首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Hydrophobins are fungal proteins that self-assemble spontaneously at hydrophilic-hydrophobic interfaces and change the polar nature of the surfaces to which they attach. This attribute can be used to introduce hydrophobic foci on the surface of hydrophilic supports where hydrophobins are attached by covalent binding. In this paper, we report the binding of Pleurotus ostreatus hydrophobins to a hydrophilic matrix (agarose) to construct a support for noncovalent immobilization and activation of lipases from Candida antarctica, Humicola lanuginosa, and Pseudomonas flourescens. Lipase immobilization on agarose-bound hydrophobins proceeded at very low ionic strength and resulted in increased lipase activity and stability. The enzyme could be desorbed from the support using moderate concentrations of Triton X-100, and its enantioselectivity was similar to that of lipases interfacially immobilized on conventional hydrophobic supports. These results suggest that lipase adsorption on hydrophobins follows an "interfacial activation" mechanism; immobilization on hydrophobins offers new possibilities for lipase study and modulation and reveals a new application for fungal hydrophobins.  相似文献   

2.
Lipases are the most widely used enzymes in biocatalysis, and the most utilized method for enzyme immobilization is using hydrophobic supports at low ionic strength. This method allows the one step immobilization, purification, stabilization, and hyperactivation of lipases, and that is the main cause of their popularity. This review focuses on these lipase immobilization supports. First, the advantages of these supports for lipase immobilization will be presented and the likeliest immobilization mechanism (interfacial activation on the support surface) will be revised. Then, its main shortcoming will be discussed: enzyme desorption under certain conditions (such as high temperature, presence of cosolvents or detergent molecules). Methods to overcome this problem include physical or chemical crosslinking of the immobilized enzyme molecules or using heterofunctional supports. Thus, supports containing hydrophobic acyl chain plus epoxy, glutaraldehyde, ionic, vinylsulfone or glyoxyl groups have been designed. This prevents enzyme desorption and improved enzyme stability, but it may have some limitations, that will be discussed and some additional solutions will be proposed (e.g., chemical amination of the enzyme to have a full covalent enzyme-support reaction). These immobilized lipases may be subject to unfolding and refolding strategies to reactivate inactivated enzymes. Finally, these biocatalysts have been used in new strategies for enzyme coimmobilization, where the most stable enzyme could be reutilized after desorption of the least stable one after its inactivation.  相似文献   

3.
The substrate-binding sites of the triacyl glyceride lipases from Rhizomucor miehei, Humicola lanuginosa, and Candida rugosa were studied by means of computer modeling methods. The space around the active site was mapped by different probes. These calculations suggested 2 separate regions within the binding site. One region showed high affinity for aliphatic groups, whereas the other region was hydrophilic. The aliphatic site should be a binding cavity for fatty acid chains. Water molecules are required for the hydrolysis of the acyl enzyme, but are probably not readily accessible in the hydrophobic interface, in which lipases are acting. Therefore, the hydrophilic site should be important for the hydrolytic activity of the enzyme. Lipases from R. miehei and H. lanuginosa are excellent catalysts for enantioselective resolutions of many secondary alcohols. We used molecular mechanics and dynamics calculations of enzyme-substrate transition-state complexes, which provided information about molecular interactions important for the enantioselectivities of these reactions.  相似文献   

4.
It is known that lipases may have their catalytic properties improved by the action of some salts or by the adsorption on hydrophobic supports. However, what we present in this work is more than that: we evaluate the combination of these two factors of hyperactivation of lipases from Acremonium-like ROG 2.1.9, a study that has not been done so far. This work proves that a synergistic effect occurs when the lipases are immobilized on hydrophobic supports at the presence of sodium chloride and are applied in triacylglycerol hydrolysis. This assay made it possible to achieve the highest hyperactivation of 500 % with the lipases immobilized on Phenyl-Sepharose and applied with 0.1 M of sodium chloride. Besides this positive effect on enzyme activity, the use of these two factors led to the thermal stability increasing of the immobilized lipases. For this derivative, the recovered activity was approximately 85 % after 6 h incubated at 55 °C and 1.0 M of the sodium chloride against 50 % of the same derivative without this salt. Furthermore, others assays were performed to prove the evidences about the synergistic effect, showing a promising method to improve the catalytic properties of the lipases from Acremonium-like ROG 2.1.9.  相似文献   

5.
Three microbial lipases (those from Candida rugosa, Humicola lanuginosa, and Mucor miehei) have been found to exhibit a tendency to form bimolecular aggregates in solution even at very low enzyme concentrations (44 microg/mL) in the absence of a detergent, as detected by gel filtration. The monomolecular form of the enzymes was found as unique only at low enzyme concentration and in the presence of detergents. However, in the case of the lipase B from Candida antarctica, no bimolecular form could be identified even at enzyme concentrations as high as 1.2 mg/mL in the absence of detergent. It has been stated that bimolecular and monomolecular structures display very different functional properties: (i) the enzyme specific activity decreased when the lipase concentration increased; (ii) the bimolecular form was much more stable than the monomeric one yielding a higher optimal T (increasing between 5 and 10 degrees C) and higher stability in inactivation experiments (the dimer half-life became several orders of magnitude higher than that of the monomer); (iii) the enantioselectivity depended on the enzyme concentration even after immobilization. For example, with use of the lipase from H. lanuginosa, the enantiomeric excess of the remaining ester in the hydrolysis of fully soluble ethyl ester of (R,S)-2-hydroxy-4-phenylbutanoic acid varied from 4 to 57 when the concentrated or diluted enzyme immobilized on PEI support, respectively, was used. It seems that the bimolecular structure of lipases might be formed by two open lipase molecules (interfacially activating each other) in very close contact and hence with a very altered active center.  相似文献   

6.
Lipase from Pseudomonas fluorescens (PFL) has been immobilized by using different immobilization protocols. The catalytic behavior of the different PFL derivatives in the hydrolytic resolution of fully soluble (R,S) 2-hydroxy 4-phenyl butanoic acid ethyl ester (HPBE) in aqueous medium was analyzed. The soluble enzyme showed a significant but low enantioselectivity, hydrolyzing the S isomer more rapidly than the R-isomer (E = 7). The enzyme, immobilized via a limited attachment to a long and flexible spacer arm, showed almost identical activity and specificity to the soluble enzyme. However, other derivatives, e.g. PFL adsorbed on supports covered by hydrophobic moieties (octyl, decaoctyl), exhibited significant hyperactivation on immobilization (approximately 7-fold). Simultaneously, the enantioselectivity of the PFL-immobilized enzyme was significantly improved (from E = 7 to E = 80). By using such derivatives, almost pure R ester isomer (e.e. > 99%) has been obtained after 55% hydrolysis of the racemic mixture of a solution of 10% (w/v) (R,S) HPBE. The derivatives could be used for 10 cycles without any significant decrease in the activity of the biocatalyst.  相似文献   

7.
On the issue of interfacial activation of lipase in nonaqueous media   总被引:2,自引:0,他引:2  
The question of whether lipases can be activated by adsorption onto an interface in organic solvents was addressed using Rhizomucor miehei lipase as a model. In aqueous solution, this enzyme was shown to undergo a marked interfacial activation. However, lipase (either lyophilized or precipitated from water with acetone) suspended in ethanol or 2-(2-ethoxyethoxy)ethanol containing triolein exhibited no jump in catalytic activity when the concentration of triolein exceeded its solubility in these solvents, thereby resulting in formation of an interface. To test whether the lack of interfacial activation was due to the insolubility of the enzyme in organic media, lipase was covalently modified with poly(ethylene glycol). The modified lipase, although soluble in nonaqueous media, was still unable to undergo interfacial activation, regardless of the hydrophobicity of the interface. This inability was found to be caused by the absence of adsorption of lipase onto interfaces in organic solvents, presumably because of the absence of the hydrophobic effect (the driving force of lipase adsorption onto hydrophobic interfaces in water) in such media. The uncovered lack of interfacial adsorption and activation suggests that the short alpha-helical "lid" covering the active center of the lipase remains predominantly closed in nonaqueous media, thus contributing to diminished enzymatic activity. (c) 1996 John Wiley & Sons, Inc.  相似文献   

8.
Summary The hydrolysis by 1,3-specific lipases (Humicola lanuginosa, Mucor miehei, Rhizopus delemar andRhizopus javanicus) of the highly symmetric, high molecular weight triglycerides fromCrambe abyssinica (Crambe) seed oil is studied in an AOT-stabilized microemulsion system. Enzyme kinetic data shows that, of the lipases studied,Rhizopus javanicus lipases exerts the highest hydrolytic activity towards this new seed oil.  相似文献   

9.
Four commercially available lipases, both free and immobilized, were tested for their ability to catalyze hydrolysis of blackcurrant (Ribes nigrum) oil using two different approaches. The lipase from Mucor miehei was studied free and immobilized in two different ways. The former series of enzymic reactions were performed in tap water at 40 degrees C, but the latter series of enzymic processes were carried out in mixtures of isooctane and phosphate buffer (in a typical 2/1 ratio of the components) at 30 degrees C. These conditions were optimized to increase and/or to maximize the yields of the products, which were priority targets in this study. A rate of hydrolysis and a selective preference of the hydrolytic enzymes towards fatty acids, with a special focus on enrichment of alpha-linolenic acid and/or gamma-linolenic acid, were studied. Higher rates of hydrolysis of the blackcurrant oil in the former series of reactions were observed with the immobilized lipase from Pseudomonas cepacia used as biocatalyst. In the latter approach, the most favorable results of the rate of hydrolysis of the target blackcurrant oil were achieved with the immobilized lipase from Mucor miehei employed as biocatalyst. Only three lipases, selected from a series of lipases tested during this investigation, displayed specificity towards alpha-linolenic acid and gamma-linolenic acid, i.e. the immobilized lipase from P. cepacia, lipase from M. miehei and lipase from P. fluorescens.  相似文献   

10.
It has been found that enantioselectivity of lipases is strongly modified when their immobilization is performed by involving different areas of the enzyme surface, by promoting a different degree of multipoint covalent immobilization or by creating different environments surrounding different enzyme areas. Moreover, selectivity of some immobilized enzyme molecules was much more modulated by the experimental conditions than other derivatives. Thus, some immobilized derivatives of Candida rugosa (CRL) and C. antarctica-B (CABL) lipases are hardly enantioselective in the hydrolysis of chiral esters of (R,S)-mandelic acid under standard conditions (pH 7.0 and 25°C) (E<2). However, other derivatives of the same enzymes exhibited a very good enantioselectivity under nonstandard conditions. For example, CRL adsorbed on PEI-coated supports showed a very high enantio-preference towards S-isomer (E=200) at pH 5. On the other hand, CABL adsorbed on octyl-agarose showed an interesting enantio-preference towards the R-isomer (E=25) at pH 5 and 4°C. These biotransformations are catalyzed by isolated lipase molecules acting on fully soluble substrates and in the absence of interfacial activation against external hydrophobic interfaces. Under these conditions, lipase catalysis may be associated to important conformational changes that can be strongly modulated via biocatalyst and biotransformation engineering. In this way, selective biotransformations catalyzed by immobilized lipases in macro-aqueous systems can be easily modulated by designing different immobilized derivatives and reaction conditions.  相似文献   

11.
Covalent immobilization of pure lipases A and B from Candida rugosa on agarose and silica is described. The immobilization increases the half-life of the biocatalysts ( ) with respect to the native pure lipases ( ). The percentage immobilization of lipases A and B is similar in both supports (33–40%). The remaining activity of the biocatalysts immobilized on agarose (70–75%) is greater than that of the enzymatic derivatives immobilized on SiO2 (40–50%). The surface area and the hydrophobic/hydrophilic properties of the support control the lipase activity of these derivatives. The thermal stability of the immobilized lipase A derivatives is greater than that of lipase B derivatives. The nature of the support influences the thermal deactivation profile of the immobilized derivatives. The immobilization in agarose (hydrophilic support) gives biocatalysts that show a greater initial specific reaction rate than the biocatalysts immobilized in SiO2 (hydrophobic support) using the hydrolysis of the esters of (R) or (S) 2-chloropropanoic and of (R,S) 2-phenylpropanoic acids as the reaction test. The enzymatic derivatives are active for at least 196 h under hydrolysis conditions. The stereospecificity of the native and the immobilized enzymes is the same.  相似文献   

12.
Lipase QL from Alcaligenes sp. is a quite thermostable enzyme. For example, it retains 75% of catalytic activity after incubation for 100 h at 55 °C and pH 7.0. Nevertheless, an improvement of the enzyme properties was intended via immobilization by covalent attachment to different activated supports and by adsorption on hydrophobic supports (octadecyl-sepabeads). This latter immobilization technique promotes the most interesting improvement of enzyme properties: (a) the enzyme is hyperactivated after immobilization: the immobilized preparation exhibits a 135% of catalytic activity for the hydrolysis of p-nitrophenyl propionate as compared to the soluble enzyme; (b) the thermal stability of the immobilized enzyme is highly improved: the immobilized preparation exhibits a half-life time of 12 h when incubated at 80 °C, pH 8.5 (a 25-fold stabilizing factor regarding to the soluble enzyme); (c) the optimal temperature was increased from 50 °C (soluble enzyme) up to 70 °C (hydrophobic support enzyme immobilized preparations); (d) the enantioselectivity of the enzyme for the hydrolysis of glycidyl butyrate and its dependence on the experimental conditions was significantly altered. Moreover, because the enzyme becomes reversibly but very strongly adsorbed on these highly hydrophobic supports, the lipase may be desorbed after its inactivation and the support may be reused. Very likely, adsorption occurs via interfacial activation of the lipase on the hydrophobic supports at very low ionic strength. On the other hand, all the covalent immobilization protocols used to immobilize the enzyme hardly improved the properties of the lipase.  相似文献   

13.
The effect of the immobilization protocol and some experimental conditions (pH value and presence of acetonitrile) on the regioselective hydrolysis of triacetin to diacetin catalyzed by lipases has been studied. Lipase B from Candida antarctica (CALB) and lipase from Rhizomucor miehei (RML) were immobilized on Sepabeads (commercial available macroporous acrylic supports) activated with glutaraldehyde (covalent immobilization) or octadecyl groups (adsorption via interfacial activation). All the biocatalysts accumulated diacetin. Covalently immobilized RML was more active towards rac-methyl mandelate than the adsorbed RML. However, this covalent RML preparation presented the lowest activity towards triacetin. For this reason, this preparation was discarded as biocatalyst for this reaction. At pH 7, acyl migration occurred giving a mixture of 1,2 and 1,3 diacetin, but at pH 5.5, only 1,2 diacetin was produced. Yields were improved at acidic pH values and in the presence of 20% acetonitrile (to over 95%). RML immobilized on octadecyl Sepabeads was proposed as optimal preparation, mainly due to its higher specific activity. Each enzyme preparation presented very different properties. Moreover, changes in the reaction conditions affected the various immobilized enzymes in a different way.  相似文献   

14.
Hyperactivation of Rhizomucor miehei lipase by hydrophobic xerogels   总被引:1,自引:0,他引:1  
Although a variety of approaches exist for the immobilization of enzymes, the "science" of enzyme immobilization is still in its infancy. In recent years, considerable interest has developed regarding the use of xerogels for enzyme immobilization. There are several advantages to xerogels for enzyme immobilization, including the opportunity to produce them in defined shapes or thin films and the ability to manipulate their physical characteristics (e.g., porosity, hydrophobicity, and optical properties). In this study we examined the effect of xerogel hydrophobicity on the activity of lipase (EC 3.2.2.3) from Rhizomucor miehei. The hydrophobicity of the xerogels was manipulated by generating xerogels with various molar ratios of propyltrimethoxysilane (PTMS) to tetramethoxysilane (TMOS), from 1:1 to 10:1. The belief was that, by increasing the proportion of propyl groups, the hydrophobicity of the resulting xerogel would be increased. Differences in the hydrophobicity of the resulting xerogels were confirmed using water-affinity studies. Two approaches were taken for water-affinity determinations by examining the ability of the xerogels to remove water from air (controlled humidity) and from water-saturated isopropyl ether. Xerogels with higher propyl content showed a reduced affinity for water. A crude lipase preparation from Rhizomucor miehei was then contacted with sized xerogel particulates and the effect of the xerogel on lipase activity was determined. The presence of the xerogel resulted in hyperactivation of the lipase. Analysis of the protein adsorption revealed changes in the profile of proteins adsorbed to the xerogel based on the hydrophobicity of the xerogel. Based on estimations of the specific activity of the hyperactivated lipase, a minimum hyperactivation of 207% was observed. Part of the hyperactivation may be attributable to xerogel-lipase interactions, but also to the adsorption of a component from the crude lipase preparation that may complex with the lipase and the xerogel producing a stabilizing effect. Further improvements in hyperactivation and selectivity of the xerogels is likely possible by working at lower PTMS:TMOS ratios than those investigated in this study.  相似文献   

15.
《Process Biochemistry》2004,39(11):1347-1361
The aim of this investigation was to obtain an efficiently immobilized intracellular lipase from Rhizomucor miehei and Yarrowia lipolytica. The activity of intracellular lipases from R. miehei and Y. lipolytica was enhanced by the addition of waste fats (beef tallow or poultry fat) to the medium and by cell immobilization on biomass support particles (BSPs, cubic particle of polypropylene or polyurethane foams). The highest intracellular activity of lipases was obtained after adding 20 and 50 BSPs to the medium of R. miehei (130.5 U) and Y. lipolytica (90.3 U), respectively. The best carrier for immobilizing intracellular lipases was polyurethane foam and the lipolytic activity of immobilized lipases was 2.1–4.3-times higher than the activity of lipases obtained from free biomass. The properties of the immobilized enzymes were very similar to the free enzymes but the immobilized intracellular lipases were more useful for the hydrolysis of waste fats. The highest reaction ratio (72%) and content of free fatty acids (68% (w/w)) in the reaction mixture was obtained after 72 h for beef tallow hydrolysis in a batch reaction with the immobilized lipases from R. miehei.  相似文献   

16.
The presence of cosolvents and co-solutes during the immobilization of lipases on hydrophobic supports may influence the extent of lipase immobilization and the long-term catalytic stability of the biocatalyst. Candida antarctica B lipase immobilization was examined on a hydrophobic surface, i.e., gold modified with a methyl-terminated, self-assembled alkylthiol layer. Lipase adsorption was monitored gravimetrically using a quartz crystal microbalance (QCM). Lipase activity was determined colorimetrically by following p-nitrophenol propionate hydrolysis. Adsorbed lipase topography was examined by atomic force microscopy (AFM). Lipase adsorption from low ionic strength aqueous buffer produced a uniform confluent protein monolayer. Inclusion of 10% (vol) ethanol in the buffer during immobilization resulted in a 33% adsorbed mass increase. Chemically similar cosolvents, all at 10% by volume in buffer, were also individually examined for their influence on CALB adsorption. Glycerol or 1-propanol increased mass adsorption by 10%, while 2-propanol increased mass adsorption by 33%. QCM dissipation values increased threefold with the inclusion of either ethanol or 2-propanol in the medium during lipase adsorption, indicating formation of multilayers of CALB. Partial multilayer formation using 10% ethanol was confirmed by AFM. Inclusion of 10% ethanol in the CALB immobilization buffer decreased the specific activity of the immobilized lipase by 37%. The formation of lipase multilayers in the presence of certain cosolvents thus results in lower specific activity, which might be due to either influences on lipase conformation or substrate active site accessibility.  相似文献   

17.
In order to investigate quantitatively the interesterification reaction, triolein and stearic acid were used as substrates and eight commercially available lipases were tested for their suitability for the reaction. Three fungal lipase preparations were found to be suitable. The hydrolytic activity of the commercial lipases was tested with olive oil, and it 2was noted that there was no correlation between their hydrolytic and interesterification activities. Among the lipases tested, Mucor miehei lipase was chosen for further study because of it high protein content and its relatively high hydrolytic and interesterification activities, both of which are required for effective interesterification. The effect of water activity of the interesterification reaction was investigated. interesterification activity was shown to be maximum at the water activity of 0.25. As the water activity of the lipase increased, hydrolysis of triglyceride was accelerated. At zero water activity, high conversion was achieved, although interesterification activity was relatively lower than that at the water activity of 0.25. A new and simple immobilization method was developed in order to render hydrophobicity to the lipase and hence to improve the interesterification activity of the lipase. The lipase was immobilized covalently with glutaraldehyde or with six alkyl chains as spacers onto Florisil (magnesium silicate, a inorganic matrix). Interesterification activity of the immobilized lipase with the hydrophobic spacers were increased against that of re lipase. The increase of activity was up to 8-fold that of the original activity of free lipase when the spacer was 7-aminoheptanoic acids. Relatively high stability of the immobilized lipase was shown in a continuous packed bed column reactor with a half-life of 97 days. (c) 1993 John Wiley & Sons, Inc.  相似文献   

18.
A destabilizing effect at pH 7 of sodium phosphate on several lipases immobilized via interfacial activation is shown in this work. This paper investigates if this destabilizing effect is extended to other inactivation conditions, immobilization protocols or even other immobilized enzymes (ficin, trypsin, β-galactosidase, β-glucosidase, laccase, glucose oxidase and catalase). As lipases, those from Candida antarctica (A and B), Candida rugosa and Rhizomucor miehei have been used. Results confirm the very negative effect of 100 mM sodium phosphate at pH 7.0 for the stability of all studied lipases immobilized on octyl agarose, while using glutaraldehyde-support the effect is smaller (still very significant using CALA) and in some cases the effect disappeared (e.g., using CALB). The change of the pH to 5.0 or 9.0, or the addition of 1 M NaCl reduced the negative effect of the phosphate in some instances (e.g., at pH 5.0, this negative effect is only relevant for CALB). Regarding the other enzymes, only the monomeric β-galactosidase from Aspergillus oryzae is strongly destabilized by the phosphate buffer. This way, the immobilization protocol and the inactivation conditions strongly modulate the negative effect of sodium phosphate on the stability of immobilized lipases, and this effect is not extended to other enzymes.  相似文献   

19.
J Wang  G Meng  K Tao  M Feng  X Zhao  Z Li  H Xu  D Xia  JR Lu 《PloS one》2012,7(8):e43478

Background

Biocatalytic processes often require a full recycling of biocatalysts to optimize economic benefits and minimize waste disposal. Immobilization of biocatalysts onto particulate carriers has been widely explored as an option to meet these requirements. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work is to explore how immobilization of lipases onto magnetite nanoparticles affects their biocatalytic performance under carefully controlled surface modification.

Methodology/Principal Findings

Magnetite nanoparticles, prepared through a co-precipitation method, were coated with alkyl silanes of different alkyl chain lengths to modulate their surface hydrophobicity. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through hydrophobic interaction. Enzyme activity was assessed by catalytic hydrolysis of p-nitrophenyl acetate. The activity of immobilized lipases was found to increase with increasing chain length of the alkyl silane. Furthermore, the catalytic activities of lipases immobilized on trimethoxyl octadecyl silane (C18) modified Fe3O4 were a factor of 2 or more than the values reported from other surface immobilized systems. After 7 recycles, the activities of the lipases immobilized on C18 modified nanoparticles retained 65%, indicating significant enhancement of stability as well through hydrophobic interaction. Lipase immobilized magnetic nanoparticles facilitated easy separation and recycling with high activity retaining.

Conclusions/Significance

The activity of immobilized lipases increased with increasing alkyl chain length of the alkyl trimethoxy silanes used in the surface modification of magnetite nanoparticles. Lipase stability was also improved through hydrophobic interaction. Alkyl silane modified magnetite nanoparticles are thus highly attractive carriers for enzyme immobilization enabling efficient enzyme recovery and recycling.  相似文献   

20.
Staphylococcus warneri strain EX17 produces three lipases with different molecular weights of 28, 30, and 45 kDa. The 45 kDa fraction (SWL-45) has been purified from crude protein extracts by one chromatographic step based on the selective adsorption of this lipase by interfacial activation on different hydrophobic supports at low ionic strength. The adsorption of SWL-45 on octyl-Sepharose increased the enzyme activity by 60%, but the other lipases were also adsorbed on this support. Using butyl-Toyopearl, which is a lesser hydrophobic support, the purification factor was close to 20, and the only protein band detected on the sodium dodecyl sulfate-polyacrylamide electrophoresis analysis gel was that corresponding to the SWL-45, which could be easily desorbed from the support by incubation with triton X-100, producing a purified enzyme. SWL-45 was immobilized under very mild conditions on cyanogen bromide Sepharose, showing similar activities and stability as for its soluble form but without intermolecular interaction. The effects of different detergents over the activity of the immobilized SWL-45 were analyzed, which was hyperactivated by factors of 1.3 and 2.5 with 0.01% Tween 80 and 0.1% Triton X-100, respectively, while ionic detergents produced detrimental effects on the enzyme activity even at very low concentrations. Optimal reaction conditions and the effect of other additives on the enzyme activity were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号