共查询到20条相似文献,搜索用时 46 毫秒
1.
联系以膜电位变化为特征的细胞兴奋和以肌丝滑行为基础的肌肉收缩的中介过程通常称为兴奋收缩耦联。在所有参与调控心肌收缩功能的离子中,钙离子被认为是最重要的介导因子,因此验明钙离子参与介导心肌兴奋收缩耦联的方式和途径等特征无疑有益于更好地理解心脏的生理功能。 相似文献
2.
本文比较冬眠动物黄鼠冬眠状态和活动状态心肌收缩的力-频率关系和力-间歇关系,以及Cd^2+和ryanodine对其动作电位和收缩力的影响。结果表明:(1)提高刺激频率对活动组具有负变力作用,而对冬眠组则是收缩力先增加后减弱的双相变化;冬眠组具有较强撞歇后收缩,并且刺激频率对其具有较强的调制作用;(2)与活动全相比,冬眠组动作电位前期时程和收缩期较短,收缩力较大,Cd^2+对其影响较小,但ryano 相似文献
3.
兴奋收缩耦联是肌细胞兴奋期间由动作电位触发肌质网释放钙离子,从而导致收缩的过程。心肌细胞的兴奋收缩耦联是通过“钙致钙释放(Ca^2+-induced Ca^2+ release)的机制完成的。兴奋期间,细胞膜电位的去极化导致电压依赖性的L.型钙通道(LCC)开放,细胞外钙离子通过LCC流入细胞,激活了肌质网膜上称为ryanodine受体(RyR)的钙释放通道,后者从肌质网钙库中释放钙离子,使细胞质游离钙浓度迅速上升。细胞质钙浓度的升高一方面启动细胞收缩,另一方面激活了肌质网钙泵和细胞膜钠钙交换,二者分别将钙离子运回肌质网或细胞外,使细胞质钙浓度很快回落,从而完成了一次“钙瞬变(Ca^2+ transient)”。钙瞬变在每个心动周期发生一次,是直接控制细胞收缩的细胞内信号。 相似文献
4.
肌细胞兴奋时,动作电位通过电压门控钙通道激活肌质网钙释放,由此引发的细胞内钙离子的瞬时升高驱动细胞收缩,这个过程叫做兴奋收缩耦联.21世纪以来,随着钙成像技术和分子细胞生物学技术的联合应用,心肌兴奋收缩耦联的分子机制逐步阐明.本文结合本实验室的相关研究,系统总结该领域的前沿进展,包括钙释放通道的分子性质、电压门控钙通道激活肌质网钙释放通道的动力学过程、生理调控以及病理变化. 相似文献
5.
目的:比较两种细胞分离液分离成年大鼠心肌细胞,进一步表征成年大鼠心室肌细胞兴奋-收缩耦联。方法 Langendorff装置进行主动脉逆流灌流,分别用两种细胞分离液分离成年大鼠心肌细胞,无血清培养并进行腺病毒感染。显微镜下观察单个心肌细胞的形态学特点,荧光显微镜下检测病毒感染。采用IonOptix仪器检测心肌细胞肌节收缩-舒张指标以及心肌细胞钙离子摄入-排出指标。结果两种分离液均可获得70%横纹清晰的长杆状心肌细胞,培养可存活7 d以上。腺病毒感染48 h,绿色荧光蛋白持续表达7 d以上。分离液一获得的心肌细胞不能很好地随电场刺激产生收缩,分离液二获得的细胞可用于检测兴奋-收缩耦联特性,心肌细胞肌节缩短分数为11.61%±2.15%,舒张时间为(0.177±0.031) s,钙瞬变幅度为30.79%±9.74%,钙瞬变衰减时间为(0.300±0.074) s。结论两种分离液均可用于分离和培养成年大鼠心肌细胞,并用于腺病毒转染等长时程研究。分离液二更适用于检测成年大鼠心肌细胞的兴奋-收缩耦联特性。 相似文献
6.
7.
横小管膜去极化如何导致肌浆网系释放Ca^2+?这是骨骼兴奋收缩耦联机制研究要回答的核心问题。肌醇磷脂使系统可能调控这一过程。本文通过分析现有的资料,并结合本实验室近期的工作,阐述了肌醇磷脂信使系统调控骨骼肌兴奋收缩耦联的证据,并且对该假说进行了讨论。 相似文献
8.
心脏压力负荷导致心肌肥厚的过程是心衰发生的关键环节。已有研究表明,控制心脏收缩的细胞钙致钙释放过程在心肌肥厚及心衰状态下发生缺损,但分子机制尚未阐明。我们以主动脉结扎手术建立压力负荷的大鼠心肌肥厚模型:实验组分为假手术组、代偿性肥厚组(CHT)和失代偿性肥厚组(DHT),以松钳一共聚焦成像技术研究单个L-型钙通道(LCC)与ryanodine受体(RyR)间的钙信号耦联。我们发现DHT中LCC—RyR分子耦联潜伏期延长49%,耦联成功率降低47%,失败概率提高72%,证明DHT进入了一种“分子间衰退”状态。出人意料的是,心功能正常的CHT也发生分子间衰退,并与锚定肌质网与细胞膜的junctophilin蛋白表达下降有关,表明分子间耦联衰退在细胞功能变化显现之前已经潜性地发生。与此一致,细胞兴奋期钙释放同步性降低,但钙释放总量和细胞钙瞬变在CHT并无变化。这些结果提示,在一个我们称为“稳定余量”(stability margin)的范围内,分子间耦联衰退不会影响细胞兴奋收缩耦联能力,只有分子间耦联衰退超出稳定余量,心衰才会发生。潜性的分子间耦联衰退的发现对早期防治心衰有重要意义。 相似文献
9.
10.
恶性心律失常仍然是心脏病人死亡的主要原因之一。由于恶性心律失常的药物有效率仅40%,故目前国内外正开展恶性心律失常的非药物性治疗,常用的方法之一是电击治疗。尤其是心室颤动,电击是唯一的治疗方法。此外,在科研中引起心室颤动、室性心动过速以及进行多数电生理实验时,采用的是细胞外电刺激,其实质是电场与心肌组织电生理特性的相互 相似文献
11.
Spatial non-uniformities in [Ca2+]i during excitation-contraction coupling in cardiac myocytes. 总被引:7,自引:8,他引:7
下载免费PDF全文

The intracellular calcium ([Ca2+]i) transient in adult rat heart cells was examined using the fluorescent calcium indicator fluo-3 and a laser scanning confocal microscope. We find that the electrically evoked [Ca2+]i transient does not rise at a uniform rate at all points within the cell during the [Ca2+]i transient. These spatial non-uniformities in [Ca2+]i are observed immediately upon depolarization and largely disappear by the time the peak of the [Ca2+]i transient occurs. Importantly, some of the spatial non-uniformity in [Ca2+]i varies randomly in location from beat to beat. Analysis of the spatial character of the non-uniformities suggests that they arise from the stochastic nature of the activation of SR calcium-release channels. The non-uniformities in [Ca2+]i are markedly enhanced by low concentrations of Cd2+, suggesting that activation of L-type calcium channels is the primary source of activator calcium for the calcium transient. In addition, the pattern of calcium release in these conditions was very similar to the spontaneous calcium sparks that are observed under resting conditions and which are due to spontaneous calcium release from the SR. The spatial non-uniformity in the evoked [Ca2+]i transient under normal conditions can be explained by the temporal and spatial summation of a large number of calcium sparks whose activation is a stochastic process. The results are discussed with respect to a stochastic local control model for excitation-contraction (E-C) coupling, and it is proposed that the fundamental unit of E-C coupling consists of one dihydropyridine receptor activating a small group of ryanodine receptors (possibly four) in a square packing model. 相似文献
12.
13.
Zavecz JH Bueno O Maloney RE O'Donnell JM Roerig SC Battarbee HD 《American journal of physiology. Gastrointestinal and liver physiology》2000,279(1):G28-G39
Basal contractility and responses to beta-adrenoceptor activation are compromised in hearts from rats with chronic portal vein stenosis. Here we report the effect of partial ligation of the portal vein on myocardial G protein expression, beta-adrenoceptor-G protein coupling, and excitation-contraction coupling (ECC). Contractility (dT/dt) was reduced 30-50% in right and left ventricles, but the rate of relaxation (-dT/dt) was unaffected. Isoproterenol-induced positive inotropism was diminished, but there was no difference in ED(50). The concentration-dependent increase in -dT/dt was unaffected. G(s)alpha and G(i)alpha expression, cholera toxin- and pertussis toxin-induced ADP-ribosylation, and formation of the agonist-receptor-G(s) complex were unaffected by portal vein stenosis. Of the components of ECC examined, the caffeine-sensitive sarcoplasmic reticulum Ca(2+) pool was reduced 35%, although the Ca(2+) uptake and release processes were unchanged; the apparent density of L-type Ca(2+) channels decreased 60% with no change in affinity; the dihydropyridine Ca(2+) channel agonist BAY K 8644 produced relative changes in dT/dt that were similar in both groups, suggesting normal function in the remaining Ca(2+) channels; and Na(+)/Ca(2+) exchange was reduced 50% in the portal vein stenosis group. These data suggest that the effect of portal vein stenosis on the myocardium is the result of alterations to ECC. 相似文献
14.
Modulation of the Ca2+ channel voltage sensor and excitation-contraction coupling by silver.
下载免费PDF全文

Ag+ (0.5-10 microM) is known to produce a transient contraction of intact frog skeletal muscle fibers followed by complete inhibition of excitation-contraction (E-C) coupling. We have carried out physiological and biochemical experiments to investigate the basis of this effect. Dihydropyridine (DHP) Ca2+ channel blockers, which inhibit the voltage sensor of the Ca2+ channel, completely inhibit Ag+ contractions. Removal of extracellular Ca2+, or blockade of Ca2+ entry with cadmium, does not inhibit Ag+ contractions. Activation of the Ca2+ channel's voltage sensor with the Ca2+ channel agonists Bay K 8644 or with perchlorate, potentiates the Ag(+)-induced contraction. Ag+ binds to the partially purified rabbit skeletal muscle Ca2+ channel and inhibits DHP binding (IC50 = 1.1 microM) and sulfhydryl (SH) reactivity (IC50 = 0.11 microM) over the concentration range where it inhibits E-C coupling. Oxidation of free SH groups by H2O2 or their reaction with DTNB prevents Ag+ contractions, while DTT reduction of oxidized SH groups restores Ag+ contractions. These results suggest that Ag+ binds to critical SH groups on the DHP receptor Ca2+ channel, resulting in modification of the channel's voltage sensor and the failure of E-C coupling. 相似文献
15.
Tanaka H Masumiya H Sekine T Kase J Kawanishi T Hayakawa T Miyata S Sato Y Nakamura R Shigenobu K 《Life sciences》2001,70(6):715-726
Two-dimensional and line-scan analyses of the early phase Ca2+ transients in rat cardiomyocytes were performed with a rapid-scanning laser confocal microscope and fluo-3 to elucidate the mechanism of activation of Ca2+ release from the sarcoplasmic reticulum in atrial myocytes which lack a well developed T-tubular network. On electrical stimulation of ventricular myocytes, Ca2+ concentration began to rise earliest at the Z-line level and became uniform throughout the cytoplasm within about 10 msec. In contrast, on stimulation of atrial myocytes, the earliest rise in Ca2+ occurred at the cell periphery and then spread to the cell interior; cytoplasmic Ca2+ became uniform after more than 30msec. The velocity of the propagation of rise in Ca2+ was 112 +/- 5.1 microm/sec (n = 10), which was similar to that of spontaneous Ca2+ waves observed in atrial and ventricular myocytes. No difference in frequency, amplitude and kinetics of spontaneous Ca2+ sparks was observed between the subsarcolemmal and central regions of atrial myocytes. Ryanodine concentration-dependently decreased the contractile force of isolated rat atrial and ventricular tissue preparations; the sensitivity was higher in atrial myocytes. The present study visualized the involvement of a propagated Ca2+-induced-Ca+ release mechanism in atrial but not ventricular myocytes. This difference may underlie some of the atrioventricular difference in response to physiological and pharmacological stimuli. 相似文献
16.
H C Lüttgau G Gottschalk D Berwe 《Canadian journal of physiology and pharmacology》1987,65(4):717-723
The effect of a Ca2+-free tetraethylammonium sulfate solution on force development in short skeletal muscle fibres of the frog was investigated under voltage clamp control. Maximum force could still be reached under this condition. The removal of external Ca2+, however, caused an acceleration of force inactivation leading to a shift of the steady-state potential dependence of force inactivation to more negative potentials. With reference to the "modulated-receptor hypothesis" this result was explained by assuming a potential-dependent binding of Ca2+ to a force-controlling system in the T-tubular membrane, with a low affinity in the depolarized-inactivated state. A dissociation of Ca2+ is assumed to turn the system into a secondary inactivated state (paralysis) from which it only slowly recovers after repolarization. Ca antagonists like D600 and diltiazem accelerated the shift into paralysis, probably by an allosteric displacement of Ca2+ from its binding site. The application of 1-2 microM of the Ca antagonist nifedipine blocked the inward Ca2+ current and caused a prolongation of the transient force development following a depolarization. A similar retardation of force inactivation and a threshold shift to more negative potentials occurred when the Ca2+ chelator ethyleneglycol-bis (beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) was injected into the fibre and when in Ca2+-free solutions sodium ions entered the cell through Ca2+ channels. 相似文献
17.
Tao L Huang Y Bourreau JP 《American journal of physiology. Lung cellular and molecular physiology》2000,279(4):L722-L732
Full muscarinic stimulation in bovine tracheal smooth muscle caused a sustained contraction and increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) that was largely resistant to inhibition by nifedipine. Depletion of internal Ca(2+) stores with cyclopiazonic acid resulted in an increased efficacy of nifedipine to inhibit this contraction and the associated increase in [Ca(2+)](i). Thus internal Ca(2+) store depletion promoted electromechanical coupling between full muscarinic stimulation and muscle contraction to the detriment of pharmacomechanical coupling. A similar change in coupling mode was induced by ryanodine even when it did not significantly modify the initial transient increase in [Ca(2+)](i) induced by this stimulation, indicating that depletion of internal stores was not necessary to induce the change in excitation-contraction coupling mode. Blockade of the Ca(2+)-activated K(+) channel by tetraethylammonium, charybdotoxin, and iberiotoxin all induced the change in excitation-contraction coupling mode. These results suggest that in this preparation, Ca(2+) released from the ryanodine-sensitive Ca(2+) store, by activating Ca(2+)-activated K(+) channels, plays a central role in determining the expression of the pharmacomechanical coupling mode between muscarinic excitation and the Ca(2+) influx necessary for the maintenance of tone. 相似文献
18.
Domeier TL Zima AV Maxwell JT Huke S Mignery GA Blatter LA 《American journal of physiology. Heart and circulatory physiology》2008,294(2):H596-H604
Inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R)-dependent Ca(2+) signaling exerts positive inotropic, but also arrhythmogenic, effects on excitation-contraction coupling (ECC) in the atrial myocardium. The role of IP(3)R-dependent sarcoplasmic reticulum (SR) Ca(2+) release in ECC in the ventricular myocardium remains controversial. Here we investigated the role of this signaling pathway during ECC in isolated rabbit ventricular myocytes. Immunoblotting of proteins from ventricular myocytes showed expression of both type 2 and type 3 IP(3)R at levels approximately 3.5-fold less than in atrial myocytes. In permeabilized myocytes, direct application of IP(3) (10 microM) produced a transient 21% increase in the frequency of Ca(2+) sparks (P < 0.05). This increase was accompanied by a 13% decrease in spark amplitude (P < 0.05) and a 7% decrease in SR Ca(2+) load (P < 0.05) and was inhibited by IP(3)R antagonists 2-aminoethoxydiphenylborate (2-APB; 20 microM) and heparin (0.5 mg/ml). In intact myocytes endothelin-1 (100 nM) was used to stimulate IP(3) production and caused a 38% (P < 0.05) increase in the amplitude of action potential-induced (0.5 Hz, field stimulation) Ca(2+) transients. This effect was abolished by the IP(3)R antagonist 2-APB (2 microM) or by using adenoviral expression of an IP(3) affinity trap that buffers cellular IP(3). Together, these data suggest that in rabbit ventricular myocytes IP(3)R-dependent Ca(2+) release has positive inotropic effects on ECC by facilitating Ca(2+) release through ryanodine receptor clusters. 相似文献
19.
Snopko RM Aromolaran AS Karko KL Ramos-Franco J Blatter LA Mejía-Alvarez R 《Cell calcium》2007,41(1):13-25
In heart, the excitation-contraction coupling (ECC) mechanism changes during development. Primary cell culture has been used to study Ca(2+) signaling in newborn (NB) rat heart. In this work, the effects of cell culture on the action potential (AP) and ECC Ca(2+) signaling during development were investigated. Specifically, AP, Ca(2+) currents (I(Ca)), and ryanodine receptor (RyR) properties (i.e. density, distribution, and contribution to Ca(2+) transients and Ca(2+) sparks) were defined in cultured myocytes (CM) from 0-day-old NB rat at different times in culture (1-4 days). Compared with acutely dissociated myocytes (ADM) from NB of equivalent ages (1-4 days), CM showed lower RyR density (50% at 1 day, 25% at 4 days), but larger RyR contribution to the Ca(2+) transient (25% at 1 day, 57% at 4 days). Additionally, Ca(2+) sparks were larger, longer, wider, and more frequent in CM than in ADM. RyR cellular distribution also showed different arrangement. While in CM, RyRs were located peripherally, in ADM of equivalent ages a sarcomeric arrangement was predominant. Finally, CM showed a two-fold increase in sarcolemmal Ca(2+) entry during the AP. These results indicated that primary culture is a feasible model to study Ca(2+) signaling in heart; however, it does not precisely reproduce what occurs in ECC during development. 相似文献
20.
Ca2+-dependent excitation-contraction coupling triggered by the heterologous cardiac/brain DHPR beta2a-subunit in skeletal myotubes
下载免费PDF全文

Molecular determinants essential for skeletal-type excitation-contraction (EC) coupling have been described in the cytosolic loops of the dihydropyridine receptor (DHPR) alpha1S pore subunit and in the carboxyl terminus of the skeletal-specific DHPR beta1a-subunit. It is unknown whether EC coupling domains present in the beta-subunit influence those present in the pore subunit or if they act independent of each other. To address this question, we investigated the EC coupling signal that is generated when the endogenous DHPR pore subunit alpha1S is paired with the heterologous heart/brain DHPR beta2a-subunit. Studies were conducted in primary cultured myotubes from beta1 knockout (KO), ryanodine receptor type 1 (RyR1) KO, ryanodine receptor type 3 (RyR3) KO, and double RyR1/RyR3 KO mice under voltage clamp with simultaneous monitoring of confocal fluo-4 fluorescence. The beta2a-mediated Ca2+ current recovered in beta1 KO myotubes lacking the endogenous DHPR beta1a-subunit verified formation of the alpha1S/beta1a pair. In myotube genotypes which express no or low-density L-type Ca2+ currents, namely beta1 KO and RyR1 KO, beta2a overexpression recovered a wild-type density of nifedipine-sensitive Ca2+ currents with a slow activation kinetics typical of skeletal myotubes. Concurrent with Ca2+ current recovery, there was a drastic reduction of voltage-dependent, skeletal-type EC coupling and emergence of Ca2+ transients triggered by the Ca2+ current. A comparison of beta2a overexpression in RyR3 KO, RyR1 KO, and double RyR1/RyR3 KO myotubes concluded that both RyR1 and RyR3 isoforms participated in Ca2+-dependent Ca2+ release triggered by the beta2a-subunit. In beta1 KO and RyR1 KO myotubes, the Ca2+-dependent EC coupling promoted by beta2a overexpression had the following characteristics: 1), L-type Ca2+ currents had a wild-type density; 2), Ca2+ transients activated much slower than controls overexpressing beta1a, and the rate of fluorescence increase was consistent with the activation kinetics of the Ca2+ current; 3), the voltage dependence of the Ca2+ transient was bell-shaped and the maximum was centered at approximately +30 mV, consistent with the voltage dependence of the Ca2+ current; and 4), Ca2+ currents and Ca2+ transients were fully blocked by nifedipine. The loss in voltage-dependent EC coupling promoted by beta2a was inferred by the drastic reduction in maximal Ca2+ fluorescence at large positive potentials (DeltaF/Fmax) in double dysgenic/beta1 KO myotubes overexpressing the pore mutant alpha1S (E1014K) and beta2a. The data indicate that beta2a, upon interaction with the skeletal pore subunit alpha1S, overrides critical EC coupling determinants present in alpha1S. We propose that the alpha1S/beta pair, and not the alpha1S-subunit alone, controls the EC coupling signal in skeletal muscle. 相似文献