首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The aim of this study was to examine the expression and regulation of angiopoietin-2 (Ang-2) in murine ovaries during sexual maturation, gonadotropin treatment and luteal development by in situ hybridization and RT-PCR. By in situ hybridization Ang-2 mRNA was mainly localized in granulosa cells, thecal cells and corpus luteum, otherwise in oocytes. Moreover, Ang-2 mRNA was highly expressed in corpus luteum and granulosa cells of atretic follicles. According to RT-PCR data, Ang-2 mRNA was lowly expressed on day 10 after birth, then expression levels gradually increased and reached their highest values on day 25 after birth. In the superovulated model of immature mice, Ang-2 expression was strongly induced by equine chorionic gonadotropin (eCG) 48 h post the eCG injection, and was high from 0.5 to 13 h after hCG treatment. in situ hybridization showed that Ang-2 mRNA was highly expressed in corpus luteum from day 2 to 9 post the hCG injection, then the expression levels gradually declined on days 11 and 13 after hCG treatment. According to RT-PCR data, the levels of Ang-2 mRNA expression showed a decline after the hCG injection, with a nadir on day 3, followed by an increase, reaching the highest level on day 9 post-hCG injection. Then again Ang-2 expression gradually declined from day 11 to 15 after hCG injection. These results suggest that Ang-2 may be involved in follicular development, atresia, ovulation, and corpus luteum formation and regression.  相似文献   

4.
Successful ovulation requires elevated follicular prostaglandin E2 (PGE2) levels. To determine which PGE2 receptors are available to mediate periovulatory events in follicles, granulosa cells and whole ovaries were collected from monkeys before (0 h) and after administration of an ovulatory dose of hCG to span the 40-h periovulatory interval. All PGE2 receptor mRNAs were present in monkey granulosa cells. As assessed by immunofluorescence, PTGER1 (EP1) protein was low/nondetectable in granulosa cells 0, 12, and 24 h after hCG but was abundant 36 h after hCG administration. PTGER2 (EP2) and PTGER3 (EP3) proteins were detected by immunofluorescence in granulosa cells throughout the periovulatory interval, and Western blotting showed an increase in PTGER2 and PTGER3 levels between 0 h and 36 h after hCG. In contrast, PTGER4 (EP4) protein was not detected in monkey granulosa cells. Granulosa cell response to PGE2 receptor agonists was examined 24 h and 36 h after hCG administration, when elevated PGE2 levels present in periovulatory follicles initiate ovulatory events. PGE2 acts via PTGER1 to increase intracellular calcium. PGE2 increased intracellular calcium in granulosa cells obtained 36 h, but not 24 h, after hCG; this effect of PGE2 was blocked by a PTGER1 antagonist. A PTGER2-specific agonist and a PTGER3-specific agonist each elevated cAMP in granulosa cells obtained 36 h, but not 24 h, after hCG. Therefore, the granulosa cells of primate periovulatory follicles express multiple receptors for PGE2. Granulosa cells respond to agonist stimulation of each of these receptors 36 h, but not 24 h, after hCG, supporting the hypothesis that granulosa cells are most sensitive to PGE2 as follicular PGE2 levels peak, leading to maximal PGE2-mediated periovulatory effects just before ovulation.  相似文献   

5.
The tumor suppressor gene KCTD11 plays a critical role in cell proliferation, differentiation and invasion. The current study investigated the regulation and the spatiotemporal expression pattern of Kctd11 in the rat ovary during the periovulatory period. Ovaries, granulosa cells, or theca-interstitial cells were collected at various times after hCG administration using an established gonadotropin-primed immature rat model that induces follicular development and ovulation. Real-time quantitative PCR analysis revealed that mRNA for Kctd11 was significantly induced both in theca-intersititial and granulosa cells after hCG treatment although their temporal expression patterns differed. In situ hybridization analysis demonstrated that Kctd11 mRNA expression was induced in theca-intersititial cells at 6 h after hCG, and the expression remained elevated until 12 h after hCG. Kctd11 mRNA was stimulated in granulosa cells at 6 h and reached the highest expression at 12 h. There was negligible Kctd11 mRNA signal observed in newly forming corpora lutea. In addition, the data indicate that both the protein kinase A and the protein kinase C pathway regulate the expression of Kctd11 mRNA in granulosa cells. Either forskolin or phorbol 12 myristate 13-acetate can mimic hCG induction of Kctd11 expression. Furthermore, the stimulation of Kctd11 by hCG requires new protein synthesis. Inhibition of progesterone action and the EGF pathway blocked Kctd11 mRNA expression, whereas inhibition of prostaglandin synthesis had no effect. Our finding suggest that the induction of the Kctd11 may be important for theca and granulosa cell differentiation into luteal cells.  相似文献   

6.
ABSTRACT

Prostaglandin E2 (PGE2) is a key paracrine mediator of ovulation. Few specific PGE2-regulated gene products have been identified, so we hypothesized that PGE2 may regulate the expression and/or activity of a network of proteins to promote ovulation. To test this concept, Ingenuity Pathway Analysis (IPA) was used to predict PGE2-regulated functionalities in the primate ovulatory follicle. Cynomolgus macaques underwent ovarian stimulation. Follicular granulosa cells were obtained before (0 h) or 36 h after an ovulatory dose of human chorionic gonadotropin (hCG), with ovulation anticipated 37–40 h after hCG. Granulosa cells were obtained from additional monkeys 36 h after treatment with hCG and the PTGS2 inhibitor celecoxib, which significantly reduced hCG-stimulated follicular prostaglandin synthesis. Granulosa cell RNA expression was determined by microarray and analyzed using IPA. No granulosa cell mRNAs were identified as being significantly up-regulated or down-regulated by hCG?+?celecoxib compared with hCG only. However, IPA predicted that prostaglandin depletion significantly regulated several functional pathways. Cell cycle/cell proliferation was selected for further study because decreased granulosa cell proliferation is known to be necessary for ovulation and formation of a fully-functional corpus luteum. Prospective in vivo and in vitro experiments confirmed the prediction that hCG-stimulated cessation of granulosa cell proliferation is mediated via PGE2. Our studies indicate that PGE2 provides critical regulation of granulosa cell proliferation through mechanisms that do not involve significant regulation of mRNA levels of key cell cycle regulators. Pathway analysis correctly predicted that PGE2 serves as a paracrine mediator of this important transition in ovarian structure and function.  相似文献   

7.
Cyclic GMP (cGMP)-dependent protein kinase II (Prkg2, cGK II) was identified as a potential target of the progesterone receptor (Nr3c3) in the mouse ovary based on microarray analyses. To document this further, the expression patterns of cGK II and other components of the cGMP signaling pathway were analyzed during follicular development and ovulation using the pregnant mare serum gonadotropin (PMSG)-human chorionic gonadotropin (hCG)-primed immature mice. Levels of cGK II mRNA were low in ovaries of immature mice, increased 4-fold in response to pregnant mare serum gonadotropin and 5-fold more within 12 h after hCG, the time of ovulation. In situ hybridization localized cGK II mRNA to granulosa cells and cumulus oocyte complexes of periovulatory follicles. In progesterone receptor (PR) null mice, cGK II mRNA was reduced significantly at 12 h after hCG in contrast to heterozygous littermates. In primary granulosa cell cultures, cGK II mRNA was induced by phorbol 12-myristate 13-acetate enhanced by adenoviral expression of PR-A and blocked by RU486 and trilostane. PR-A in the absence of phorbol 12-myristate 13-acetate was insufficient to induce cGK II. Expression of cGK I (Prkg1) was restricted to the residual tissue and not regulated by hormones. Guanylate cyclase-A (Npr1; GC-A) mRNA expression increased 6-fold by 4 h after hCG treatment in contrast to pregnant mare serum gonadotropin alone and was localized to granulosa cells of preovulatory follicles. Collectively, these data show for the first time that cGK II (not cGK I) and GC-A are selectively induced in granulosa cells of preovulatory follicles by LH- and PR-dependent mechanisms, thereby providing a pathway for cGMP function during ovulation.  相似文献   

8.
9.
10.
To explore the mechanism for anti-ovulatory effects of blockade of preovulatory synthesis and action of progesterone, we focused on cyclooxygenase (COX)-2 induction and mitotic activity of granulosa cells in gonadotropins-treated rats. Treatment with RU486 (a progesterone receptor antagonist) or trilostane (a 3β-hydroxysteroid dehydrogenase inhibitor) just prior to or 4h after human chorinonic gonadotropin (hCG) (hCG4h) decreased ovulation rates and circulating progesterone level. Human CG induction of immunoreactive COX-2 in the granulosa layer of mature Graafian follicles at hCG8h was reduced by RU486 treatment at hCG0h and trilostane treatment at hCG4h. RU486 treatment further attenuated ovarian prostaglandin E(2) (PGE(2)) level significantly. Cell proliferative activity in mural granulosa layer of the inhibitors-treated follicles was significantly lower than in intact group. Obtained results show that inhibition of synthesis and action of progesterone caused attenuated COX-2/PGE(2) system and dysregulated mitotic response of granulosa cells, resulting in decreased ovulation.  相似文献   

11.
Prostaglandins, products of arachidonic acid via the cyclooxygenase pathway, are essential to the porcine ovulatory process in that inhibition of their synthesis results in ovulation failure. Studies in the rat have shown that ovulation is also preceded by a rise in three ovarian hydroxyeicosatetraenoic acids, products of the lipoxygenase pathway, and inhibition of this pathway also inhibits ovulation. Experiments were designed, using a pregnant mare serum gonadotropin/human chorionic gonadotropin (hCG)-treated prepuberal gilt model, to measure pre-ovulatory changes in follicular fluid concentrations of 15-hydroxyeicosatetraenoic acid (15-HETE), and to compare the effects of indomethacin and nordihydroguaiaretic acid (NDGA) on ovulation in the pig and on 15-HETE and prostaglandin F2α synthesis both in vivo and in vitro. Follicular fluid concentrations of 15-HETE were elevated significantly just prior to the expected time of ovulation (40 h after hCG). When indomethacin (10 mg) was injected into the ovarian stalk at 24 h after hCG, follicular fluid concentrations of both 15-HETE and prostaglandin F2α were lower (P<0.01) than controls at 40 h and ovulation rate was suppressed (P<0.01). When NDGA (5 mg) was administered in the same manner, ovulation rate was suppressed (P<0.01), but the levels of 15-HETE and prostaglandin F2α were not altered. Synthesis of 15-HETE by cultured granulosa and theca interna cells was reduced by the presence of NDGA (1 mg/ml), whereas indomethacin (100 ng/ml) lowered 15-HETE production in theca interna cells only. These results clearly demonstrate that indomethacin can block the lipoxygenase as well as the cyclooxygenase pathways, depending on the dose used, and suggest that lipoxygenase metabolites of arachidonic acid are involved in the ovulatory process in the pig.  相似文献   

12.
Prostaglandin E2 (PGE2) mediates many effects of the midcycle luteinizing hormone (LH) surge within the periovulatory follicle. Differential expression of the four PGE2 (EP) receptors may contribute to the specialized functions of each granulosa cell subpopulation. To determine if EP receptors are differentially expressed in granulosa cells, monkeys received gonadotropins to stimulate ovarian follicular development. Periovulatory events were initiated with human chorionic gonadotropin (hCG); granulosa cells and whole ovaries were collected before (0 h) and after (24-36 h) hCG to span the 40-h primate periovulatory interval. EP receptor mRNA and protein levels were quantified in granulosa cell subpopulations. Cumulus cells expressed higher levels of EP2 and EP3 mRNA compared with mural cells 36 h after hCG. Cumulus cell EP2 and EP3 protein levels also increased between 0 and 36 h after hCG. Overall, mural granulosa cells expressed low levels of EP1 protein at 0 h and higher levels 24-36 h after hCG. However, EP1 protein levels were higher in granulosa cells away from the follicle apex compared with apex cells 36 h after hCG. Higher levels of PAI-1 protein were measured in nonapex cells, consistent with a previous study showing EP1-stimulated PAI-1 protein expression in monkey granulosa cells. EP4 protein levels were low in all subpopulations. In summary, cumulus cells likely respond to PGE2 via EP2 and EP3, whereas PGE2 controls rupture of a specific region of the follicle via EP1. Therefore, differential expression of EP receptors may permit each granulosa cell subpopulation to generate a unique response to PGE2 during the process of ovulation.  相似文献   

13.
Abe T  Toida D  Satoh H  Yonezawa T  Kawaminami M  Kurusu S 《Steroids》2011,76(10-11):1116-1125
Inhibition of preovulatory synthesis and action of progesterone impairs ovulation in rodents. We evaluated effects of supplementation of exogenous progesterone on human chorionic gonadotropin (hCG)-induced ovulatory response in immature rats. Equine CG-primed mature follicles responded to hCG with induction of immunoreactive steroidogenic acute regulatory protein (StAR) mainly in thecal layers and a transient enhancement in progesterone synthesis peaking at 6h after hCG (hCG6h). A single dose of natural progesterone or a synthetic agonist (MP) at hCG0h both decreased ovulation rates in dose-dependent manners. MP was still effective when treated at hCG4h. Treatment with these agents at hCG0h reduced circulating progesterone and thecal expression of StAR at hCG6h. The treatments further attenuated induction of cyclooxygenase (COX)-2 in mural granulosa cells and ovarian prostaglandin (PG) E(2) level at hCG8h. We also found a significant reduction in bromo-deoxyuridine incorporation by mural granulosa cells. Obtained results show that the early treatment with exogenous progesterone agonist caused attenuated amplitude of endogenous progesterone surge, reduced COX-2/PGE(2) system, dysregulated mitosis of granulosa cells, and decreased oocytes release. We suggest that optimal progesterone synthesis and action are an early critical component of hCG-initiated ovulatory cascade that regulates biochemical function of granulosa cells.  相似文献   

14.
15.
小鼠排卵前后卵巢纤蛋白溶酶原激活因子活性的变化   总被引:3,自引:1,他引:2  
刘以训  冯强 《生理学报》1989,41(3):284-290
给幼龄小鼠注射PMSG刺激滤泡生长,随后注射hCG以诱发排卵。在激素处理的不同时间取出卵巢,制备卵巢匀浆液或从卵巢中分离颗粒细胞和卵丘-卵母细胞复合体,并做离体培养。样品中组织型(tPA)和尿激酶型(uPA)纤蛋白溶酶原激活因子经SDS-凝胶电泳分离,用纤蛋白铺盖技术测定。实验结果表明,注射hCG 8h后15%的受试动物排卵,而卵巢匀浆液和颗粒细胞中tPA和uPA活性分别也在hCG注射后4和8h达到高峰。排卵后酶活性下降。卵丘-卵母细胞复合体主要含tPA,注射hCG 12—24h达到高峰。上述资料证明,tPA和uPA都参入小鼠排卵过程。因为排出的卵子中仍含有大量tPA,卵细胞的tPA除参与排卵外,可能对排卵后的一些生理过程也起重要作用。  相似文献   

16.

Background

The success of ovarian follicle growth and ovulation is strictly related to the development of an adequate blood vessel network required to sustain the proliferative and endocrine functions of the follicular cells. Even if the Vascular Endothelial Growth Factor (VEGF) drives angiogenesis before ovulation, the local role exerted by Progesterone (P4) remains to be clarified, in particular when its concentration rapidly increases before ovulation.

Aim

This in vivo study was designed to clarify the effect promoted by a P4 receptor antagonist, RU486, on VEGF expression and follicular angiogenesis before ovulation, in particular, during the transition from pre to periovulatory follicles induced by human Chorionic Gonadotropins (hCG) administration.

Material and Methods

Preovulatory follicle growth and ovulation were pharmacologically induced in prepubertal gilts by combining equine Chorionic Gonadotropins (eCG) and hCG used in the presence or absence of RU486. The effects on VEGF expression were analyzed using biochemical and immunohistochemical studies, either on granulosa or on theca layers of follicles isolated few hours before ovulation. This angiogenic factor was also correlated to follicular morphology and to blood vessels architecture.

Results and Conclusions

VEGF production, blood vessel network and follicle remodeling were impaired by RU486 treatment, even if the cause-effect correlation remains to be clarified. The P4 antagonist strongly down-regulated theca VEGF expression, thus, preventing most of the angiogenic follicle response induced by hCG. RU486-treated follicles displayed a reduced vascular area, a lower rate of endothelial cell proliferation and a reduced recruitment of perivascular mural cells. These data provide important insights on the biological role of RU486 and, indirectly, on steroid hormones during periovulatory follicular phase. In addition, an in vivo model is proposed to evaluate how periovulatory follicular angiogenesis may affect the functionality of the corpus luteum (CL) and the success of pregnancy.  相似文献   

17.
Prepubertal gilts given 750 IU pregnant mares′ serum gonadotropin (PMSG) followed 72 h later by 500 IU human chorionic gonadotropin (hCG) to induce follicular growth and ovulation fail to ovulate when 10 mg/kg indomethacin (INDO) is injected 24 h after hCG administration. This study examines the effects of administration of exogenous prostaglandins F and E2 (PGF and PGE2) alone or in combination, and at various times prior to the expected time of ovulation, on the INDO blockade of ovulation in PMSG/hCG-treated gilts. Occurrence of ovulation was determined by visual observation at laparotomy 48 h after hCG. When 5 mg or 10 mg PGF was injected at each of 38, 40 and 42 h after hCG injection, 63% and 79%, respectively, of preovulatory follicles ovulated. In contrast, injection of 5 mg PGE2 or 5 mg PGE2 plus 5 mg PGF induced ovulation in 0% and 24% of preovulatory follicles, respectively. In control groups, 100% of folicles in PMSG/hCG-treated gilts ovulated whereas none did so in PMSG/hCG/INDO-treated animals. These results indicate that administration of PGF can induce ovulation in the PMSG/hCG/INDO-treated prepubertal gilt and suggest that PGE2 is ineffective and may be antagonistic to PGF in overcoming the ovulation blocking effect of INDO.  相似文献   

18.
Wang H  Xie H  Dey SK 《PloS one》2008,3(10):e3320

Background

Preterm birth accounting approximate 10% of pregnancies in women is a tremendous social, clinical and economic burden. However, its underlying causes remain largely unknown. Emerging evidence suggests that endocannabinoid signaling via cannabinoid receptor CB1 play critical roles in multiple early pregnancy events in both animals and humans. Since our previous studies demonstrated that loss of CB1 defers the normal implantation window in mice, we surmised that CB1 deficiency would influence parturition events.

Methods and Findings

Exploiting mouse models with targeted deletion of Cnr1, Cnr2 and Ptgs1 encoding CB1, CB2 and cyclooxygenase-1, respectively, we examined consequences of CB1 or CB2 silencing on the onset of parturition. We observed that genetic or pharmacological inactivation of CB1, but not CB2, induced preterm labor in mice. Radioimmunoassay analysis of circulating levels of ovarian steroid hormones revealed that premature birth resulting from CB1 inactivation is correlated with altered progesterone/estrogen ratios prior to parturition. More strikingly, the phenotypic defects of prolonged pregnancy length and parturition failure in mice missing Ptgs1 were corrected by introducing CB1 deficiency into Ptgs1 null mice. In addition, loss of CB1 resulted in aberrant secretions of corticotrophin-releasing hormone and corticosterone during late gestation. The pathophysiological significance of this altered corticotrophin-releasing hormone-driven endocrine activity in the absence of CB1 was evident from our subsequent findings that a selective corticotrophin-releasing hormone antagonist was able to restore the normal parturition timing in Cnr1 deficient mice. In contrast, wild-type females receiving excessive levels of corticosterone induced preterm birth.

Conclusions

CB1 deficiency altering normal progesterone and estrogen levels induces preterm birth in mice. This defect is independent of prostaglandins produced by cyclooxygenase-1. Moreover, CB1 inactivation resulted in aberrant corticotrophin-releasing hormone and corticosterone activities prior to parturition, suggesting that CB1 regulates labor by interacting with the corticotrophin-releasing hormone-driven endocrine axis.  相似文献   

19.
20.
The matrix metalloproteinases (MMPs) are postulated to facilitate follicular rupture. In the present study, expression of the stromelysins (MMP3, MMP10, MMP11) was analyzed in the periovulatory human and rat ovary. Human granulosa and theca cells were collected from the dominant follicle at various times after human chorionic gonadotropin (hCG). Intact rat ovaries, granulosa cells, and residual tissue (tissue remaining after granulosa cell collection) were isolated from equine CG (eCG)-hCG-primed animals. Mmp10 mRNA was highly induced in human granulosa and theca cells and intact rat ovaries, granulosa cells, and residual tissue. Localization of MMP10 to granulosa and theca cells in both human and rat ovarian follicles was confirmed by immunohistochemistry. Mmp3 mRNA was unchanged in human cells and rat granulosa cells, but increased in intact rat ovaries and residual tissue. Mmp11 mRNA decreased following hCG treatment in human granulosa and theca cells as well as rat granulosa cells. Regulation of Mmp10 in cultured rat granulosa cells revealed that the EGF inhibitor AG1478 and the progesterone receptor antagonist RU486 suppressed the induction of Mmp10 mRNA, whereas the prostaglandin inhibitor NS398 had no effect. Studies on the Mmp10 promoter demonstrated that forskolin plus PMA stimulated promoter activity, which was dependent upon a proximal AP1 site. In conclusion, there are divergent patterns of stromelysin expression associated with ovulation, with a marked induction of Mmp10 mRNA and a decrease in Mmp11 mRNA, yet a species-dependent pattern on Mmp3 mRNA expression. The induction of Mmp10 expression suggests an important role for this MMP in the follicular changes associated with ovulation and subsequent luteinization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号