首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
Leaves of flowering plants are diverse in shape. Part of this morphological diversity can be attributed to differences in spatiotemporal regulation of polarity in the upper (adaxial) and lower (abaxial) sides of developing leaves. In a leaf primordium, antagonistic interactions between polarity determinants specify the adaxial and abaxial domains in a mutually exclusive manner. The patterning of those domains is critical for leaf morphogenesis. In this review, we first summarize the gene networks regulating adaxial–abaxial polarity in conventional bifacial leaves and then discuss how patterning is modified in different leaf type categories. genesis 52:1–18, 2014. © 2013 The Authors. Genesis Published byWiley Periodicals, Inc.  相似文献   

2.
3.
Leaf characteristics reflecting the size, lifespan (longevity), moisture content (degree of succulence) and complexity of structure of 20 mangrove species were studied over several years at 13 locations along the tropical and subtropical Australian coast. These characteristics were found to fall generally within the ranges of those for woody species from other ecosystems. With the exception of one species, it was found that leaf longevity was related inversely to leaf moisture content, increasing from nearly 6 months in more succulent species to over 2 years in less succulent species. This suggested that more succulent leaves are less complex in their structure because they have less well‐developed ability to compartmentalize salt. There was a tendency also for leaf longevity to increase in species with larger leaves. These findings were consistent with the general view for land plants that leaf longevity is greater in species that have developed tolerance to environmental stress, salt particularly in the case of mangroves. Leaf tissue in such species is more robust or complex and requires greater metabolic resources in its construction; the plant is then advantaged by retaining the tissue for longer periods. Classification of the species considered here, based on their leaf longevity, moisture content and complexity, identified phylogenetically related species groupings that reflected these leaf longevity effects.  相似文献   

4.
5.
Evolution of leaf developmental mechanisms   总被引:1,自引:0,他引:1  
Leaves are determinate organs produced by the shoot apical meristem. Land plants demonstrate a large range of variation in leaf form. Here we discuss evolution of leaf form in the context of our current understanding of leaf development, as this has emerged from molecular genetic studies in model organisms. We also discuss specific examples where parallel studies of development in different species have helped understanding how diversification of leaf form may occur in nature.  相似文献   

6.
7.
ABSTRACT

A previous study of 19 south-east Australian heath and forest species with a range of leaf textures showed that they varied considerably in leaf biomechanical properties. By using an index of sclerophylly derived from botanists' rankings (botanists' sclerophylly index, BSI) we determined that leaves considered by botanists to be sclerophyllous generally had both high strength and work to fracture (particularly in punching and tearing tests), both at the level of leaf and per unit leaf thickness. In the current study we have shown that leaves from the same species also varied considerably in leaf specific mass (46–251 g m-2), neutral detergent fibre concentration (20–59% on a dry weight basis) and in leaf anatomy. Multiple regression indicated a very strong correlation between BSI and the first two components of a principal components analysis (PCA) of leaf anatomy (R 2 = 0.91). In addition, there was strong correlation between the first component of a PCA of the mechanical properties (correlated with BSI) and the two axes derived from anatomical characteristics (R 2 = 0.66). The anatomical properties contributing most to the significant component axes were thickness of palisade mesophyll and upper cuticle (axis 1) and percentage fibre (neutral detergent fibre) and lower epidermis thickness (axis 2). However, whether these relationships are causal, or reflect correlations with characteristics not measured in this study, such as vascularization and sclerification, is not clear. At a finer scale, however, there is evidence that there are various ways to be sclerophyllous, both in terms of anatomical and mechanical properties. This is illustrated by comparison of two of the sclerophyllous species, Eucalyptus baxteri and Banksia marginata.  相似文献   

8.
Abstract. Continuous high resolution measurement of sugar beet leaf extension over 5 d in growth chambers showed average leaf extension rates (LER) in darkness to be from three to six times those in light for plants growing in non-salinized media. The changes in LER in light-dark transitions occurred within seconds, a response which was more rapid than stomatal opening or closing. When the growth medium was salinized to 100 mol m−3 NaCl, LER's were reduced by about 50% in darkness and 90% in light, markedly increasing the ratio of dark to light LER.
A 2-d episode of root-zone salinity imposed midway through a 5-d period of measurement decreased LER and produced higher leaf temperatures. LER and diurnal leaf temperature patterns reverted to their pre-salinized levels when root-zone salinity was removed. Thus, the effects of short episodes of high sodium chloride in the growth medium appear to be reversible, suggesting a water stress mechanism of growth reduction rather than toxicity effects of salt.  相似文献   

9.
The objective of this paper was to assess the congruency of leaf traits and soil characteristics and to analyze the survival strategies of different plant functional types in response to drought and nutrient-poor environ-ments in the southeastern Ke'erqin Sandy Lands in China. Six leaf traits-leaf thickness (TH), density (DN), specific leaf area (SLA), leaf dry weight to fresh weight ratio (DW/ FW), leaf N concentration (Nmass), and N resorption efficiency (NREmass)-of 42 plant species were investi-gated at four sites. The correlations between leaf traits and soil characteristics-organic C (OC), total N (TN), total P (TP), and soil moisture (SM)-were examined. We found that the six leaf traits across all the 42 species showed large variations and that DW/FW was negatively correlated with OC, TN, TP, and SM (P<0.05), while other leaf traits showed no significant correlations with soil characteristics. To find the dissimilarity to accommodate environment, a hierarchical agglomerative clustering analysis was made of all the species. All the species clustered into three groups except the Scutellaria baicalensis. Species of group Ⅲ might be most tolerant of an arid environment, and species of group Ⅱ might avoid nutrient stress in the nutrient-poor environment, while group Ⅰ was somewhat intermediate. Therefore, species from the different groups may be selected for use in vegetation restoration of different sites based on soil moisture and nutrient conditions.  相似文献   

10.
吴一苓  李芳兰  胡慧 《植物学报》2022,57(3):388-398
叶脉由贯穿于叶肉内部的维管组织及其外围机械组织构成, 多样化的脉序及网络结构使叶脉系统发生变异和功能分化。该文综述了叶脉系统结构与功能的最新研究进展。通过聚焦叶脉分级系统的结构与功能及其在叶片经济谱(LES)中的重要性, 解释叶脉性状与其它叶片功能性状之间的关系及机制。不同等级叶脉在机械支撑与水分运输方面存在功能分化, 其中1-3级粗脉在维持叶片形状和叶表面积以及物理支撑方面发挥重要作用, 有利于维持叶片最大受光面积; 4级及以上细脉具有水分调节功能, 它们与气孔相互协调, 影响叶片水分运输、蒸腾散热和光合作用速率。叶片生长过程与叶脉发育的动态变化模式决定叶脉密度, 并影响叶脉密度与叶片大小之间的关系: 叶面积与粗脉密度呈显著负相关, 与粗脉直径呈显著正相关, 而与细脉密度无关。与叶脉性状相关的叶片经济谱框架模型预测, 叶脉密度较高的叶片寿命短、比叶重较小, 叶片最大碳同化速率、代谢速率以及资源获取策略潜力较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号