首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Macrophage migration inhibitory factor (MIF) is involved in the generation of cell-mediated immune responses. Recently it has been reported that MIF also plays a role in cell proliferation and differentiation. In the present study, using a B-cell line, WEHI-231, and its stable MIF-antisense transfectant, WaM2, as a representative transfectant, we investigated the mechanism underlying regulation of the cell growth by MIF. WaM2 cells produced less MIF than vector control or parental WEHI-231 cells. Reduced and increased proportions were seen in G1 and S-phase cells, respectively, in WaM2 as compared with WEHI-231. Growth arrest and apoptosis after stimulation via surface Ig (sIg) were less prominent in WaM2 cells than those in WEHI-231. However, the addition of recombinant rat MIF did not reverse the inhibition of the growth arrest and apoptosis induced in WaM2 by cross-linking sIg. Almost the same amount of p27kip1 expression was detected in WaM2 cells as those in WEHI-231 and vector control cells. Cross-linking of sIg elevated the p27kip1 level equally in these cells irrespective of the MIF-antisense expression. Taken together, it seems that MIF plays a role in inducing apoptosis in B cells upon IgM cross-linking by regulating the cell cycle via a novel intracellular pathway.  相似文献   

2.
Stimulation of antigen receptors on WEHI-231 B lymphoma cells with anti-receptor antibodies (anti-immunoglobulin M [IgM]) causes irreversible growth arrest. This may be a model for antigen-induced tolerance to self components in the immune system. Antigen receptor stimulation also causes inositol phospholipid hydrolysis, producing diacylglycerol, which activates protein kinase C, and inositol 1,4,5-trisphosphate, which causes release of calcium from intracellular stores. To better understand the nature of the antigen receptor-induced growth arrest of WEHI-231 cells, we have examined the basis for it. WEHI-231 cells in various phases of the cell cycle were isolated by centrifugal elutriation, and their response was evaluated following treatment with either anti-IgM or pharmacologic agents that raise intracellular free calcium levels and activate protein kinase C. Treatment with anti-IgM or the pharmacologic agents did not lengthen the cell cycle. Instead, growth inhibition was solely the result of arrest in the G1 phase. The efficiency of G1 arrest increased with the length of time during which the cells received signaling before reaching the G1 phase arrest point. Maximum efficiency of arrest was achieved after approximately one cell cycle of receptor signaling. These results imply that anti-IgM causes G1 arrest of WEHI-231 cells by slowly affecting components required for S phase progression, rather than by rapidly inhibiting such components or by rapidly activating a suicide mechanism. Antigen receptor stimulation was twice as effective as stimulation via the mimicking reagents phorbol dibutyrate and ionomycin. Thus, although the phosphoinositide second messengers diacylglycerol and calcium probably play roles in mediating the effects of anti-IgM on WEHI-231 cells, other second messengers may also be involved.  相似文献   

3.
The engagement of membrane-bound Igs (mIgs) results in growth arrest, accompanied by apoptosis, in the WEHI-231 murine B lymphoma cells, a cell line model representative of primary immature B cells. Inhibitor of differentiation (Id) proteins, members of the helix-loop-helix protein family, functions in proliferation, differentiation, and apoptosis in a variety of cell types. In this study, we analyzed the involvement of Id protein in mIg-induced growth arrest and apoptosis in WEHI-231 cells. Following stimulation with anti-IgM, expression of Id3 was up-regulated at both the mRNA and protein levels; this up-regulation could be reversed by CD40L treatment. Retrovirus-mediated transduction of the Id3 gene into WEHI-231 cells resulted in an accumulation of the cells in G(1) phase, but did not induce apoptosis. E box-binding activity decreased in response to anti-IgM administration, but increased after stimulation with either CD40L alone or anti-IgM plus CD40L, suggesting that E box-binding activity correlates with cell cycle progression. WEHI-231 cells overexpressing Id3 accumulated in G(1) phase, which was accompanied by reduced levels of cyclin D2, cyclin E, and cyclin A, and a reciprocal up-regulation of p27(Kip1). Both the helix-loop-helix and the C-terminal regions of Id3 were required for growth-suppressive activity. These data suggest that Id3 mimics mIg-mediated G(1) arrest in WEHI-231 cells.  相似文献   

4.
Cross-linking of the Ag receptors on the immature B cell lymphoma, WEHI-231, leads to growth arrest and apoptosis. We now show that although commitment to such B cell receptor (BCR)-mediated apoptosis correlates with mitochondrial phospholipase A(2) activation, disruption of mitochondrial function, and ATP depletion, it is executed independently of caspase activation. First, we demonstrate a pivotal role for mitochondrial function in determining B cell fate by showing up-regulation of cytosolic phospholipase A(2) expression, induction of mitochondrial phospholipase A(2) activity, arachidonic acid-mediated collapse of mitochondrial transmembrane inner potential (Delta psi(m)), and depletion of cellular ATP under conditions of apoptotic, but not proliferative, signaling via the BCR. Importantly, disruption of Delta psi(m), ATP depletion, and apoptosis can be prevented by rescue signals via CD40 or by Delta psi(m) stabilizers such as antimycin or oligomycin. Second, we show that commitment and postmitochondrial execution of BCR-mediated apoptosis are not dependent on caspase activation by demonstrating that such apoptotic signaling does not induce release of cytochrome c from the mitochondria or activation of effector caspases, as evidenced by poly(ADP-ribose) polymerase or Bcl-x(L) cleavage. Indeed, apoptotic signaling via the BCR in WEHI-231 B cells does not stimulate the activation of caspase-3 and, consistent with this, BCR-mediated disruption of Delta psi(m) and commitment to apoptosis take place in the presence of caspase inhibitors. In contrast, BCR signaling induces the postmitochondrial activation of cathepsin B, and resultant apoptosis is blocked by the cathepsin B inhibitor, (23,35)trans-epoxysuccinyl-L-leucylamindo-3-methylbutane ethyl ester (EST) suggesting a key role for this executioner protease in Ag receptor-driven apoptosis of WEHI-231 immature B cells.  相似文献   

5.
WEHI-231 B lymphoma cells have been employed for analysis of antigen-induced B cell unresponsiveness because these cells undergo cell cycle arrest in G1, accompanied by induction of apoptosis. In the present study, we examined the requirement for toxic small molecules apoptosis-inducing factor (AIF) and cytochrome c, and subsequent caspase activation in apoptotic cell death in WEHI-231 and CH31 B lymphoma cells following engagement of membrane immunoglobulin (mIg). Pan-caspase inhibitor BD-fmk blocked mIg-mediated increase in cells with sub-G1 DNA content, whereas it did not affect mIg-mediated loss of mitochondrial membrane potential and phosphatidylserine exposure on B cell membrane. Dominant-negative form of c-Jun NH2-terminal kinase1 (JNK1) blocked the translocation of AIF into the nuclei and cytosol from the mitochondria in the WEHI-231 and CH31 cells following mIg engagement, whereas constitutively active form of JNK1 enhanced it. This AIF translocation was also blocked by Bcl-xL, but not by BD-fmk. Moreover, AIF-deficient clones via small interfering RNA (siRNA)-mediated method showed small increase in loss of mitochondrial membrane potential. After mIg engagement, the AIF-deficient clones displayed an enhanced sensitivity to mIg-mediated apoptosis, concomitant with translocation of a residual AIF into the nuclei, compared with control clone. Our findings are compatible with the notion that AIF has dual role, with a proapoptotic function in the nuclei and a distinct anti-apoptotic function in the mitochondria. These observations would be valuable for analysis of B cell unresponsiveness and hopefully for treatment of diseases involving B cell dysfunction.  相似文献   

6.
Previous results of ours have demonstrated that the same clonotype can express both a sensitive and a resistant phenotype to Dex-mediated PCD induction depending on its cell cycle phase. In particular, we demonstrated that human T lymphocytes, arrested in the G0/G1 phase of the cell cycle, are susceptible, while proliferating T cells are resistant to Dex-mediated apoptosis. In this paper, we have further characterized the sensitive and resistant phenotypes and investigated whether a different expression of the apoptotic genes Fas, FasL, Bcl-2, Bcl-x and Bax is involved in the regulation of Dex-mediated apoptosis. The results show that the amount of Bcl-2 expression, that changes during cell cycle phases, determines susceptibility or resistance to apoptosis induced by Dex. In fact, undetectable expression of Bcl-2 in sensitive cells favors Dex-mediated apoptosis while high expression of Bcl-2 in proliferating cells counterbalances apoptosis induction. Moreover, the addition of exogenous IL-2, in the presence of Dex, fails to up-regulate Bcl-2 expression and to revert Dex-mediated apoptotic phenomena.  相似文献   

7.
Insulin-like growth factor binding protein-3 (IGFBP-3) is a multi-functional protein known to induce apoptosis of various cancer cells in an insulin-like growth factor (IGF)-dependent and IGF-independent manner. In our previous study, we found that IGFBP-3 induced apoptosis through the activation of caspases in 786-O cells. In this study, we further examined that whether IGFBP-3 induced apoptosis through the induction of cell cycle arrest in 786-O, A549 and MCF-7 cells. Our results showed that overexpressed IGFBP-3 resulted in typical apoptotic ultrastructures in A549 cells under transmission electron microscope. The result of flow cytometry analysis indicated that IGFBP-3 arrested the cell cycle at G1-S phase in 786-O, A549 and MCF-7 cells. In A549 cells, quantitative real-time PCR and Western blot analysis showed a significant change in the expression of cell cycle-regulated proteins—a decrease in cyclin E1 expression, an increase in p21 expression. These results indicate a possible mechanism for G1 cell cycle arrest by IGFBP-3. Taken together, cyclin E1 and p21 may play important roles in the IGFBP-3-inducing G1 cell cycle arrest and apoptosis in several human cancer cells.  相似文献   

8.
OBJECTIVE: The susceptibility of two cell lines, WEHI-3B myelomonocytic leukaemia and its variant Ciprofloxacin-resistant WEHI-3B/CPX to undergo apoptosis induced by Ciprofloxacin was studied and compared. MATERIALS AND METHODS: Apoptosis was checked by measuring the DNA fragmentation and determining the ratio of apoptotic/necrotic cells. The relationship between the induction of apoptosis and G(1), S or G(2) block in the cell cycle has also been investigated and cytogenetical evaluation of chromosomal aberrations in both cell lines has been carried out. The regulation of expression of Bax and Bcl-2 was also checked by western blotting after Ciprofloxacin treatment. RESULTS: We observed that the resistance of the subline was caused by a small percentage of cells that underwent apoptosis during continuous exposure to Ciprofloxacin in comparison with the parental cell line, whereas the percentage of necrotic cells remained unchanged. The WEHI-3B cells showed a G(2) block and a higher degree of cytogenetic damage after drug exposure. The two cell lines expressed the same level of Bax and Bcl-2 following stimulation by Ciprofloxacin. Only in the resistant subclone, the ratio Bcl-2/Bax reversed in the anti-apoptotic gene expression. CONCLUSION: The resistance to ciprofloxacin observed is not related to mitochondrial function and although Bcl-2/Bax ratio behaviour does not fully explain the resistance of the WEHI3B/CPX subclone it is consistent with phenotypic character of resistance to CPX. The toxic effect on sensitive cells could be mediated by the cell cycle arrest whereas in the resistant clone, the prolonged G(2) phase could play a key role to favour cell cycle progression and proliferation.  相似文献   

9.
Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands inhibit cell proliferation and induce apoptosis in cancer cells. Here we wished to determine whether the PPARgamma ligand induces apoptosis and cell cycle arrest of the MDA-MB-231 cell, an estrogen receptor alpha negative breast cancer cell line. The treatment of MDA-MB-231 cell with PPARgamma ligands was shown to induce inhibition of cell growth in a dose-dependent manner as determined by MTT assay. Cell cycle analysis showed a G1 arrest in MDA-MB-231 cells exposed to troglitazone. An apoptotic effect by troglitazone demonstrated that apoptotic cells elevated by 2.5-fold from the control level at 10 microM, to 3.1-fold at 50 microM and to 3.5-fold at 75 microM. Moreover, troglitazone treatment, applied in a dose-dependent manner, caused a marked decrease in pRb, cyclin D1, cyclin D2, cyclin D3, Cdk2, Cdk4 and Cdk6 expression as well as a significant increase in p21 and p27 expression. These results indicate that troglitazone causes growth inhibition, G1 arrest and apoptotic death of MDA-MB-231 cells.  相似文献   

10.
Progression through the cell cycle is dependent upon numerous external factors (growth factors, extracellular matrix components) which exert their effects through the activation of signal transduction networks. During last years we have studied the regulation of progression through the ongoing CHO cell cycle. Recently, we have demonstrated that in CHO cells at least two serum dependent points exist in G1 phase that lead to different cellular responses. The first point is located immediately after mitosis and is suggested to link with apoptosis, while the second is located in late G1 phase and probably corresponds to the classical restriction point R. Because of the suggested link with apoptosis of the restriction point in early G1 phase, we have studied the possible role of PI 3-K in cell cycle progression through the ongoing G1 phase of CHO cells. In the presence of the PI 3-K inhibitors wortmannin or LY294002, cells were arrested during early G1 phase, leading to the expression of cleaved caspase-3, a central mediator of apoptosis. Addition of AP-2, an inhibitor of PKB, the downstream substrate of PI 3-K, at several time points during G1 phase demonstrated that inhibition during early G1 phase caused cell cycle arrest, while addition of the inhibitors during mid or late G1 phase had no effect on S phase entry. As for inhibition of PI 3-K, also inhibition of PKB resulted in expression of cleaved caspase-3. These results clearly demonstrate that a decision point exists in the early G1 phase of the cell cycle; in the presence of PKB activity the cells are continuing cell cycle progression, while in the absence of PKB activity the cells are induced for apoptosis.  相似文献   

11.
Thy28 protein is conserved among plants, bacteria, and mammalian cells. Nuclear Thy28 protein is substantially expressed in testis, liver, and immune cells such as lymphocytes. Lymphocyte apoptosis plays a crucial role in homeostasis and formation of a diverse lymphocyte repertoire. In this study, we examined whether Thy28 affects induction of apoptosis in WEHI-231 B lymphoma cells following engagement of membrane immunoglobulin (mIg). Once they were established, the Thy28-overexpressing WEHI-231 cells showed similar expression levels of IgM and class I major histocompatibility complex (MHC) molecule compared with controls. The Thy28-overexpressing cells were considerably resistant to loss of mitochondrial membrane potential (ΔΨm), caspase-3 activation, and increase in annexin-positive cells upon mIg engagement. These changes were concomitant with an increase in G1 phase associated with upregulation of p27Kip1. The anti-IgM-induced sustained activation of c-Jun N-terminal kinase (JNK), which was associated with late-phase hydrogen peroxide (H2O2) production, was partially reduced in the Thy28-expressing cells relative to controls. Taken together, the data suggest that in WEHI-231 B lymphoma cells, Thy28 regulates mIg-mediated apoptotic events through the JNK-H2O2 activation pathway, concomitant with an accumulation of cells in G1 phase associated with upregulation of p27Kip1 in WEHI-231 B lymphoma cells.  相似文献   

12.
In this study, we explored what effect inhibitors of the 26S proteasome have on cell cycle distribution and induction of apoptosis in human skin fibroblasts and colon cancer cells differing in their p53 status. We found that proteasome inhibition resulted in nuclear accumulation of p53. This was surprising because it is thought that the degradation of p53 is mediated by cytoplasmic 26S proteasomes. Nuclear accumulation of p53 was accompanied by the induction of both p21WAF1 mRNA and protein as well as a decrease in cells entering S phase. Interestingly, cells with compromised p53 function showed a marked increase in the proportion of cells in the G2-M phase of the cell cycle and an attenuated induction of apoptosis after proteasome inhibition. Taken together, our results suggest that proteasome inhibition results in nuclear accumulation of p53 and a p53-stimulated induction of both G1 arrest and apoptosis.  相似文献   

13.
Regulation of the growth of murine B-cell lymphomas has been used as a model for tolerance induction. The inhibition by anti-immunoglobulin reagents of the growth of WEHI-231 and several variant clones has now been studied. The parental line is exquisitely sensitive to growth inhibition by heterologous or monoclonal anti-mu or anti-k reagents and ceases to incorporate thymidine within 24-48 hr of exposure to anti-immunoglobulin reagents. Growth inhibition is initially reversible, but prolonged exposure to anti-mu results in cell death. This inhibition is specific for immunoglobulin light and heavy chains since growth is not inhibited by antibodies directed at either class I or class II histocompatibility antigens. In order to study the mechanism of growth inhibition, we have mutagenized WEHI-231 with ethylmethane sulfonate and cloned the surviving colonies in the presence of anti-mu. Such variants, which have been repeatedly recloned, are able to grow normally in the presence of anti-mu up to 100 micrograms/ml. These "resistant" clones, while expressing amounts of surface IgM similar to that observed on WEHI-231, do not differ markedly in their ability to cap their immunoglobulin receptors compared to the parental line but appear to have lost class II antigens. Cell cycle analysis revealed that anti-mu causes a block in the transition of WEHI-231 from G1 to S phase. The relevance of these processes to models of B-cell tolerance induction are discussed.  相似文献   

14.
The possible harmful effects of radiofrequency electromagnetic fields (RF EMFs) are controversial. We have used human Mono Mac 6 cells to investigate the influence of RF EMFs in vitro on cell cycle alterations and BrdU uptake, as well as the induction of apoptosis and necrosis in human Mono Mac 6 cells, using flow cytometry after exposure to a 1,800 MHz, 2 W/kg specific absorption rate (SAR), GSM-DTX signal for 12 h. No statistically significant differences in the induction of apoptosis or necrosis, cell cycle kinetics, or BrdU uptake were detected after RF EMF exposure compared to sham or incubator controls. However, in the positive control cells treated with gliotoxin and PMA (phorbol 12 myristate-13 acetate), a significant increase in apoptotic and necrotic cells was seen. Cell cycle analysis or BrdU incorporation for 72 h showed no differences between RF EMF- or sham-exposed cells, whereas PMA treatment induced a significant accumulation of cells in G(0)/G(1)-phase and a reduction in S-phase cells. RF EMF radiation did not induce cell cycle alterations or changes in BrdU incorporation or induce apoptosis and necrosis in Mono Mac 6 cells under the exposure conditions used.  相似文献   

15.
The CD40 molecule transmits a signal that abrogates apoptosis induced by ligation of the antigen receptor (BCR) in both primary B cells and B-cell lines such as WEHI-231. Expression of Bcl-xL and A1, antiapoptotic members of the Bcl-2 family, is enhanced by CD40 ligation, and is suggested to mediate CD40-induced B-cell survival. CD40 ligation also promotes cell cycle progression by increasing the levels of cyclin-dependent kinases (CDKs) required for cell cycle progression, and reducing expression of the CDK inhibitor p27(kip1). Here we demonstrate that cell cycle inhibition by retrovirus-mediated p27(kip1) expression does not modulate the levels of Bcl-xL or A1, but significantly reduces the survival of BCR-ligated WEHI-231 cells by CD40 ligation. This indicates that cell cycle progression is crucial for CD40-mediated survival of B cells.  相似文献   

16.
One of the major unresolved questions in B cell biology is how the B cell Ag receptor (BCR) differentially signals to transduce anergy, apoptosis, proliferation, or differentiation during B cell maturation. We now report that extracellularly regulated kinase-mitogen-activated protein kinase (Erk-MAP kinase) can play dual roles in the regulation of the cell fate of the immature B cell lymphoma, WEHI-231, depending on the kinetics and context of Erk-MAP kinase activation. First, we show that the BCR couples to an early (< or =2 h) Erk-MAP kinase signal which activates a phospholipase A(2) pathway that we have previously shown to mediate collapse of mitochondrial membrane potential, resulting in depletion of cellular ATP and cathepsin B execution of apoptosis. Rescue of BCR-driven apoptosis by CD40 signaling desensitizes such early extracellularly regulated kinase (Erk) signaling and hence uncouples the BCR from the apoptotic mitochondrial phospholipase A(2) pathway. A second role for Erk-MAP kinase in promoting the growth and proliferation of WEHI-231 immature B cells is evidenced by data showing that proliferating and CD40-stimulated WEHI-231 B cells exhibit a sustained cycling pattern (8-48 h) of Erk activation that correlates with cell growth and proliferation. This growth-promoting role for Erk signaling is supported by three key pieces of evidence: 1) signaling via the BCR, under conditions that induce growth arrest, completely abrogates sustained Erk activation; 2) CD40-mediated rescue from growth arrest correlates with restoration of cycling Erk activation; and 3) sustained inhibition of Erk prevents CD40-mediated rescue of BCR-driven growth arrest of WEHI-231 immature B cells. Erk-MAP kinase can therefore induce diverse biological responses in WEHI-231 cells depending on the context and kinetics of activation.  相似文献   

17.
18.
RasGRP1 is a guanine nucleotide exchange factor that activates Ras GTPases and is activated downstream of antigen receptors on both T and B lymphocytes. Ras-GRP1 provides signals to immature T cells that confer survival and proliferation, but RasGRP1 also promotes T cell receptor-mediated deletion of mature T cells. We used the WEHI-231 cell line as an experimental system to determine whether RasGRP1 can serve as a quantitative modifier of B cell receptor-induced deletion of immature B cells. A 2-fold elevation in RasGRP1 expression markedly increased apoptosis of WEHI-231 cells following B cell receptor ligation, whereas a dominant negative mutant of RasGRP1 suppressed B cell receptor-induced apoptosis. Activation of ERK1 or ERK2 kinases was not required for RasGRP1-mediated apoptosis. Instead, elevated RasGRP1 expression caused down-regulation of NF-kappaB and Bcl-x(L), which provide survival signals counter-acting apoptosis induction by B cell receptor. Inhibition of NF-kappaB was sufficient to enhance B cell receptor-induced apoptosis of WEHI-231 cells, and ligation of co-stimulatory receptors that activate NF-kappaB suppressed the ability of RasGRP1 to promote B cell receptor-induced apoptosis. These experiments define a novel apoptosis-promoting pathway leading from B cell receptor to the inhibition of NF-kappaB and demonstrate that differential expression of RasGRP1 has the potential to modulate the sensitivities of B cells to negative selection following antigen encounter.  相似文献   

19.
20.
Autophagy is a major pathway for degradation of cytoplasmic components, and is induced by some apoptotic stimuli mostly in cancer cells under the condition in which apoptosis is blocked. Ligation of the B cell antigen receptor (BCR) induces apoptosis and plays a crucial role in self-tolerance. However, whether BCR ligation induces autophagy is not clear. Here, we demonstrate that autophagosomes are extensively formed in normal mouse B cells as well as the WEHI-231 B cell line upon induction of BCR ligation-induced apoptosis regardless of whether apoptosis is blocked by overexpression of Bcl-2. In contrast, autophagosomes were not formed during apoptosis of spleen B cells cultured with medium alone or in BCR-ligated BAL17 cells which do not undergo apoptosis. Moreover, autophagy is not induced when apoptotic BCR signaling is abrogated by CD40 signaling. These results indicate that autophagy is induced specifically by apoptotic BCR signaling even in unmanipulated normal B cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号