首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human gammaD-crystallin (HgammaD-Crys) is a monomeric eye lens protein composed of two highly homologous beta-sheet domains. The domains interact through interdomain side chain contacts forming two structurally distinct regions, a central hydrophobic cluster and peripheral residues. The hydrophobic cluster contains Met43, Phe56, and Ile81 from the N-terminal domain (N-td) and Val132, Leu145, and Val170 from the C-terminal domain (C-td). Equilibrium unfolding/refolding of wild-type HgammaD-Crys in guanidine hydrochloride (GuHCl) was best fit to a three-state model with transition midpoints of 2.2 and 2.8 M GuHCl. The two transitions likely corresponded to sequential unfolding/refolding of the N-td and the C-td. Previous kinetic experiments revealed that the C-td refolds more rapidly than the N-td. We constructed alanine substitutions of the hydrophobic interface residues to analyze their roles in folding and stability. After purification from E. coli, all mutant proteins adopted a native-like structure similar to wild type. The mutants F56A, I81A, V132A, and L145A had a destabilized N-td, causing greater population of the single folded domain intermediate. Compared to wild type, these mutants also had reduced rates for productive refolding of the N-td but not the C-td. These data suggest a refolding pathway where the domain interface residues of the refolded C-td act as a nucleating center for refolding of the N-td. Specificity of domain interface interactions is likely important for preventing incorrect associations in the high protein concentrations of the lens nucleus.  相似文献   

2.
Human gammaD crystallin (HgammaD-Crys) is a two domain, beta-sheet eye lens protein that must remain soluble throughout life for lens transparency. Single amino acid substitutions of HgammaD-Crys are associated with juvenile-onset cataracts. Features of the interface between the two domains conserved among gamma-crystallins are a central six-residue hydrophobic cluster, and two pairs of interacting residues flanking the cluster. In HgammaD-Crys these pairs are Gln54/Gln143 and Arg79/Met147. We previously reported contributions of the hydrophobic cluster residues to protein stability. In this study alanine substitutions of the flanking residue pairs were constructed and analyzed. Equilibrium unfolding/refolding experiments at 37 degrees C revealed a plateau in the unfolding/refolding transitions, suggesting population of a partially folded intermediate with a folded C-terminal domain (C-td) and unfolded N-terminal domain (N-td). The N-td was destabilized by substituting residues from both domains. In contrast, the C-td was not significantly affected by substitutions of either domain. Refolding rates of the N-td were significantly decreased for mutants of either domain. In contrast, refolding rates of the C-td were similar to wild type for mutants of either domain. Therefore, domain interface residues of the folded C-td probably nucleate refolding of the N-td. We suggest that these residues stabilize the native state by shielding the central hydrophobic cluster from solvent. Glutamine and methionine side chains are among the residues covalently damaged in aged and cataractous lenses. Such damage may generate partially unfolded, aggregation- prone conformations of HgammaD-Crys that could be significant in cataract.  相似文献   

3.
Human γD-crystallin (HγD-Crys) is a highly stable protein that remains folded in the eye lens for the majority of an individual's lifetime. HγD-Crys exhibits two homologous crystallin domains, each containing two Greek key motifs with eight β-strands. Six aromatic pairs (four Tyr/Tyr, one Tyr/Phe and one Phe/Phe) are present in the β-hairpin sequences of the Greek keys. Ultraviolet damage to the aromatic residues in lens crystallins may contribute to the genesis of cataract. Mutant proteins with these aromatic residues substituted with alanines were constructed and expressed in E. coli. All mutant proteins except F115A and F117A had lower thermal stability than the WT protein. In equilibrium experiments in guanidine hydrochloride (GuHCl), all mutant proteins had lower thermodynamic stability than the WT protein. N-terminal domain (N-td) substitutions shifted the N-td transition to lower GuHCl concentration, but the C-terminal domain (C-td) transition remained unaffected. C-td substitutions led to a more cooperative unfolding/refolding process, with both the N-td and C-td transitions shifted to lower GuHCl concentration. The aromatic pairs conserved for each Greek key motif (Greek key pairs) had larger contributions to both thermal stability and thermodynamic stability than the other pairs. Aromatic-aromatic interaction was estimated as 1.5-2.0 kcal/mol. In kinetic experiments, N-td substitutions accelerated the early phase of unfolding, while C-td substitutions accelerated the late phase, suggesting independent domain unfolding. Only substitutions of the second Greek key pair of each crystallin domain slowed refolding. The second Greek keys may provide nucleation sites during the folding of the double-Greek-key crystallin domains.  相似文献   

4.
Human gammaD crystallin (HgammaD-Crys), a major component of the human eye lens, is a 173-residue, primarily beta-sheet protein, associated with juvenile and mature-onset cataracts. HgammaD-Crys has four tryptophans, with two in each of the homologous Greek key domains, which are conserved throughout the gamma-crystallin family. HgammaD-Crys exhibits native-state fluorescence quenching, despite the absence of ligands or cofactors. The tryptophan absorption and fluorescence quenching may influence the lens response to ultraviolet light or the protection of the retina from ambient ultraviolet damage. To provide fluorescence reporters for each quadrant of the protein, triple mutants, each containing three tryptophan-to-phenylalanine substitutions and one native tryptophan, have been constructed and expressed. Trp 42-only and Trp 130-only exhibited fluorescence quenching between the native and denatured states typical of globular proteins, whereas Trp 68-only and Trp 156-only retained the anomalous quenching pattern of wild-type HgammaD-Crys. The three-dimensional structure of HgammaD-Crys shows Tyr/Tyr/His aromatic cages surrounding Trp 68 and Trp 156 that may be the source of the native-state quenching. During equilibrium refolding/unfolding at 37 degrees C, the tryptophan fluorescence signals indicated that domain I (W42-only and W68-only) unfolded at lower concentrations of GdnHCl than domain II (W130-only and W156-only). Kinetic analysis of both the unfolding and refolding of the triple-mutant tryptophan proteins identified an intermediate along the HgammaD-Crys folding pathway with domain I unfolded and domain II intact. This species is a candidate for the partially folded intermediate in the in vitro aggregation pathway of HgammaD-Crys.  相似文献   

5.
Human γ-crystallins are long-lived, unusually stable proteins of the eye lens exhibiting duplicated, double Greek key domains. The lens also contains high concentrations of the small heat shock chaperone α-crystallin, which suppresses aggregation of model substrates in vitro. Mature-onset cataract is believed to represent an aggregated state of partially unfolded and covalently damaged crystallins. Nonetheless, the lack of cell or tissue culture for anucleate lens fibers and the insoluble state of cataract proteins have made it difficult to identify the conformation of the human γ-crystallin substrate species recognized by human α-crystallin. The three major human lens monomeric γ-crystallins, γD, γC, and γS, all refold in vitro in the absence of chaperones, on dilution from denaturant into buffer. However, off-pathway aggregation of the partially folded intermediates competes with productive refolding. Incubation with human αB-crystallin chaperone during refolding suppressed the aggregation pathways of the three human γ-crystallin proteins. The chaperone did not dissociate or refold the aggregated chains under these conditions. The αB-crystallin oligomers formed long-lived stable complexes with their γD-crystallin substrates. Using α-crystallin chaperone variants lacking tryptophans, we obtained fluorescence spectra of the chaperone-substrate complex. Binding of substrate γ-crystallins with two or three of the four buried tryptophans replaced by phenylalanines showed that the bound substrate remained in a partially folded state with neither domain native-like. These in vitro results provide support for protein unfolding/protein aggregation models for cataract, with α-crystallin suppressing aggregation of damaged or unfolded proteins through early adulthood but becoming saturated with advancing age.  相似文献   

6.
The thermodynamic and kinetic stabilities of the eye lens family of betagamma-crystallins are important factors in the etiology of senile cataract. They control the chance of proteins unfolding, which can lead to aggregation and loss of transparency. betaB2-Crystallin orthologs are of low stability and comprise two typical betagamma-crystallin domains, although, uniquely, the N-terminal domain has a cysteine in one of the conserved folded beta-hairpins. Using high-temperature (500 K) molecular dynamics simulations with explicit solvent on the N-terminal domain of rodent betaB2-crystallin, we have identified in silico local flexibility in this folded beta-hairpin. We have shown in vitro using two-domain human betaB2-crystallin that replacement of this cysteine with a more usual aromatic residue (phenylalanine) results in a gain in conformational stability and a reduction in the rate of unfolding. We have used principal components analysis to visualize and cluster the coordinates from eight separate simulated unfolding trajectories of both the wild-type and the C50F mutant N-terminal domains. These data, representing fluctuations around the native well, show that although the mutant and wild-type appear to behave similarly over the early time period, the wild type appears to explore a different region of conformational space. It is proposed that the advantage of having this low-stability cysteine may be correlated with a subunit-exchange mechanism that allows betaB2-crystallin to interact with a range of other beta-crystallin subunits.  相似文献   

7.
Protein aggregation is a hallmark of several neurodegenerative diseases and also of cataracts. The major proteins in the lens of the eye are crystallins, which accumulate throughout life and are extensively modified. Deamidation is the major modification in the lens during aging and cataracts. Among the crystallins, the betaA3-subunit has been found to have multiple sites of deamidation associated with the insoluble proteins in vivo. Several sites were predicted to be exposed on the surface of betaA3 and were investigated in this study. Deamidation was mimicked by site-directed mutagenesis at Q42 and N54 on the N-terminal domain, N133 and N155 on the C-terminal domain, and N120 in the peptide connecting the domains. Deamidation altered the tertiary structure without disrupting the secondary structure or the dimer formation of betaA3. Deamidations in the C-terminal domain and in the connecting peptide decreased stability to a greater extent than deamidations in the N-terminal domain. Deamidation at N54 and N155 also disrupted the association with the betaB1-subunit. Sedimentation velocity experiments integrated with high-resolution analysis detected soluble aggregates at 15%-20% in all deamidated proteins, but not in wild-type betaA3. These aggregates had elevated frictional ratios, suggesting that they were elongated. The detection of aggregates in vitro strongly suggests that deamidation may contribute to protein aggregation in the lens. A potential mechanism may include decreased stability and/or altered interactions with other beta-subunits. Understanding the role of deamidation in the long-lived crystallins has important implications in other aggregation diseases.  相似文献   

8.
The folding of apo-pseudoazurin, a 123-residue, predominantly beta-sheet protein with a complex Greek key topology, has been investigated using several biophysical techniques. Kinetic analysis of refolding using far- and near-ultraviolet circular dichroism (UV CD) shows that the protein folds slowly to the native state with rate constants of 0.04 and 0.03 min(-1), respectively, at pH 7.0 and at 15 degrees C. This process has an activation enthalpy of approximately 90 kJ/mole and is catalyzed by cyclophilin A, indicating that folding is limited by trans-cis proline isomerization, presumably around the Xaa-Pro 20 bond that is in the cis isomer in the native state. Before proline isomerization, an intermediate accumulates during folding. This species has a substantial signal in the far-UV CD, a nonnative signal in the near-UV CD, exposed hydrophobic surfaces (judged by 1-anilino naphthalenesulphonate binding), a noncooperative denaturation transition, and a dynamic structure (revealed by line broadening on the nuclear magnetic resonance time scale). We compare the properties of this intermediate with partially folded states of other proteins and discuss its role in folding of this complex Greek key protein.  相似文献   

9.
gamma B-crystallin is a monomeric member of the beta gamma-superfamily of vertebrate eye lens proteins. It consists of two similar domains with all-beta Greek key topology associating about an approximate two-fold axis. At pH 2, with urea as the denaturant, the domains show independent equilibrium unfolding transitions, suggesting different intrinsic stabilities. Denaturation experiments using recombinant one- or two-domain proteins showed that the N-terminal domain on its own exhibits unaltered intrinsic stability but contributes significantly to the stability of its C-terminal partner. It has been suggested that docking of the domains is determined by a hydrophobic interface that includes phenylalanine at position 56 of the N-terminal domain. In order to test this hypothesis, F56 was substituted by site-directed mutagenesis in both complete gamma B-crystallin and its isolated N-terminal domain. All mutations destabilize the N-terminal domain to about the same extent but affect the C-terminal domain in a different way. Replacement by the small alanine side chain or the charged aspartic acid residue results in a significant destabilization of the C-terminal domain, whereas the more bulky tryptophan residue causes only a moderate decrease in stability. In the mutants F56A and F56D, equilibrium unfolding transitions obtained by circular dichroism and intrinsic fluorescence differ, suggesting a more complex denaturation behavior than the one observed for gamma B wild type. These results confirm how mutations in one crystallin domain can affect the stability of another when they occur at the interface. The results strongly suggest that size, hydrophobicity, and optimal packing of amino acids involved in these interactions are critical for the stability of gamma B-crystallin.  相似文献   

10.
Human eye lens transparency requires life long stability and solubility of the crystallin proteins. Aged crystallins have high levels of covalent damage, including glutamine deamidation. Human gammaD-crystallin (HgammaD-Crys) is a two-domain beta-sheet protein of the lens nucleus. The two domains interact through interdomain side chain contacts, including Gln-54 and Gln-143, which are critical for stability and folding of the N-terminal domain of HgammaD-Crys. To test the effects of interface deamidation on stability and folding, single and double glutamine to glutamate substitutions were constructed. Equilibrium unfolding/refolding experiments of the proteins were performed in guanidine hydrochloride at pH 7.0, 37 degrees C, or urea at pH 3.0, 20 degrees C. Compared with wild type, the deamidation mutants were destabilized at pH 7.0. The proteins populated a partially unfolded intermediate that likely had a structured C-terminal domain and unstructured N-terminal domain. However, at pH 3.0, equilibrium unfolding transitions of wild type and the deamidation mutants were indistinguishable. In contrast, the double alanine mutant Q54A/Q143A was destabilized at both pH 7.0 and 3.0. Thermal stabilities of the deamidation mutants were also reduced at pH 7.0. Similarly, the deamidation mutants lowered the kinetic barrier to unfolding of the N-terminal domain. These data indicate that interface deamidation decreases the thermodynamic stability of HgammaD-Crys and lowers the kinetic barrier to unfolding due to introduction of a negative charge into the domain interface. Such effects may be significant for cataract formation by inducing protein aggregation or insolubility.  相似文献   

11.
Human gammaD crystallin (HgammaD-Crys), a major protein of the human eye lens, is a primary component of cataracts. This 174-residue primarily beta-sheet protein is made up of four Greek keys separated into two domains. Mutations in the human gene sequence encoding HgammaD-Crys are implicated in early-onset cataracts in children, and the mutant protein expressed in Escherichia coli exhibits properties that reflect the in vivo pathology. We have characterized the unfolding, refolding, and competing aggregation of human wild-type HgammaD-Crys as a function of guanidinium hydrochloride (GuHCl) concentration at neutral pH and 37 degrees C, using intrinsic tryptophan fluorescence to monitor in vitro folding. Wild-type HgammaD-Crys exhibited reversible refolding above 1.0 M GuHCl. The GuHCl unfolded protein was more fluorescent than its native counterpart despite the absence of metal or ion-tryptophan interactions. Aggregation of refolding intermediates of HgammaD-Crys was observed in both equilibrium and kinetic refolding processes. The aggregation pathway competed with productive refolding at denaturant concentrations below 1.0 M GuHCl, beyond the major conformational transition region. Atomic force microscopy of samples under aggregating conditions revealed the sequential appearance of small nuclei, thin protofibrils, and fiber bundles. The HgammaD-Crys fibrous aggregate species bound bisANS appreciably, indicating the presence of exposed hydrophobic pockets. The mechanism of HgammaD-Crys aggregation may provide clues to understanding age-onset cataract formation in vivo.  相似文献   

12.
The superfamily of eye lens betagamma-crystallins is highly modularized, with Greek key motifs being used to form symmetric domains. Sequences of monomeric gamma-crystallins and oligomeric beta-crystallins fold into two domains that pair about a further conserved symmetric interface. Conservation of this assembly interface by domain swapping is the device adopted by family member betaB2-crystallin to form a solution dimer. However, the betaB1-crystallin solution dimer is formed from an interface used by the domain-swapped dimer to form a tetramer in the crystal lattice. Comparison of these two structures indicated an intriguing relationship between linker conformation, interface ion pair networks, and higher assembly. Here the X-ray structure of recombinant human betaB2-crystallin showed that domain swapping was determined by the sequence and not assembly conditions. The solution characteristics of mutants that were designed to alter an ion pair network at a higher assembly interface and a mutant that changed a proline showed they remained dimeric. X-ray crystallography showed that the dimeric mutants did not reverse domain swapping. Thus, the sequence of betaB2-crystallin appears well optimized for domain swapping. However, a charge-reversal mutation to the conserved domain-pairing interface showed drastic changes to solution behavior. It appears that the higher assembly of the betagamma-crystallin domains has exploited symmetry to create diversity while avoiding aggregation. These are desirable attributes for proteins that have to exist at very high concentration for a very long time.  相似文献   

13.
beta B2- and gamma B-crystallins of vertebrate eye lens are 2-domain proteins in which each domain consists of 2 Greek key motifs connected by a linker peptide. Although the folding topologies of beta B2- and gamma B-domains are very similar, gamma B-crystallin is always monomeric, whereas beta B2-crystallin associates to homodimers. It has been suggested that the linker or the protruding N- and C-terminal arms of beta B2-crystallin (not present in gamma B) are a necessary requirement for this association. In order to investigate the role of these segments for dimerization, we constructed two beta B2 mutants. In the first mutant, the linker peptide was replaced with the one from gamma B (beta B2 gamma L). In the second mutant, the N- and C-terminal arms of 15- and 12-residues length were deleted (beta B2 delta NC). The beta B2 gamma L mutant is monomeric, whereas the beta B2 delta NC mutant forms dimers and tetramers that cannot be interconverted without denaturation. The spectral properties of the beta B2 mutants, as well as their stabilities against denaturants, resemble those of wild-type beta B2-crystallin, thus indicating that the overall peptide fold of the subunits is not changed significantly. We conclude that the peptide linker in beta B2-crystallin is necessary for dimerization, whereas the N- and C-terminal arms appear to be involved in preventing the formation of higher homo-oligomers.  相似文献   

14.
The betagamma-crystallin superfamily consists of a class of homologous two-domain proteins with Greek-key fold. Protein S, a Ca(2+)-binding spore-coat protein from the soil bacterium Myxococcus xanthus exhibits a high degree of sequential and structural homology with gammaB-crystallin from the vertebrate eye lens. In contrast to gammaB-crystallin, which undergoes irreversible aggregation upon thermal unfolding, protein S folds reversibly and may therefore serve as a model in the investigation of the thermodynamic stability of the eye-lens crystallins. The thermal denaturation of recombinant protein S (PS) and its isolated domains was studied by differential scanning calorimetry in the absence and in the presence of Ca(2+) at varying pH. Ca(2+)-binding leads to a stabilization of PS and its domains and increases the cooperativity of their equilibrium unfolding transitions. The isolated N-terminal and C-terminal domains (NPS and CPS) obey the two-state model, independent of the pH and Ca(2+)-binding; in the case of PS, under all conditions, an equilibrium intermediate is populated. The first transition of PS may be assigned to the denaturation of the C-terminal domain and the loss of domain interactions, whereas the second one coincides with the denaturation of the isolated N-terminal domain. At pH 7.0, in the presence of Ca(2+), where PS exhibits maximal stability, the domain interactions at 20 degrees C contribute 20 kJ/mol to the overall stability of the intact protein.  相似文献   

15.
Folding intermediates have been detected and characterized for many proteins. However, their structures at atomic resolution have only been determined for two small single domain proteins: Rd-apocytochrome b(562) and engrailed homeo domain. T4 lysozyme has two easily distinguishable but energetically coupled domains: the N and C-terminal domains. An early native-state hydrogen exchange experiment identified an intermediate with the C-terminal domain folded and the N-terminal domain unfolded. We have used a native-state hydrogen exchange-directed protein engineering approach to populate this intermediate and demonstrated that it is on the folding pathway and exists after the rate-limiting step. Here, we determined its high-resolution structure and the backbone dynamics by multi-dimensional NMR methods. We also characterized the folding behavior of the intermediate using stopped-flow fluorescence, protein engineering, and native-state hydrogen exchange. Unlike the folding intermediates of the two single-domain proteins, which have many non-native side-chain interactions, the structure of the hidden folding intermediate of T4 lysozyme is largely native-like. It folds like many small single domain proteins. These results have implications for understanding the folding mechanism and evolution of multi-domain proteins.  相似文献   

16.
In our earlier communication on urea denaturation of bovine serum albumin (BSA), we showed significant unfolding of domain III along with domain I prior to intermediate formation around 4.6-5.2 M urea based on the binding results of domain specific ligands:chloroform, bilirubin and diazepam for domains I, II and III, respectively. Here, we present our results on the salt-induced refolding of the two partially folded states of BSA obtained at 4.5 M urea and at pH 3.5, respectively. Both these states were characterized by significant unfolding of both domains I and III as indicated by decreased binding of chloroform and diazepam, respectively. Salt-induced stabilization of partially folded states of BSA was accompanied by nearly complete refolding of both domains I and III as the binding isotherms of chloroform and diazepam obtained in presence of approximately 1.0 M KCl were nearly identical to that obtained with native BSA at pH 7.4. From these observations, it can be concluded that the anion binding sites on serum albumin are not only confined to domain III (C-terminal region) but few sites are also present on domain I (or N-terminal region) of the protein.  相似文献   

17.
The betagamma-crystallins form a superfamily of eye lens proteins comprised of multiple Greek motifs that are symmetrically organized into domains and higher assemblies. In the betaB2-crystallin dimer each polypeptide folds into two similar domains that are related to monomeric gamma-crystallin by domain swapping. The crystal structure of the circularly permuted two-domain betaB2 polypeptide shows that permutation converts intermolecular domain pairing into intramolecular pairing. However, the dimeric permuted protein is, in fact, half a native tetramer. This result shows how the sequential order of domains in multi-domain proteins can affect quaternary domain assembly.  相似文献   

18.
The effect of glycosylation on AFP foldability was investigated by parallel quantitative and qualitative analyses of the refolding of glycosylated and nonglycosylated AFP variants. Both variants were successfully refolded by dialysis from the denatured-reduced state, attaining comparable "refolded peak" profiles and refolding yields as determined by reversed-phase HPLC analysis. Both refolded variants also showed comparable spectroscopic fingerprints to each other and to their native counterparts, as determined by circular dichroism spectroscopy. Inclusion body-derived AFP was also readily refolded via dilution under the same redox conditions as dialysis refolding, showing comparable circular dichroism fingerprints as native nonglycosylated AFP. Quantitative analyses of inclusion body-derived AFP showed sensitivity of AFP aggregation to proteinaceous and nonproteinaceous inclusion body contaminants, where refolding yields increased with increasing AFP purity. All of the refolded AFP variants showed positive responses in ELISA that corresponded with the attainment of a bioactive conformation. Contrary to previous reports that the denaturation of cord serum AFP is an irreversible process, these results clearly show the reversibility of AFP denaturation when refolded under a redox-controlled environment, which promotes correct oxidative disulfide shuffling. The successful refolding of inclusion body-derived AFP suggests that fatty acid binding may not be required for the attainment of a rigid AFP tertiary structure, contrary to earlier studies. The overall results from this work demonstrate that foldability of the AFP molecule from its denatured-reduced state is independent of its starting source, the presence or absence of glycosylation and fatty acids, and the refolding method used (dialysis or dilution).  相似文献   

19.
An N-terminally truncated and cooperatively folded version (residues 6-39) of the human Pin1 WW domain (hPin1 WW hereafter) has served as an excellent model system for understanding triple-stranded beta-sheet folding energetics. Here we report that the negatively charged N-terminal sequence (Met1-Ala-Asp-Glu-Glu5) previously deleted, and which is not conserved in highly homologous WW domain family members from yeast or certain fungi, significantly increases the stability of hPin1 WW (approximately 4 kJ mol(-1) at 65 degrees C), in the context of the 1-39 sequence based on equilibrium measurements. N-terminal truncations and mutations in conjunction with a double mutant cycle analysis and a recently published high-resolution X-ray structure of the hPin1 cis/trans-isomerase suggest that the increase in stability is due to an energetically favorable ionic interaction between the negatively charged side chains in the N terminus of full-length hPin1 WW and the positively charged epsilon-ammonium group of residue Lys13 in beta-strand 1. Our data therefore suggest that the ionic interaction between Lys13 and the charged N terminus is the optimal solution for enhanced stability without compromising function, as ascertained by ligand binding studies. Kinetic laser temperature-jump relaxation studies reveal that this stabilizing interaction has not formed to a significant extent in the folding transition state at near physiological temperature, suggesting a differential contribution of the negatively charged N-terminal sequence to protein stability and folding rate. As neither the N-terminal sequence nor Lys13 are highly conserved among WW domains, our data further suggest that caution must be exercised when selecting domain boundaries for WW domains for structural, functional, or thermodynamic studies.  相似文献   

20.
We have recently reported on the design of a 20-residue peptide able to form a significant population of a three-stranded up-and-down antiparallel beta-sheet in aqueous solution. To improve our beta-sheet model in terms of the folded population, we have modified the sequences of the two 2-residue turns by introducing the segment DPro-Gly, a sequence shown to lead to more rigid type II' beta-turns. The analysis of several NMR parameters, NOE data, as well as Deltadelta(CalphaH), DeltadeltaC(beta), and Deltadelta(Cbeta) values, demonstrates that the new peptide forms a beta-sheet structure in aqueous solution more stable than the original one, whereas the substitution of the DPro residues by LPro leads to a random coil peptide. This agrees with previous results on beta-hairpin-forming peptides showing the essential role of the turn sequence for beta-hairpin folding. The well-defined beta-sheet motif calculated for the new designed peptide (pair-wise RMSD for backbone atoms is 0.5 +/- 0.1 A) displays a high degree of twist. This twist likely contributes to stability, as a more hydrophobic surface is buried in the twisted beta-sheet than in a flatter one. The twist observed in the up-and-down antiparallel beta-sheet motifs of most proteins is less pronounced than in our designed peptide, except for the WW domains. The additional hydrophobic surface burial provided by beta-sheet twisting relative to a "flat" beta-sheet is probably more important for structure stability in peptides and small proteins like the WW domains than in larger proteins for which there exists a significant contribution to stability arising from their extensive hydrophobic cores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号