首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
MOTIVATION: Subcellular localization is a key functional characteristic of proteins. A fully automatic and reliable prediction system for protein subcellular localization is needed, especially for the analysis of large-scale genome sequences. RESULTS: In this paper, Support Vector Machine has been introduced to predict the subcellular localization of proteins from their amino acid compositions. The total prediction accuracies reach 91.4% for three subcellular locations in prokaryotic organisms and 79.4% for four locations in eukaryotic organisms. Predictions by our approach are robust to errors in the protein N-terminal sequences. This new approach provides superior prediction performance compared with existing algorithms based on amino acid composition and can be a complementary method to other existing methods based on sorting signals. AVAILABILITY: A web server implementing the prediction method is available at http://www.bioinfo.tsinghua.edu.cn/SubLoc/. SUPPLEMENTARY INFORMATION: Supplementary material is available at http://www.bioinfo.tsinghua.edu.cn/SubLoc/.  相似文献   

2.
3.
The software tool PBEAM provides a parallel implementation of the BEAM, which is the first algorithm for large scale epistatic interaction mapping, including genome-wide studies with hundreds of thousands of markers. BEAM describes markers and their interactions with a Bayesian partitioning model and computes the posterior probability of each marker sets via Markov Chain Monte Carlo (MCMC). PBEAM takes the advantage of simulating multiple Markov chains simultaneously. This design can efficiently reduce ~n-fold execution time in the circumstance of n CPUs. The implementation of PBEAM is based on MPI libraries.

Availability

PBEAM is available for download at http://bioinfo.au.tsinghua.edu.cn/pbeam/  相似文献   

4.
HMMGEP: clustering gene expression data using hidden Markov models   总被引:3,自引:0,他引:3  
SUMMARY: The package HMMGEP performs cluster analysis on gene expression data using hidden Markov models. AVAILABILITY: HMMGEP, including the source code, documentation and sample data files, is available at http://www.bioinfo.tsinghua.edu.cn:8080/~rich/hmmgep_download/index.html.  相似文献   

5.
SUMMARY: Alternative translational initiation is an important cellular mechanism contributing to the diversity of protein products and functions. We develop a database that provides a comprehensive collection of alternative translational initiation events. The purpose of this alternative translational initiation database (ATID) is to facilitate the systematic study of alternative translational initiation of genes. The current version of database contains 300 genes from Homo sapiens, Mus musculus and other species. Each of the genes has two or more isoforms due to alternative translational initiation. Resources in ATID, including gene information, alternative products of genes and domain structures of isoforms, are provided through a user-friendly web interface. AVAILABILITY: The ATID database is available for public use at http://bioinfo.au.tsinghua.edu.cn/atie/.  相似文献   

6.
7.
Li T  Li F  Zhang X 《Proteins》2008,70(2):404-414
Protein phosphorylation plays important roles in a variety of cellular processes. Detecting possible phosphorylation sites and their corresponding protein kinases is crucial for studying the function of many proteins. This article presents a new prediction system, called PhoScan, to predict phosphorylation sites in a kinase-family-specific way. Common phosphorylation features and kinase-specific features are extracted from substrate sequences of different protein kinases based on the analysis of published experiments, and a scoring system is developed for evaluating the possibility that a peptide can be phosphorylated by the protein kinase at the specific site in its sequence context. PhoScan can achieve a specificity of above 90% with sensitivity around 90% at kinase-family level on the data experimented. The system is applied on a set of human proteins collected from Swiss-Prot and sets of putative phosphorylation sites are predicted for protein kinase A, cyclin-dependent kinase, and casein kinase 2 families. PhoScan is available at http://bioinfo.au.tsinghua.edu.cn/phoscan/.  相似文献   

8.
Exome sequencing has been widely used in detecting pathogenic nonsynonymous single nucleotide variants (SNVs) for human inherited diseases. However, traditional statistical genetics methods are ineffective in analyzing exome sequencing data, due to such facts as the large number of sequenced variants, the presence of non-negligible fraction of pathogenic rare variants or de novo mutations, and the limited size of affected and normal populations. Indeed, prevalent applications of exome sequencing have been appealing for an effective computational method for identifying causative nonsynonymous SNVs from a large number of sequenced variants. Here, we propose a bioinformatics approach called SPRING (Snv PRioritization via the INtegration of Genomic data) for identifying pathogenic nonsynonymous SNVs for a given query disease. Based on six functional effect scores calculated by existing methods (SIFT, PolyPhen2, LRT, MutationTaster, GERP and PhyloP) and five association scores derived from a variety of genomic data sources (gene ontology, protein-protein interactions, protein sequences, protein domain annotations and gene pathway annotations), SPRING calculates the statistical significance that an SNV is causative for a query disease and hence provides a means of prioritizing candidate SNVs. With a series of comprehensive validation experiments, we demonstrate that SPRING is valid for diseases whose genetic bases are either partly known or completely unknown and effective for diseases with a variety of inheritance styles. In applications of our method to real exome sequencing data sets, we show the capability of SPRING in detecting causative de novo mutations for autism, epileptic encephalopathies and intellectual disability. We further provide an online service, the standalone software and genome-wide predictions of causative SNVs for 5,080 diseases at http://bioinfo.au.tsinghua.edu.cn/spring.  相似文献   

9.
Although cytidine-to-uridine conversions in plant mitochondria were discovered 18 years ago, it was still an enigmatic process. Since the sequencing projects of plant mitochondrial genomes are providing more and more available sequences, the requirements of computationally identifying C-to-U RNA editing sites are also increasing. By incorporating both evolutionary and biochemical information, we developed a novel algorithm for predicting C-to-U RNA editing sites in plant mitochondria. The algorithm has been implemented as an online service called CURE (Cytidine-to-Uridine Recognizing Editor). CURE performs better than other methods that are based on only biochemical or only evolutionary information. CURE also provides the ability of predicting C-to-U RNA editing sites in non-coding regions and the synonymous C-to-U RNA editing sites in coding regions that are impossible for other methods. Furthermore, CURE can carry out prediction directly on the entire mitochondria genome sequence. The prediction results of CURE suggest the functional importance of synonymous RNA editing sites, which was neglected before. The CURE service can be accessed at http://bioinfo.au.tsinghua.edu.cn/cure.  相似文献   

10.
Ji X  Li-Ling J  Sun Z 《FEBS letters》2003,542(1-3):125-131
In this work we have developed a new framework for microarray gene expression data analysis. This framework is based on hidden Markov models. We have benchmarked the performance of this probability model-based clustering algorithm on several gene expression datasets for which external evaluation criteria were available. The results showed that this approach could produce clusters of quality comparable to two prevalent clustering algorithms, but with the major advantage of determining the number of clusters. We have also applied this algorithm to analyze published data of yeast cell cycle gene expression and found it able to successfully dig out biologically meaningful gene groups. In addition, this algorithm can also find correlation between different functional groups and distinguish between function genes and regulation genes, which is helpful to construct a network describing particular biological associations. Currently, this method is limited to time series data. Supplementary materials are available at http://www.bioinfo.tsinghua.edu.cn/~rich/hmmgep_supp/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号