for each layer. Root length increased significantly with time from square formation through peak flowering. At all growth stages, total P uptake from the upper soil layer was greater than that from the lower soil layer. P flux from either layer was greater during early growth stages than during later stages. A significant decrease in P flux occurred when plants reached the flowering stage. The flux from the upper layer was about twice that from the lower layer at square forming stage but the difference decreased as the plants matured. Both layers showed similar P fluxes at the first open boll stage. Our data indicate that roots located 30 to 60 cm below the surface are less effective per unit root length than those located at 0 to 30 cm depth when all roots are in the same soil environmental conditions. However, the effectiveness of P absorption from different soil depths under field conditions may depend on the environmental conditions that exist in each soil depth.  相似文献   

18.
Root systems of chaparral shrubs   总被引:3,自引:2,他引:3  
Summary Root systems of chaparral shrubs were excavated from a 70 m2 plot of a mixed chaparral stand located on a north-facing slope in San Diego County (32°54 N; 900 m above sea level). The main shrub species present were Adenostoma fasciculatum, Arctostaphylos pungens, Ceanothus greggii, Erigonum fasciculatum, and Haplopappus pinifolius. Shrubs were wired into their positions, and the soil was washed out beneath them down to a depth of approximately 60 cm, where impenetrable granite impeded further washing and root growth was severely restricted. Spacing and interweaving of root systems were recorded by an in-scale drawing. The roots were harvested in accordance to their depths, separated into diameter size classes for each species, and their dry weights measured. Roots of shrubs were largely confined to the upper soil levels. The roots of Eriogonum fasciculatum were concentrated in the upper soil layer. Roots of Adenostoma fasciculatum tended to be more superficial than those from Ceanothus greggii. It is hypothesized that the shallow soil at the excavation site impeded a clear depth zonation of the different root systems. The average dry weight root:shoot ratio was 0.6, ranging for the individual shrubs from 0.8 to 0.4. The root area always exceeded the shoot area, with the corresponding ratios ranging from 6 for Arctostaphylos pungens to 40 for Haplopappus pinifolius. The fine root density of 64 g dry weight per m2 under the canopy was significantly higher than in the unshaded area. However, the corresponding value of 45 g dry weight per m2 for the open ground is still high enough to make the establishment of other shrubs difficult.  相似文献   

19.
Pratylenchus neglectus reduced the growth of alfalfa cultivars in greenhouse and growth chamber studies. Inocula (1,000, 5,000 and 10,000 nematodes per plant) reduced shoot dry weights of Ranger by 16, 27, and 40%, of Lahontan by 16, 32, and 40%, and of Nevada Synthetic XX (Nev Syn XX) by 18, 26, and 37%, respectively, at 26 ñ 2 C. Pratylenchus neglectus at 1,000 nematodes per plant reduced Ranger shoot dry weights by 5, 12, 18, and 27%, at 15, 20, 25, and 30 C, respectively, whereas 5,000 nematodes per plant reduced shoot dry weights by 12, 17, 26, and 38%, respectively, at similar temperatures. Reductions in dry root weights were directly related to reductions in shoot growth. At 1,000 nematodes per plant, Ranger root dry weights were reduced by 3, 14, 40, and 40%, whereas 5,000 nematodes per plant reduced root dry weight by 25, 31, 59, and 63%, respectively, at similar temperatures. Similar results were observed on Lahontan and Nev Syn XX at the same inoculum levels and soil temperatures. Nematode reproductive indices (final nematode population per plant divided by initial nematode inoculum per plant) were higher at 1,000 nematodes per plant than at 5,000 nematodes per plant, were positively correlated with temperature, and were unaffected by cultivar.  相似文献   

20.
COUTTS  M. P. 《Annals of botany》1981,47(6):747-753
Two-year-old Sitka spruce [Picea sitchensis (Bong.) Carr.] seedlings,either actively growing or dormant, were waterlogged in a growthroom at 15 °C. Shoot and root growth, transpiration andleaf water potential were observed. In actively-growing plants shoot extension continued after waterlogging,though at a reduced rate, and shoots of dormant plants brokebud and extended during the waterlogging period. Root growthwas suppressed by waterlogging in both types of plant. The 22day waterlogging treatment eventually killed the actively-growingplants but plants which were dormant at the time of waterloggingwere more tolerant. Changes in plant water relations after waterloggingwere entirely different depending on the condition of the plantswhen the soil was flooded. Dormant plants showed a gradual reductionin transpiration and increased water stress over the waterloggingperiod; after the soil was drained leaf water potential increasedto equal the value of control plants which had been maintainedin a freely drained condition, but transpiration did not increaseuntil root growth began. Actively-growing plants exhibited amore complex behaviour, characterized by a very rapid reductionin transpiration after waterlogging, accompanied by a briefperiod of water stress, followed by a period of increasing transpirationrate in the absence of water stress. Finally a second reductionin transpiration occurred and water stress increased as theseedlings died. The importance of the stage of activity of theroot system to the response of plants to waterlogging is discussed. Picea sitchensis (Bong.) Carr., Sitka spruce, waterlogging, water relations, dormancy, transpiration, water potential  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号