首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mycobacterium tuberculosis (Mtb) has complex and dynamic interactions with the human host, and subpopulations of Mtb that emerge during infection can influence disease outcomes. This study implicates zinc ion (Zn2+) availability as a likely driver of bacterial phenotypic heterogeneity in vivo. Zn2+ sequestration is part of “nutritional immunity”, where the immune system limits micronutrients to control pathogen growth, but this defense mechanism seems to be ineffective in controlling Mtb infection. Nonetheless, Zn2+-limitation is an environmental cue sensed by Mtb, as calprotectin triggers the zinc uptake regulator (Zur) regulon response in vitro and co-localizes with Zn2+-limited Mtb in vivo. Prolonged Zn2+ limitation leads to numerous physiological changes in vitro, including differential expression of certain antigens, alterations in lipid metabolism and distinct cell surface morphology. Furthermore, Mtb enduring limited Zn2+ employ defensive measures to fight oxidative stress, by increasing expression of proteins involved in DNA repair and antioxidant activity, including well described virulence factors KatG and AhpC, along with altered utilization of redox cofactors. Here, we propose a model in which prolonged Zn2+ limitation defines a population of Mtb with anticipatory adaptations against impending immune attack, based on the evidence that Zn2+-limited Mtb are more resistant to oxidative stress and exhibit increased survival and induce more severe pulmonary granulomas in mice. Considering that extracellular Mtb may transit through the Zn2+-limited caseum before infecting naïve immune cells or upon host-to-host transmission, the resulting phenotypic heterogeneity driven by varied Zn2+ availability likely plays a key role during early interactions with host cells.  相似文献   

2.
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), infects one third of the world''s population. Among these infections, clinical isolates belonging to the W-Beijing appear to be emerging, representing about 50% of Mtb isolates in East Asia, and about 13% of all Mtb isolates worldwide. In animal models, infection with W-Beijing strain, Mtb HN878, is considered “hypervirulent” as it results in increased mortality and causes exacerbated immunopathology in infected animals. We had previously shown the Interleukin (IL) -17 pathway is dispensable for primary immunity against infection with the lab adapted Mtb H37Rv strain. However, it is not known whether IL-17 has any role to play in protective immunity against infection with clinical Mtb isolates. We report here that lab adapted Mtb strains, such as H37Rv, or less virulent Mtb clinical isolates, such as Mtb CDC1551, do not require IL-17 for protective immunity against infection while infection with Mtb HN878 requires IL-17 for early protective immunity. Unexpectedly, Mtb HN878 induces robust production of IL-1β through a TLR-2-dependent mechanism, which supports potent IL-17 responses. We also show that the role for IL-17 in mediating protective immunity against Mtb HN878 is through IL-17 Receptor signaling in non-hematopoietic cells, mediating the induction of the chemokine, CXCL-13, which is required for localization of T cells within lung lymphoid follicles. Correct T cell localization within lymphoid follicles in the lung is required for maximal macrophage activation and Mtb control. Since IL-17 has a critical role in vaccine-induced immunity against TB, our results have far reaching implications for the design of vaccines and therapies to prevent and treat emerging Mtb strains. In addition, our data changes the existing paradigm that IL-17 is dispensable for primary immunity against Mtb infection, and instead suggests a differential role for IL-17 in early protective immunity against emerging Mtb strains.  相似文献   

3.
Mycobacterium tuberculosis is a fascinating object of study: it is one of the deadliest pathogens of humankind, able to fend off persistent attacks by the immune system or drugs Subject Categories: Immunology, Microbiology, Virology & Host Pathogen Interaction, Chemical Biology

I have always been interested in infectious diseases since I began to study biology. As a graduate student, my pathogen of choice was Salmonella typhimurium, which typically causes diarrhea that can potentially lead to death. Salmonella''s rapid doubling time, and the availability of elegant genetic tools, a wealth of reagents, and a robust animal infection model put this bug at the apex of ideal host–pathogen systems to study. After I finished my PhD studies—and for reasons to be told another day—my career took an unexpected detour into an area of research I never thought I would be interested in: I went from the sublime to the ridiculous, from Salmonella to Mycobacterium tuberculosis (Mtb), an excruciatingly slow‐growing bacillus with few genetic tools, a paucity of reagents, and an animal model in which an experiment can take a year or longer. Having said all of that, I love working on this pathogen.For those of you who do not know much about Mtb, it is the world''s deadliest bacterium that causes the disease tuberculosis (TB). As Mtb is spread in aerosol droplets coughed up by infected individuals, TB is highly contagious, and about one‐third of the world''s population may be infected with Mtb, although this number has been reasonably challenged (Behr et al, 2021). Even if the numbers of latent or asymptomatic infections are debated, there are some back‐of‐the‐envelope estimates that Mtb has killed more than a billion humans over the millennia. Although TB is often treatable with antibiotics and most Mtb‐infected healthy individuals are asymptomatic, the appearance of multi‐drug‐resistant Mtb and HIV/AIDS has further increased the number of deaths caused by this pathogen.How has Mtb become such a successful pathogen? For one, we lack an effective vaccine to prevent infection. Many readers may point out that they have themselves been given a TB vaccine; known as “BCG” for bacille Calmette–Guérin, this is a laboratory‐attenuated strain of a species related to Mtb called Mycobacterium bovis. While BCG does provide some protection for children against TB, BCG is essentially ineffective against pulmonary TB in adults. For this reason, it is not used in the USA and many other countries.Another major challenge to treating TB has been a lack of antimicrobials that can access Mtb bacilli in privileged sites known as granulomas, which are cell‐fortified structures our immune system builds to contain microbial growth. In addition to the granuloma walls, Mtb has a highly complex cell envelope that protects it from many small molecules. I imagine that antimicrobial molecules have the challenging task of reaching an enemy shielded in armor, hiding deep inside a castle keep, and surrounded by a vast moat, and an army of orcs.On top of these therapeutic barriers, most antimicrobials work on metabolically active or growing bacteria. Mtb, however, grows very slowly, with a doubling time under optimal laboratory conditions of about 20 h—compared with 20 min for Salmonella. Moreover, Mtb is believed to enter a “persistent” or “latent” state in its natural host with limited cell divisions. This extremely slow growth makes treatment a long and tedious prospect: 6–12 months of antibiotic treatment are generally required, during which time one cannot drink alcohol due to the potential liver toxicity of the drugs. Believe it or not, there are people who would rather refuse TB treatment than give up alcohol for a few months. Additionally, the perception of “feeling cured” after a few weeks of TB therapy can also lead to a lapse in compliance. The consequence of failing to clear a partially treated infection is the emergence of drug resistance, which has created strains that are extensively resistant to most frontline TB drugs.When thinking about the difficulty of curing Mtb infections, I am reminded of the fierce and fearless honey badger, which came to fame through a viral YouTube video. The narrator points out how honey badgers “don''t care” about battling vicious predators in order to get food: venomous snakes, stinging bees—you name it. I once saw a photo of a honey badger that looked more like a pin cushion, harpooned with numerous porcupine quills. This battle royale of the wilderness is a perfect analogy of Mtb versus the immune system: Like the honey badger, Mtb really don''t care.Vaccines primarily work by coaxing our immune system to make antibodies that neutralize foreign invaders, most typically viruses, but also bacteria, some of which have evolved mechanisms to evade detection by antibodies or otherwise render them useless. In most cases, phagocytes then gobble up and kill invading bacteria. While phagocytes are critical in controlling Mtb infections, it is unclear which of their molecules or “effectors” act as executioners of Mtb. For example, nitric oxide and copper play roles in controlling Mtb in a mouse model, but it is unknown how these molecules exert their host‐protective activity, and whether or not they play a similar role in humans. Furthermore, despite the production of these antibacterial effectors—the “porcupine quills”—Mtb often persists due to intrinsic resistance mechanisms. Thus, while our immune system may have the tools to keep Mtb under control, it falls short of eradicating it from our bodies and, in many cases, fails to prevent the progression of the disease. Perhaps a most worrying observation is that prior infection, which is generally considered the most effective path to immunity for many infectious diseases, does not consistently protect against reinfection with Mtb.The above facts have left the TB field scrambling to identify new ways to fight this disease. Much of this work requires that researchers understand both the fundamental processes of the bacterium and its host. Studies of human populations around the globe have revealed differences in susceptibility to infection, the genetic and immunological bases of which are being investigated (Bellamy et al, 2000; Berry et al, 2010; Möller et al, 2010). These studies have made researchers increasingly aware that how the immune system responds to Mtb may play a critical role in disease control. For example, understanding why some individuals or populations are more or less susceptible to TB may help in the development of better vaccines. Also, the more we understand what makes this pathogen so resilient to the immune system could facilitate the development of new antibacterial drugs or host‐directed therapies. These questions can only be answered once we fully understand how the host combats Mtb infections, and how the bacteria counteract these host defenses. While it is a daunting endeavor, my hope is that the efforts of many laboratories around the world will get a better understanding of the host–Mtb interface and ultimately help to eradicate this disease for good.  相似文献   

4.
Pasteurellaceae are among the most prevalent bacterial pathogens isolated from mice housed in experimental animal facilities. Reliable detection and differentiation of Pasteurellaceae are essential for high-quality health monitoring. In this study, we combined a real-time PCR assay amplifying a variable region in the 16S rRNA sequence with high-resolution melting curve analysis (HRM) to identify and differentiate among the commonly isolated species Pasteurella pneumotropica biotypes “Jawetz” and “Heyl”, Actinobacillus muris, and Haemophilus influenzaemurium. We used a set of six reference strains for assay development, with the melting profiles of these strains clearly distinguishable due to DNA sequence variations in the amplicon. For evaluation, we used real-time PCR/HRM to test 25 unknown Pasteurellaceae isolates obtained from an external diagnostic laboratory and found the results to be consistent with those of partial 16S rRNA sequencing. The real-time PCR/HRM method provides a sensitive, rapid, and closed-tube approach for Pasteurellaceae species identification for health monitoring of laboratory mice.  相似文献   

5.
6.
Prokaryotic ubiquitin-like protein (Pup) in Mycobacterium tuberculosis (Mtb) is the first known post-translational small protein modifier in prokaryotes, and targets several proteins for degradation by a bacterial proteasome in a manner akin to ubiquitin (Ub) mediated proteolysis in eukaryotes. To determine the extent of pupylation in Mtb, we used tandem affinity purification to identify its “pupylome”. Mass spectrometry identified 55 out of 604 purified proteins with confirmed pupylation sites. Forty-four proteins, including those with and without identified pupylation sites, were tested as substrates of proteolysis in Mtb. Under steady state conditions, the majority of the test proteins did not accumulate in degradation mutants, suggesting not all targets of pupylation are necessarily substrates of the proteasome under steady state conditions. Four proteins implicated in Mtb pathogenesis, Icl (isocitrate lyase), Ino1 (inositol-1-phosphate synthase), MtrA (Mtb response regulator A) and PhoP (phosphate response regulator P), showed altered levels in degradation defective Mtb. Icl, Ino1 and MtrA accumulated in Mtb degradation mutants, suggesting these proteins are targeted to the proteasome. Unexpectedly, PhoP was present in wild type Mtb but undetectable in the degradation mutants. Taken together, these data demonstrate that pupylation regulates numerous proteins in Mtb and may not always lead to degradation.  相似文献   

7.
Mycobacterial tuberculosis (Mtb) is able to preserve its intrabacterial pH (pHIB) near neutrality in the acidic phagosomes of immunologically activated macrophages and to cause lethal pathology in immunocompetent mice. In contrast, when its ability to maintain pHIB homeostasis is genetically compromised, Mtb dies in acidic phagosomes and is attenuated in the mouse. Compounds that phenocopy the genetic disruption of Mtb’s pHIB homeostasis could serve as starting points for drug development in their own right or through identification of their targets. A previously reported screen of a natural product library identified a phloroglucinol, agrimophol, that lowered Mtb’s pHIB and killed Mtb at an acidic extrabacterial pH. Inability to identify agrimophol-resistant mutants of Mtb suggested that the compound may have more than one target. Given that polyphenolic compounds may undergo covalent reactions, we attempted an affinity-based method for target identification. The structure-activity relationship of synthetically tractable polyhydroxy diphenylmethane analogs with equivalent bioactivity informed the design of a bioactive agrimophol alkyne. After click-chemistry reaction with azido-biotin and capture on streptavidin, the biotinylated agrimophol analog pulled down the Mtb protein Rv3852, a predicted membrane protein that binds DNA in vitro. A ligand-protein interaction between agrimophol and recombinant Rv3852 was confirmed by isothermal calorimetry (ITC) and led to disruption of Rv3852’s DNA binding function. However, genetic deletion of rv3852 in Mtb did not phenocopy the effect of agrimophol on Mtb, perhaps because of redundancy of its function.  相似文献   

8.

Background

Tumor DNA has been shown to be present both in circulating tumor cells in blood and as fragments in the plasma of metastatic cancer patients. The identification of ultra-rare tumor-specific mutations in blood would be the ultimate marker to measure efficacy of cancer therapy and/ or early recurrence. Herein we present a method for detecting microinsertions/deletions/indels (MIDIs) at ultra-high analytical selectivity. MIDIs comprise about 15% of mutations.

Methods and Findings

We describe MIDI-Activated Pyrophosphorolysis (MAP), a method of ultra-high analytical selectivity for detecting MIDIs. The high analytical selectivity of MAP is putatively due to serial coupling of two rare events: heteroduplex slippage and mis-pyrophosphorolysis. MAP generally has an analytical selectivity of one mutant molecule per >1 billion wild type molecules and an analytical sensitivity of one mutant molecule per reaction. The analytical selectivity of MAP is about 100,000-fold better than that of our previously described method of Pyrophosphorolysis Activated Polymerization-Allele specific amplification (PAP-A) for detecting MIDIs. The utility of this method is illustrated in two ways. 1) We demonstrate that two EGFR deletions commonly found in lung cancers are not present in tissue from four normal human lungs (107 copies of gDNA each) or in blood samples from 10 healthy individuals (107 copies of gDNA each). This is inconsistent, at least at an analytical sensitivity of 10−7, with the hypotheses of (a) hypermutation or (b) strong selection of these growth factor-mutated cells during normal lung development leads to accumulation of pre-neoplastic cells with these EGFR mutations, which sometimes can lead to lung cancer in late adulthood. Moreover, MAP was used for large scale, high throughput “gene pool” analysis. No germline or early embryonic somatic mosaic mutation was detected (at a frequency of >0.3%) for the 15/18 bp EGFR deletion mutations in 6,400 individuals, suggesting that early embryonic EGFR somatic mutation is very rare, inconsistent with hypermutation or strong selection of these deletions in the embryo. 2) The second illustration of MAP utility is in personalized monitoring of therapy and early recurrence in cancer. Tumor-specific p53 mutations identified at diagnosis in the plasma of six patients with stage II and III breast cancer were undetectable after therapy in four women, consistent with clinical remission, and continued to be detected after treatment in two others, reflecting tumor progression.

Conclusions

MAP has an analytical selectivity of one part per billion for detection of MIDIs and an analytical sensitivity of one molecule. MAP provides a general tool for monitoring ultra-rare mutations in tissues and blood. As an example, we show that the personalized cancer signature in six out of six patients with non-metastatic breast cancer can be detected and that levels over time are correlated with the clinical course of disease.  相似文献   

9.

Background

Like other tropical African countries, Gabon is afflicted by many parasitic diseases, including filariases such as loiasis and mansonellosis. This study aimed to assess the prevalence of these two filarial diseases in febrile and afebrile children using quantitative real-time PCR and standard PCR assays coupled with sequencing.

Methodology/Principal Findings

DNA from blood specimens of 1,418 Gabonese children (1,258 febrile and 160 afebrile) were analyzed. Overall, filarial DNA was detected in 95 (6.7%) children, including 67 positive for M. perstans (4.7%), which was the most common. M. perstans was detected in 61/1,258 febrile children (4.8%) and 6/160 afebrile children (3.8%, P = 0.6). Its prevalence increased statistically with age: 3.5%, 7.7% and 10.6% in children aged ≤5, 6–10 and 11–15 years, respectively. M. perstans prevalence was significantly higher in Koulamoutou and Lastourville (12% and 10.5%, respectively) than in Franceville and Fougamou (2.6% and 2.4%, respectively). Loa loa was detected in seven febrile children including one co-infection with M. perstans. Finally, 21 filarial DNA positive were negative for M. perstans and Loa loa, but ITS sequencing could be performed for 12 and allowed the identification of a potential new species of Mansonella provisionally called “DEUX”. Mansonella sp. “DEUX” was detected only in febrile children.

Conclusions/Significance

Further study should be performed to characterize Mansonella sp. “DEUX” and evaluate the clinical significance of mansonellosis in humans.  相似文献   

10.

Background

An accurate method for detecting malaria parasites in the mosquito’s vector remains an essential component in the vector control. The Enzyme linked immunosorbent assay specific for circumsporozoite protein (ELISA-CSP) is the gold standard method for the detection of malaria parasites in the vector even if it presents some limitations. Here, we optimized multiplex real-time PCR assays to accurately detect minor populations in mixed infection with multiple Plasmodium species in the African malaria vectors Anopheles gambiae and Anopheles funestus.

Methods

Complementary TaqMan-based real-time PCR assays that detect Plasmodium species using specific primers and probes were first evaluated on artificial mixtures of different targets inserted in plasmid constructs. The assays were further validated in comparison with the ELISA-CSP on 200 field caught Anopheles gambiae and Anopheles funestus mosquitoes collected in two localities in southern Benin.

Results

The validation of the duplex real-time PCR assays on the plasmid mixtures demonstrated robust specificity and sensitivity for detecting distinct targets. Using a panel of mosquito specimen, the real-time PCR showed a relatively high sensitivity (88.6%) and specificity (98%), compared to ELISA-CSP as the referent standard. The agreement between both methods was “excellent” (κ = 0.8, P<0.05). The relative quantification of Plasmodium DNA between the two Anopheles species analyzed showed no significant difference (P = 0, 2). All infected mosquito samples contained Plasmodium falciparum DNA and mixed infections with P. malariae and/or P. ovale were observed in 18.6% and 13.6% of An. gambiae and An. funestus respectively. Plasmodium vivax was found in none of the mosquito samples analyzed.

Conclusion

This study presents an optimized method for detecting the four Plasmodium species in the African malaria vectors. The study highlights substantial discordance with traditional ELISA-CSP pointing out the utility of employing an accurate molecular diagnostic tool for detecting malaria parasites in field mosquito populations.  相似文献   

11.
Cockayne syndrome (CS) is a rare autosomal recessive disorder, the primary manifestations of which are poor growth and neurologic abnormality. Mutations of the ERCC6 and ERCC8 genes are the predominant cause of Cockayne syndrome, and the ERCC6 gene mutation is present in approximately 65% of cases. The present report describes a case of Cockayne syndrome in a Chinese family, with the patients carrying two missense mutations (c.1595A>G, p.Asp532Gly and c.1607T>G, p.Leu536Trp) in the ERCC6 gene in an apparently compound heterozygote status, especially, p.Asp532Gly has never been reported. The compound heterozygote mutation was found in three patients in the family using whole exome sequencing. The patients’ father and mother carried a heterozygous allele at different locations of the ERCC6 gene, which was confirmed by Sanger DNA sequencing. The two mutations are both located in the highly conserved motif I of ATP-binding helicase and are considered “Damaging,” “Probably Damaging,” “Disease Causing,” and “Conserved”, indicating the role of DNA damage in the pathogenetic process of the disease. The results not only enrich the ERCC6 mutations database, but also indicate that whole exome sequencing will be a powerful tool for discovering the disease causing mutations in clinical diagnosis.  相似文献   

12.
Despite the availability of therapy and vaccine, tuberculosis (TB) remains one of the most deadly and widespread bacterial infections in the world. Since several decades, the sudden burst of multi- and extensively-drug resistant strains is a serious threat for the control of tuberculosis. Therefore, it is essential to identify new targets and pathways critical for the causative agent of the tuberculosis, Mycobacterium tuberculosis (Mtb) and to search for novel chemicals that could become TB drugs. One approach is to set up methods suitable for the genetic and chemical screens of large scale libraries enabling the search of a needle in a haystack. To this end, we developed a phenotypic assay relying on the detection of fluorescently labeled Mtb within fluorescently labeled host cells using automated confocal microscopy. This in vitro assay allows an image based quantification of the colonization process of Mtb into the host and was optimized for the 384-well microplate format, which is proper for screens of siRNA-, chemical compound- or Mtb mutant-libraries. The images are then processed for multiparametric analysis, which provides read out inferring on the pathogenesis of Mtb within host cells.  相似文献   

13.
Drug resistance in Mycobacterium tuberculosis presents an enormous public health threat. It is typically defined as >1% of drug resistant colonies using the agar proportion method. Detecting small numbers of drug resistant Tb in a population, also known as heteroresistance, is challenging with current methodologies. Here we have utilized digital PCR to detect heteroresistance within M. tuberculosis populations with excellent accuracy versus the agar proportion method. We designed dual TaqMan-MGB probes to detect wild-type and mutant sequences of katG (315), rpoB (531), gyrA (94,95) and rrs (1401), genes that associate with resistance to isoniazid, rifampin, fluoroquinolone, and aminoglycoside respectively. We generated heteroresistant mixtures of susceptible and extensively drug resistant Tb, followed by DNA extraction and digital PCR. Digital PCR yielded a close approximation to agar proportion''s percentages of resistant colonies, and yielded 100% concordance with agar proportion''s susceptible/resistant results. Indeed, the digital PCR method was able to identify mutant sequence in mixtures containing as little as 1000∶1 susceptible:resistant Tb. By contrast, real-time PCR or PCR followed by Sanger sequencing were less sensitive and had little resolution to detect heteroresistance, requiring fully 1∶1 or 10∶1 susceptible:resistant ratios in order to detect resistance. Our assay can also work in sputum so long as sufficient quantities of Tb are present (>1000 cfu/ml). This work demonstrates the utility of digital PCR to detect and quantify heteroresistance in drug resistant Tb, which may be useful to inform treatment decisions faster than agar proportion.  相似文献   

14.
In the present study, we systematically investigated population differentiation of drug-related (DR) genes in order to identify common genetic features underlying population-specific responses to drugs. To do so, we used the International HapMap project release 27 Data and Pharmacogenomics Knowledge Base (PharmGKB) database. First, we compared four measures for assessing population differentiation: the chi-square test, the analysis of variance (ANOVA) F-test, Fst, and Nearest Shrunken Centroid Method (NSCM). Fst showed high sensitivity with stable specificity among varying sample sizes; thus, we selected Fst for determining population differentiation. Second, we divided DR genes from PharmGKB into two groups based on the degree of population differentiation as assessed by Fst: genes with a high level of differentiation (HD gene group) and genes with a low level of differentiation (LD gene group). Last, we conducted a gene ontology (GO) analysis and pathway analysis. Using all genes in the human genome as the background, the GO analysis and pathway analysis of the HD genes identified terms related to cell communication. “Cell communication” and “cell-cell signaling” had the lowest Benjamini-Hochberg’s q-values (0.0002 and 0.0006, respectively), and “drug binding” was highly enriched (16.51) despite its relatively high q-value (0.0142). Among the 17 genes related to cell communication identified in the HD gene group, five genes (STX4, PPARD, DCK, GRIK4, and DRD3) contained single nucleotide polymorphisms with Fst values greater than 0.5. Specifically, the Fst values for rs10871454, rs6922548, rs3775289, rs1954787, and rs167771 were 0.682, 0.620, 0.573, 0.531, and 0.510, respectively. In the analysis using DR genes as the background, the HD gene group contained six significant terms. Five were related to reproduction, and one was “Wnt signaling pathway,” which has been implicated in cancer. Our analysis suggests that the HD gene group from PharmGKB is associated with cell communication and drug binding.  相似文献   

15.

Background

Tuberculosis (TB) represents a major global health problem. The prognosis of clinically active tuberculosis depends on the complex interactions between Mycobacterium tuberculosis (Mtb) and its host. In recent years, autophagy receives particular attention for its role in host defense against intracellular pathogens, including Mtb. In present study, we aim to investigate the relationship of autophagy induction by clinical isolates of Mtb with the clinical outcomes in patients with TB.

Methodology/Principal Findings

We collected 185 clinical isolates of Mtb, and determined the effect of these Mtb isolates on autophagy induction in macrophages. It was found that most of clinical isolates of Mtb were able to induce autophagosome formation in macrophages, however, the autophagy-inducing ability varied significantly among different isolates. Of importance, our results revealed that patients infected by Mtb with poor autophagy-inducing ability displayed more severe radiographic extent of disease (p<0.001), and were more likely to have unfavorable treatment outcomes (p<0.001). No significant association was observed between the extent of Mtb-induced autophagy with some socio-demographic characteristics (such as gender, age and tobacco consumption), and some laboratory tests (such as hemoglobin, leukocyte count and erythrocyte sedimentation rate). Furthermore, results from logistic regression analysis demonstrated that the defect in autophagy induction by clinical isolates of Mtb was an independent risk factor for far-advanced radiographic disease (aOR 4.710 [1.93–11.50]) and unfavorable treatment outcomes (aOR 8.309 [2.22–28.97]) in TB.

Conclusion/Significance

These data indicated that the defect in autophagy induction by Mtb isolates increased the risk of poor clinical outcomes in TB patients, and detection of clinical isolates-induced autophagosome formation might help evaluate the TB outcomes.  相似文献   

16.

Background

HU a small, basic, histone like protein is a major component of the bacterial nucleoid. E. coli has two subunits of HU coded by hupA and hupB genes whereas Mycobacterium tuberculosis (Mtb) has only one subunit of HU coded by ORF Rv2986c (hupB gene). One noticeable feature regarding Mtb HupB, based on sequence alignment of HU orthologs from different bacteria, was that HupBMtb bears at its C-terminal end, a highly basic extension and this prompted an examination of its role in Mtb HupB function.

Methodology/Principal Findings

With this objective two clones of Mtb HupB were generated; one expressing full length HupB protein (HupBMtb) and another which expresses only the N terminal region (first 95 amino acid) of hupB (HupBMtbN). Gel retardation assays revealed that HupBMtbN is almost like E. coli HU (heat stable nucleoid protein) in terms of its DNA binding, with a binding constant (Kd) for linear dsDNA greater than 1000 nM, a value comparable to that obtained for the HUαα and HUαβ forms. However CTR (C-terminal Region) of HupBMtb imparts greater specificity in DNA binding. HupBMtb protein binds more strongly to supercoiled plasmid DNA than to linear DNA, also this binding is very stable as it provides DNase I protection even up to 5 minutes. Similar results were obtained when the abilities of both proteins to mediate protection against DNA strand cleavage by hydroxyl radicals generated by the Fenton''s reaction, were compared. It was also observed that both the proteins have DNA binding preference for A:T rich DNA which may occur at the regulatory regions of ORFs and the oriC region of Mtb.

Conclusions/Significance

These data thus point that HupBMtb may participate in chromosome organization in-vivo, it may also play a passive, possibly an architectural role.  相似文献   

17.
Three hemotropic mycoplasmas have been identified in pet cats: Mycoplasma haemofelis, “Candidatus Mycoplasma haemominutum,” and “Candidatus Mycoplasma turicensis.” The way in which these agents are transmitted is largely unknown. Thus, this study aimed to investigate fleas, ticks, and rodents as well as saliva and feces from infected cats for the presence of hemotropic mycoplasmas, to gain insight into potential transmission routes for these agents. DNA was extracted from arthropods and from rodent blood or tissue samples from Switzerland and from salivary and fecal swabs from two experimentally infected and six naturally infected cats. All samples were analyzed with real-time PCR, and some positive samples were confirmed by sequencing. Feline hemotropic mycoplasmas were detected in cat fleas and in a few Ixodes sp. and Rhipicephalus sp. ticks collected from animals but not in ticks collected from vegetation or from rodent samples, although the latter were frequently Mycoplasma coccoides PCR positive. When shedding patterns of feline hemotropic mycoplasmas were investigated, “Ca. Mycoplasma turicensis” DNA was detected in saliva and feces at the early but not at the late phase of infection. M. haemofelis and “Ca. Mycoplasma haemominutum” DNA was not amplified from saliva and feces of naturally infected cats, despite high hemotropic mycoplasma blood loads. Our results suggest that besides an ostensibly indirect transmission by fleas, direct transmission through saliva and feces at the early phase of infection could play a role in the epizootiology of feline hemotropic mycoplasmas. Neither the investigated tick nor the rodent population seems to represent a major reservoir for feline hemotropic mycoplasmas in Switzerland.  相似文献   

18.
Determination of sequence variation within a genetic locus to develop clinically relevant databases is critical for molecular assay design and clinical test interpretation, so multisample pooling for Illumina genome analyzer (GA) sequencing was investigated using the RET proto-oncogene as a model. Samples were Sanger-sequenced for RET exons 10, 11, and 13–16. Ten samples with 13 known unique variants (“singleton variants” within the pool) and seven common changes were amplified and then equimolar-pooled before sequencing on a single flow cell lane, generating 36 base reads. For comparison, a single “control” sample was run in a different lane. After alignment, a 24-base quality score-screening threshold and 3` read end trimming of three bases yielded low background error rates with a 27% decrease in aligned read coverage. Sequencing data were evaluated using an established variant detection method (percent variant reads), by the presented subtractive correction method, and with SNPSeeker software. In total, 41 variants (of which 23 were singleton variants) were detected in the 10 pool data, which included all Sanger-identified variants. The 23 singleton variants were detected near the expected 5% allele frequency (average 5.17%±0.90% variant reads), well above the highest background error (1.25%). Based on background error rates, read coverage, simulated 30, 40, and 50 sample pool data, expected singleton allele frequencies within pools, and variant detection methods; ≥30 samples (which demonstrated a minimum 1% variant reads for singletons) could be pooled to reliably detect singleton variants by GA sequencing.  相似文献   

19.
《PloS one》2009,4(11)

Background

Detection of critical cancer gene mutations in clinical tumor specimens may predict patient outcomes and inform treatment options; however, high-throughput mutation profiling remains underdeveloped as a diagnostic approach. We report the implementation of a genotyping and validation algorithm that enables robust tumor mutation profiling in the clinical setting.

Methodology

We developed and implemented an optimized mutation profiling platform (“OncoMap”) to interrogate ∼400 mutations in 33 known oncogenes and tumor suppressors, many of which are known to predict response or resistance to targeted therapies. The performance of OncoMap was analyzed using DNA derived from both frozen and FFPE clinical material in a diverse set of cancer types. A subsequent in-depth analysis was conducted on histologically and clinically annotated pediatric gliomas. The sensitivity and specificity of OncoMap were 93.8% and 100% in fresh frozen tissue; and 89.3% and 99.4% in FFPE-derived DNA. We detected known mutations at the expected frequencies in common cancers, as well as novel mutations in adult and pediatric cancers that are likely to predict heightened response or resistance to existing or developmental cancer therapies. OncoMap profiles also support a new molecular stratification of pediatric low-grade gliomas based on BRAF mutations that may have immediate clinical impact.

Conclusions

Our results demonstrate the clinical feasibility of high-throughput mutation profiling to query a large panel of “actionable” cancer gene mutations. In the future, this type of approach may be incorporated into both cancer epidemiologic studies and clinical decision making to specify the use of many targeted anticancer agents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号