首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GATA转录因子家族在细胞命运调控中的作用   总被引:1,自引:0,他引:1  
在胚胎发育过程中,组织器官的形成依赖于干细胞在空间与时间上正确的定向分化、增殖,以及中间细胞的凋亡.这一细胞命运决定的过程必须被严格精确地调控,从而保证胚胎发育过程中组织器官形成得以顺利地进行.在此过程中,GATA转录因子家族扮演了不可或缺的角色,它们在胚层分化、造血系统和心脏形成、胸腺和肠道发育以及肿瘤发生中都起到了重要的作用.本文结合目前对GATA转录因子家族的研究和本课题组实验结果,介绍其在干细胞分化和维持,以及它们在细胞重编程中所起的作用.  相似文献   

2.
3.
The stunning possibility of “reprogramming” differentiated somatic cells to express a pluripotent stem cell phenotype (iPS, induced pluripotent stem cell) and the “ground state” character of pluripotency reveal fundamental features of cell fate regulation that lie beyond existing paradigms. The rarity of reprogramming events appears to contradict the robustness with which the unfathomably complex phenotype of stem cells can reliably be generated. This apparent paradox, however, is naturally explained by the rugged “epigenetic landscape” with valleys representing “preprogrammed” attractor states that emerge from the dynamical constraints of the gene regulatory network. This article provides a pedagogical primer to the fundamental principles of gene regulatory networks as integrated dynamic systems and reviews recent insights in gene expression noise and fate determination, thereby offering a formal framework that may help us to understand why cell fate reprogramming events are inherently rare and yet so robust.  相似文献   

4.
Cell fate conversion is considered as the changing of one type of cells to another type including somatic cell reprogramming (de-differentiation), differentiation, and trans-differentiation. Epithelial and mesenchymal cells are two major types of cells and the transitions between these two cell states as epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) have been observed during multiple cell fate conversions including embryonic development, tumor progression and somatic cell reprogramming. In addition, MET and sequential EMT-MET during the generation of induced pluripotent stem cells (iPSC) from fibroblasts have been reported recently. Such observation is consistent with multiple rounds of sequential EMT-MET during embryonic development which could be considered as a reversed process of reprogramming at least partially. Therefore in current review, we briefly discussed the potential roles played by EMT, MET, or even sequential EMT-MET during different kinds of cell fate conversions. We also provided some preliminary hypotheses on the mechanisms that connect cell state transitions and cell fate conversions based on results collected from cell cycle, epigenetic regulation, and stemness acquisition.  相似文献   

5.
6.
细胞重编程,尤其是诱导多能性干细胞的出现,给再生医学带来极大的希望。近年来,这方面的研究吸引了众多科学家的参与,也取得了非常丰富的成果。本文主要从转录因子、表观遗传和信号转导等角度,介绍了细胞重编程分子机制研究方面的进展和未来的方向。  相似文献   

7.
8.
RNA结合蛋白(RNA binding proteins,RBPs)是一类通过其RNA结合结构域与RNA相互作用的蛋白质,在细胞内发挥着非常重要的作用。RBPs参与从RNA代谢(包括RNA的可变剪接、稳定性、翻译)到表观遗传修饰等多种调控途径。已有大量文献报道转录因子、表观遗传修饰和细胞外信号通路参与调控干细胞的多能性维持、分化和体细胞重编程,但对于RBPs在细胞命运转变中作用的研究报道甚少。该文主要综述了RBPs通过调控RNA的可变剪接、mRNA稳定性、翻译水平、microRNA代谢及组蛋白修饰进而调控干细胞多能性维持和体细胞重编程。  相似文献   

9.
The differentiation and reprogramming of cells are accompanied by drastic changes in the epigenetic profiles of cells. Waddington''s classical model clearly describes how differentiating cells acquire their cell identity as the developmental potential of an individual cell population declines towards the terminally differentiated state. The recent discovery of induced pluripotent stem cells as well as of somatic cell nuclear transfer provided evidence that the process of differentiation can be reversed. The identity of somatic cells is strictly protected by an epigenetic barrier, and these cells acquire pluripotency by breaking the epigenetic barrier by reprogramming factors such as Oct3/4, Sox2, Klf4, Myc and LIN28. This review covers the current understanding of the spatio-temporal regulation of epigenetics in pluripotent and differentiated cells, and discusses how cells determine their identity and overcome the epigenetic barrier during the reprogramming process.  相似文献   

10.
Several cell types are present in the intestinal epithelium that likely arise from a common precursor, the stem cell, and each mature cell type expresses a unique set of genes that characterizes its functional phenotype. Although the process of differentiation is intimately linked to the cessation of proliferation, the mechanisms that dictate intestinal cell fate determination are not well characterized. To investigate the reprogramming of gene expression during the cell lineage allocation/differentiation process, we took advantage of a unique system of two clonal derivatives of HT29 cells, Cl16E and Cl19A cells, which spontaneously differentiate as mucus producing goblet and chloride-secreting cells, respectively, as a function of time. By profiling gene expression, we found that these two cell lines show remarkably similar kinetics of change in gene expression and common clusters of coordinately regulated genes. This demonstrates that lineage-specific differentiation of intestinal epithelial cells is characterized overall by the sequential recruitment of functionally similar gene sets independent of the final phenotype of the mature cells.  相似文献   

11.
Dynamic regulation of chromatin structure is an important mechanism for balancing the pluripotency and cell fate decision in embryonic stem cells (ESCs). Indeed ESCs are characterized by unusual chromatin packaging, and a wide variety of chromatin regulators have been implicated in control of pluripotency and differentiation. Genome-wide maps of epigenetic factors have revealed a unique epigenetic signature in pluripotent ESCs and have contributed models to explain their plasticity. In addition to the well known epigenetic regulation through DNA methylation, histone posttranslational modifications, chromatin remodeling, and non-coding RNA, histone variants are emerging as important regulators of ESC identity. In this review, we summarize and discuss the recent progress that has highlighted the central role of histone variants in ESC pluripotency and ESC fate, focusing, in particular, on H1 variants, H2A variants H2A.X, H2A.Z and macroH2A and H3 variant H3.3.  相似文献   

12.
13.
14.
上皮间质转化(epithelial-mesenchymal transition,EMT)是指上皮细胞失去连接和极性转变为间质细胞的过程,这一现象普遍存在于胚胎发育、创伤愈合、器官纤维化以及肿瘤转移。在胚胎早期发育和晚期发育过程,例如着床、原肠运动、心血管发育等事件中有EMT和间质上皮转化(mesenchymal-epithelial transition,MET)的参与。EMT和MET参与调控干细胞表型变化、细胞迁移运动,是细胞差异分化和三维组织构建的重要机制。EMT的重要标志是细胞黏附分子表达由E-钙黏着蛋白(E-cadherin)向N-钙黏着蛋白(N-cadherin)转换。E-钙黏着蛋白通过与β-联蛋白、p120-联蛋白、α-联蛋白联合,影响Wnt、小GTP酶超家族等信号通路活化,调控细胞骨架运动。TGFβ、Notch、Wnt、BMP、FGF等信号通路,Snail、Twist、Zeb等转录因子,联合表观修饰酶,协同参与EMT的启动和调控。体外研究模型表明,E-钙黏着蛋白参与干细胞自我更新;而体细胞重编程可视为MET,重编程因子辅助体细胞获得E 钙黏着蛋白表达。体外研究发现,EMT及相关分子(例如E-钙黏着蛋白、Snail、Twist、Zeb等)参与了早期三胚层分化及晚期特定细胞类型的形成。对EMT机制的研究有助于理解和改善干细胞体外诱导分化效率,促进类器官的构建和诱导。  相似文献   

15.
16.
Stem cells have been shown to have the potential to provide a source of cells for applications to tissue engineering and organ repair. The mechanisms that regulate stem cell fate, however, mostly remain unclear. Mesenchymal stem cells (MSCs) are multipotent progenitor cells that are isolated from bone marrow and other adult tissues, and can be differentiated into multiple cell lineages, such as bone, cartilage, fat, muscles and neurons. Although previous studies have focused intensively on the effects of chemical signals that regulate MSC commitment, the effects of physical/mechanical cues of the microenvironment on MSC fate determination have long been neglected. However, several studies provided evidence that mechanical signals, both direct and indirect, played important roles in regulating a stem cell fate. In this review, we summarize a number of recent studies on how cell adhesion and mechanical cues influence the differentiation of MSCs into specific lineages. Understanding how chemical and mechanical cues in the microenvironment orchestrate stem cell differentiation may provide new insights into ways to improve our techniques in cell therapy and organ repair.  相似文献   

17.
18.
Emerging evidence is shedding light on a large and complex network of epigenetic modifications at play in human stem cells. This “epigenetic landscape” governs the fine-tuning and precision of gene expression programs that define the molecular basis of stem cell pluripotency, differentiation and reprogramming. This review will focus on recent progress in our understanding of the processes that govern this landscape in stem cells, such as histone modification, DNA methylation, alterations of chromatin structure due to chromatin remodeling and non-coding RNA activity. Further investigation into stem cell epigenetics promises to provide novel advances in the diagnosis and treatment of a wide array of human diseases.  相似文献   

19.
Mesenchymal stem cells are undifferentiated cells able to acquire different phenotypes under specific stimuli. In vitro manipulation of these cells is focused on understanding stem cell behavior, proliferation and pluripotency. Latest advances in the field of stem cells concern epigenetics and its role in maintaining self-renewal and differentiation capabilities. Chemical and physical stimuli can modulate cell commitment, acting on gene expression of Oct-4, Sox-2 and Nanog,the main stemness markers, and tissue-lineage specific genes. This activation or repression is related to the activity of chromatin-remodeling factors and epigenetic regulators, new targets of many cell therapies. The aim of this review is to afford a view of the current state of in vitro and in vivo stem cell applications,highlighting the strategies used to influence stem cell commitment for current and future cell therapies. Identifying the molecular mechanisms controlling stem cell fate could open up novel strategies for tissue repairing processes and other clinical applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号