首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Artificial light at night can be harmful to the environment, and interferes with fauna and flora, star visibility, and human health. To estimate the relative impact of a lighting device, its radiant power, angular photometry and detailed spectral power distribution have to be considered. In this paper we focus on the spectral power distribution. While specific spectral characteristics can be considered harmful during the night, they can be considered advantageous during the day. As an example, while blue-rich Metal Halide lamps can be problematic for human health, star visibility and vegetation photosynthesis during the night, they can be highly appropriate during the day for plant growth and light therapy. In this paper we propose three new indices to characterize lamp spectra. These indices have been designed to allow a quick estimation of the potential impact of a lamp spectrum on melatonin suppression, photosynthesis, and star visibility. We used these new indices to compare various lighting technologies objectively. We also considered the transformation of such indices according to the propagation of light into the atmosphere as a function of distance to the observer. Among other results, we found that low pressure sodium, phosphor-converted amber light emitting diodes (LED) and LED 2700 K lamps filtered with the new Ledtech’s Equilib filter showed a lower or equivalent potential impact on melatonin suppression and star visibility in comparison to high pressure sodium lamps. Low pressure sodium, LED 5000 K-filtered and LED 2700 K-filtered lamps had a lower impact on photosynthesis than did high pressure sodium lamps. Finally, we propose these indices as new standards for the lighting industry to be used in characterizing their lighting technologies. We hope that their use will favor the design of new environmentally and health-friendly lighting technologies.  相似文献   

2.
The lighting industry currently accounts for a significant proportion of all energy demand. Luminescent white lighting is often impure, inefficient, expensive, and detrimentally emits as a point source, meaning the light is emitted from a focused point. A luminescent light diffuser offers the potential to create a spatially broad lighting fixture. We developed a luminescent light diffuser consisting of three commercially available luminescent dye species (rhodamine 6G, fluorescein, 7-diethylamino-4-methylcoumarin) dispersed within a polymer matrix (polyvinyl alcohol), or commercial paint, and coated on a planar waveguide. A Light-emitting diode (LED) (385 nm) is directed into the waveguide which excites the luminescent species, coating the panel, creating a device that emits spatially broad pure white light. As the emission depends on escape cone emission from the waveguide, the device’s emission was found to depend highly on the coating film quality and components. We present two systems: a small 40 mm × 40 mm prototype, made using standard water-soluble polymer (polyvinyl alcohol), to study the underlying operational principles, and a 100 mm × 100 mm device with optimized efficiency fabricated with a clear commercial paint. By doping the polymer matrix with scattering silica microparticles we achieved a maximum photon outcoupling efficiency of 78%, whilst maintaining colour purity with an increased device size of more than 300 times (compared with the input LED). This work shows that it is possible to construct an inexpensive and spatially broad lighting source, whilst maintaining colour purity at a low cost.  相似文献   

3.
不同LED光源对乌塌菜生长、光合特性及营养品质的影响   总被引:1,自引:1,他引:0  
与传统光源相比,LED具有光谱可控、亮度高但发热量小、寿命长等优势.LED光源可实现光谱可控,通过调制光谱与植物的感光细胞最优结合来影响植物的生长发育与营养品质.本研究利用LED精量调制光源,以‘菊花小八叶’乌塌菜品种为试验材料,设红光、蓝光、红/蓝光(3/1)、红/蓝光(7/1)、白/红/蓝光(3/2/1)5个处理,以白光为对照,研究不同光质对乌塌菜生长、光合特性及品质的影响.结果表明: 红光有利于乌塌菜生物量和茎粗的增大,而蓝光有抑制作用;叶绿素含量以红/蓝光(7/1)处理最高,且叶绿素总量与红/蓝光比值呈正相关,虽然蓝光显著降低叶绿素含量,但提高了叶绿素 a/b 值;光合速率和蒸腾速率均以红光处理最高,与对照相比分别增加43.8%和55.1%,而蓝光处理下有较高的气孔导度及胞间CO2浓度.不同光质处理对乌塌菜的荧光参数有较大影响,白光的Fv/Fm、Fv/Fo和ΦPSⅡ均最大;红光可以提高可溶性糖含量,蓝光能提高可溶性蛋白含量,白光能增加维生素C含量.综合分析,红/蓝光(7/1)处理在增加叶片光合色素含量,提高光合速率,促进植株生长和改善营养品质方面为最优组合.  相似文献   

4.
More energy-efficient, readily dimmable, long-lasting and more affordable light-emitting diode (LED) lights are increasingly finding applications in poultry production facilities. Despite anecdotal evidence about the benefits of such lighting on bird performance and behavior, concrete research data were lacking. In this study, a commercial poultry-specific LED light (dim-to-blue, controllable correlated color temperature (CCT) from 4500 to 5300 K) and a typical compact fluorescent light (CFL) (soft white, CCT=2700 K) were compared with regards to their effects on growing performance, activity levels, and feather and comb conditions of non-beak-trimmed W-36 pullets during a 14-week rearing period. A total of 1280-day-old pullets in two successive batches, 640 birds each, were used in the study. For each batch, pullets were randomly assigned to four identical litter-floor rooms equipped with perches, two rooms per light regimen, 160 birds per room. Body weight, BW uniformity (BWU), BW gain (BWG) and cumulative mortality rate (CMR) of the pullets were determined every 2 weeks from day-old to 14 weeks of age (WOA). Activity levels of the pullets at 5 to 14 WOA were delineated by movement index. Results revealed that pullets under the LED and CFL lights had comparable BW (1140±5 g v. 1135±5 g, P=0.41), BWU (90.8±1.0% v. 91.9±1.0%, P=0.48) and CMR (1.3±0.6% v. 2.7±0.6%, P=0.18) at 14 WOA despite some varying BWG during the rearing. Circadian activity levels of the pullets were higher under the LED light than under the CFL light, possibly resulting from differences in spectrum and/or perceived light intensity between the two lights. No feather damage or comb wound was apparent in either light regimen at the end of the rearing period. The results contribute to understanding the impact of emerging LED lights on pullets rearing which is a critical component of egg production.  相似文献   

5.
Insect attraction to artificial light can potentially facilitate disease transmission by increasing contact between humans and vectors. Previous research has identified specific wavelength bands, such as yellow and red, that are unattractive to biting flies. However, narrow-band, non-white lights are unsuitable for home lighting use as their very poor color rendering is often considered aesthetically undesirable. The creation of a white light that is unattractive to insects has so far remained elusive. White light can be created by combining a number of narrow-band light-emitting diodes (LEDs). Through choice chamber experiments on Culex pipiens (Cx. pipiens) mosquitoes, we examine whether combining specific wavelength bands has an additive, subtractive or synergistic effect on insect attraction. We show that a white light created by combining narrow-band red, green and blue (RGB) LEDs is less attractive to Cx. pipiens than a broad-spectrum white light; and that a white light created by combining narrow-band blue and yellow LEDs is more attractive than a broad-spectrum white light. White light produced by RGB combinations could therefore serve as a safer and cheaper light in countries where phototactic vectors and vector-borne disease are endemic.  相似文献   

6.
1 International phytosanitary standards require mandatory fumigation for key wood boring beetle pests prior to export. Pressure to reduce the use of toxic fumigants has created a need for alternative control techniques.
2 A visual based push–pull strategy that exploits a differential attraction to yellow and ultra violet (UV) lights was tested for its efficacy at controlling Cerambycidae.
3 The relative attraction of four 'push' lighting treatments [two yellow (high and low-pressure Sodium), one white (metal halide) and a control (no light)] to beetles was assessed. Highly attractive UV 'pull' traps were compared with a paired control trap, the difference used as a measure of the UV traps attractiveness to residual beetles attracted by 'push' lights.
4 Trap catch beneath the two yellow 'push' lights was more similar to the control (no light) treatment than the white light for both species. Control 'push' lights had the highest average catch of Arhopalus ferus , whereas white light was least attractive. This finding was counter intuitive to expectations, and potential mechanisms are discussed. The white 'push' light was most attractive to Prionoplus reticularis.
5 Ultraviolet 'pull' traps were highly attractive to residual beetles drawn to yellow 'push' light treatments. Relative attraction to the UV 'pull' traps beneath control and white 'push' lights differed between species.
6 The results obtained suggest that a push–pull strategy combining yellow site lighting with UV kill traps could provide site specific control of wood borers. Future research should attempt large-scale trials that are subject to competing alternative stimuli at a wood processing site.  相似文献   

7.
LED lighting is predicted to constitute 70% of the outdoor and residential lighting markets by 2020. While the use of LEDs promotes energy and cost savings relative to traditional lighting technologies, little is known about the effects these broad‐spectrum “white” lights will have on wildlife, human health, animal welfare, and disease transmission. We conducted field experiments to compare the relative attractiveness of four commercially available “domestic” lights, one traditional (tungsten filament) and three modern (compact fluorescent, “cool‐white” LED and “warm‐white” LED), to aerial insects, particularly Diptera. We found that LEDs attracted significantly fewer insects than other light sources, but found no significant difference in attraction between the “cool‐” and “warm‐white” LEDs. Fewer flies were attracted to LEDs than alternate light sources, including fewer Culicoides midges (Diptera: Ceratopogonidae). Use of LEDs has the potential to mitigate disturbances to wildlife and occurrences of insect‐borne diseases relative to competing lighting technologies. However, we discuss the risks associated with broad‐spectrum lighting and net increases in lighting resulting from reduced costs of LED technology.  相似文献   

8.
The development of scientifically sound instrumentation, methods, and procedures for the electromagnetic exposure assessment of compact fluorescent lamps (CFLs) is investigated. The incident and induced fields from 11 CFLs have been measured in the 10 kHz–1 MHz range, and they are compared with the levels for incandescent and light emitting diode (LED) bulbs. Commercially available equipment was used to measure the incident fields, while a novel sensor was built to assess the induced fields in humans. Incident electric field levels significantly exceed the International Commission on Non‐Ionizing Radiation Protection (ICNIRP) reference levels at close distances for some sources, while the induced fields are within the ICNIRP basic restrictions. This demonstrates the importance of assessing the induced fields rather than the incident fields for these sources. Maximum current densities for CFLs are comparable to the limits (in the range of 9% to 56%), demonstrating the need for measurements to establish compliance. For the frequency range investigated, the induced fields were found to be considerably higher for CFLs than for incandescent light bulbs, while the exposure from the two LED bulbs was low. The proposed instrumentation and methods offer several advantages over an existing measurement standard, and the measurement uncertainty is significantly better than the assessment of electric and magnetic fields at close distances. Bioelectromagnetics 33:166–175, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
Artificial night-time illumination of natural habitats has increased dramatically over the past few decades. Generally, studies that assess the impact of artificial light on various species in the wild make use of existing illumination and are therefore correlative. Moreover, studies mostly focus on short-term consequences at the individual level, rather than long-term consequences at the population and community level—thereby ignoring possible unknown cascading effects in ecosystems. The recent change to LED lighting has opened up the exciting possibility to use light with a custom spectral composition, thereby potentially reducing the negative impact of artificial light. We describe here a large-scale, ecosystem-wide study where we experimentally illuminate forest-edge habitat with different spectral composition, replicated eight times. Monitoring of species is being performed according to rigid protocols, in part using a citizen-science-based approach, and automated where possible. Simultaneously, we specifically look at alterations in behaviour, such as changes in activity, and daily and seasonal timing. In our set-up, we have so far observed that experimental lights facilitate foraging activity of pipistrelle bats, suppress activity of wood mice and have effects on birds at the community level, which vary with spectral composition. Thus far, we have not observed effects on moth populations, but these and many other effects may surface only after a longer period of time.  相似文献   

10.
The effects of artificial night lighting on animal behaviour and fitness are largely unknown. Most studies report short-term consequences in locations that are also exposed to other anthropogenic disturbance. We know little about how the effects of nocturnal illumination vary with different light colour compositions. This is increasingly relevant as the use of LED lights becomes more common, and LED light colour composition can be easily adjusted. We experimentally illuminated previously dark natural habitat with white, green and red light, and measured the effects on life-history decisions and fitness in two free-living songbird species, the great tit (Parus major) and pied flycatcher (Ficedula hypoleuca) in two consecutive years. In 2013, but not in 2014, we found an effect of light treatment on lay date, and of the interaction of treatment and distance to the nearest lamp post on chick mass in great tits but not in pied flycatchers. We did not find an effect in either species of light treatment on breeding densities, clutch size, probability of brood failure, number of fledglings and adult survival. The finding that light colour may have differential effects opens up the possibility to mitigate negative ecological effects of nocturnal illumination by using different light spectra.  相似文献   

11.

The effect of different light sources on in vitro shoot development in Cariniana legalis, an endangered species from the Atlantic Forest, was evaluated. Cotyledonary and apical nodal explants were subjected to light-emitting diode (LED) lamps with different spectral combinations and fluorescent lamps (control). Shoot growth, endogenous contents of free polyamines (PAs) and proteomic profiles were analyzed at 60 days of development. Treatments consisting of white, low-blue and deep-red, with (W/lB/dR/fR) and without (W/lB/dR) far-red spectra, resulted in greater elongation of shoots from cotyledonary nodal explants, and the low-blue and deep-red spectral combination appeared to be a positive factor stimulating shade-avoidance responses. Shoots grown under the W/lB/dR LED exhibited greater elongation and higher contents of free putrescine, spermidine and total free PAs compared to those grown under the fluorescent lamp. Comparative proteomic analysis revealed 15 up- and 41 down-regulated proteins in shoots grown under the W/lB/dR LED lamp when compared to the control. The differentially up-regulated proteins in shoots grown under the LED lamp are related to cell organization and composition, as well as biological regulation processes, whereas proteins related to stress processes were down-regulated. The LED lamp consisting of white, low-blue and deep-red spectra increased shoot elongation in C. legalis, in association with differential accumulation of proteins and PAs, suggesting the relevance of source light on in vitro shoot development in this species.

  相似文献   

12.
Due to European legislation, the British government has begun the phase out of incandescent bulbs, to be replaced by energy-saving alternatives. The alternatives that are available on the market are Compact Fluorescent Lamps (CFL), Energy-Efficient Halogens (EEH) and Light Emitting Diodes (LED). Whilst previous research has shown that CFLs emit UVC, UVB and UVA, there is conflicting data available on whether double enveloped CFLs are a safer alternative to single enveloped CFLs for individuals suffering from photosensitivity. The emission spectra of 106 single enveloped CFLs and 65 double enveloped CFLs were measured. There were 17 different models of single enveloped CFLs, including lamps from 6 different manufacturers (ranging from 8-20 W) and 9 models of double enveloped CFLs from 6 different manufacturers (7-15 W). In addition, the emission spectra of 53 LEDs and 56 EEHs were also analysed. The LEDs consisted of 8 different models, from 3 manufacturers, spanning between 2.5 and 12 W. There were 11 models of EEH from 6 different manufacturers with wattages ranging from 28-70 W. In order to reduce sample bias, some bulbs were provided by the lighting industry federation and others were purchased randomly from local retailers. The results validate previous research in that considerable variation exists in the UV emitted from CFLs. This variation in UV levels is true, not only within different makes and models but also, surprisingly, within a box of 8 seemingly identical bulbs supplied by a single manufacturer. It was concluded that double enveloped CFLs do reduce the levels of UVC and UVB and therefore are a safer alternative for photosensitive individuals. However, as some double enveloped CFLs and EEHs do emit UVA at levels that provoke a reaction in the skin of UVA sensitive individuals, newly emerging LEDs that have minimal UV levels may provide a safer alternative.  相似文献   

13.

Background

It has been assumed that light with a higher irradiance of pulsed blue light has a much greater influence than that of light with a lower irradiance of steady blue light, although they have the same multiplication value of irradiance and duration. We examined the non-visual physiological effects of blue pulsed light, and determined whether it is sensed visually as being blue.

Findings

Seven young male volunteers participated in the study. We placed a circular screen (diameter 500 mm) in front of the participants and irradiated it using blue and/or white light-emitting diodes (LEDs), and we used halogen lamps as a standard illuminant. We applied three steady light conditions of white LED (F0), blue LED + white LED (F10), and blue LED (F100), and a blue pulsed light condition of a 100-μs pulse width with a 10% duty ratio (P10). The irradiance of all four conditions at the participant''s eye level was almost the same, at around 12 μW/cm2. We measured their pupil diameter, recorded electroencephalogram readings and Kwansei Gakuin Sleepiness Scale score, and collected subjective evaluations. The subjective bluish score under the F100 condition was significantly higher than those under other conditions. Even under the P10 condition with a 10% duty ratio of blue pulsed light and the F10 condition, the participant did not perceive the light as bluish. Pupillary light response under the P10 pulsed light condition was significantly greater than under the F10 condition, even though the two conditions had equal blue light components.

Conclusions

The pupil constricted under the blue pulsed light condition, indicating a non-visual effect of the lighting, even though the participants did not perceive the light as bluish.  相似文献   

14.
Light-emitting diodes as a light source for photosynthesis research   总被引:10,自引:0,他引:10  
Light-emitting diodes (LED) can provide large fluxes of red photons and so could be used to make lightweight, efficient lighting systems for photosynthetic research. We compared photosynthesis, stomatal conductance and isoprene emission (a sensitive indicator of ATP status) from leaves of kudzu (Pueraria lobata (Willd) Ohwi.) enclosed in a leaf chamber illuminated by LEDs versus by a xenon arc lamp. Stomatal conductance was measured to determine if red LED light could sufficiently open stomata. The LEDs produced an even field of red light (peak emission 656±5 nm) over the range of 0–1500 mol m-2 s-1. Under ambient CO2 the photosynthetic response to red light deviated slightly from the response measured in white light and stomatal conductance followed a similar pattern. Isoprene emission also increased with light similar to photosynthesis in white light and red light. The response of photosynthesis to CO2 was similar under the LED and xenon arc lamps at equal photosynthetic irradiance of 1000 mol m-2 s-1. There was no statistical difference between the white light and red light measurements in high CO2. Some leaves exhibited feedback inhibition of photosynthesis which was equally evident under irradiation of either lamp type. Photosynthesis research including electron transport, carbon metabolism and trace gas emission studies should benefit greatly from the increased reliability, repeatability and portability of a photosynthesis lamp based on light-emitting diodes.  相似文献   

15.
Marine benthic communities face multiple anthropogenic pressures that compromise the future of some of the most biodiverse and functionally important ecosystems in the world. Yet one of the pressures these ecosystems face, night-time lighting, remains unstudied. Light is an important cue in guiding the settlement of invertebrate larvae, and altering natural regimes of nocturnal illumination could modify patterns of recruitment among sessile epifauna. We present the first evidence of night-time lighting changing the composition of temperate epifaunal marine invertebrate communities. Illuminating settlement surfaces with white light-emitting diode lighting at night, to levels experienced by these communities locally, both inhibited and encouraged the colonization of 39% of the taxa analysed, including three sessile and two mobile species. Our results indicate that ecological light pollution from coastal development, shipping and offshore infrastructure could be changing the composition of marine epifaunal communities.  相似文献   

16.
Pepper plants (Capsicum annuum L. cv., Hungarian Wax) were grown under metal halide (MH) lamps or light-emitting diode (LED) arrays with different spectra to determine the effects of light quality on plant anatomy of leaves and stems. One LED (660) array supplied 90% red light at 660 nm (25nm band-width at half-peak height) and 1% far-red light between 700-800nm. A second LED (660/735) array supplied 83% red light at 660nm and 17% far-red light at 735nm (25nm band-width at half-peak height). A third LED (660/blue) array supplied 98% red light at 660nm, 1% blue light between 350-550nm, and 1% far-red light between 700-800nm. Control plants were grown under broad spectrum metal halide lamps. Plants were gron at a mean photon flux (300-800nm) of 330 micromol m-2 s-1 under a 12 h day-night photoperiod. Significant anatomical changes in stem and leaf morphologies were observed in plants grown under the LED arrays compared to plants grown under the broad-spectrum MH lamp. Cross-sectional areas of pepper stems, thickness of secondary xylem, numbers of intraxylary phloem bundles in the periphery of stem pith tissues, leaf thickness, numbers of choloplasts per palisade mesophyll cell, and thickness of palisade and spongy mesophyll tissues were greatest in peppers grown under MH lamps, intermediate in plants grown under the 660/blue LED array, and lowest in peppers grown under the 660 or 660/735 LED arrays. Most anatomical features of pepper stems and leaves were similar among plants grown under 660 or 660/735 LED arrays. The effects of spectral quality on anatomical changes in stem and leaf tissues of peppers generally correlate to the amount of blue light present in the primary light source.  相似文献   

17.
In order to find out whether different light spectra have any role in regulating the gonadotropin levels in male rats, we compared the 24-hour patterns of plasma and pituitary gonadotropins in rats kept for 7 days in natural or in cool white artificial lighting (exp. I). The intensity and periodicity of the two lighting conditions were adjusted as similar as possible. Further, we measured plasma and pituitary gonadotropins in the middle of the light period and in the middle of the dark period in rats kept for 7 days under artificial lightings of three different spectra (exp. II). In both experiments, in all lighting conditions we found higher plasma levels of LH and FSH during the dark than the light period. The differences were statistically significant only when the illumination contained more long and/or short wavelengths than the usual cool white laboratory lighting. The pituitary contents of gonadotropins were not found to vary with the periodicity of lighting. In the 24-hour patterns the overall plasma levels were higher and the pituitary contents of gonadotropins lower in natural lighting than in cool white lighting. It was concluded that the spectral properties of light influence the secretion of gonadotropins in male rats, but the mechanism involved remains to be clarified.  相似文献   

18.
Flatbed scanners are the most frequently used reading instrument for radiochromic film dosimetry because its low cost, high spatial resolution, among other advantages. These scanners use a fluorescent lamp and a CCD array as light source and detector, respectively. Recently, manufacturers of flatbed scanners replaced the fluorescent lamp by light emission diodes (LED) as a light source. The goal of this work is to evaluate the performance of a commercial flatbed scanner with LED based source light for radiochromic film dosimetry. Film read out consistency, response uniformity, film-scanner sensitivity, long term stability and total dose uncertainty was evaluated. In overall, the performance of the LED flatbed scanner is comparable to that of a cold cathode fluorescent lamp (CCFL). There are important spectral differences between LED and CCFL lamps that results in a higher sensitivity of the LED scanner in the green channel. Total dose uncertainty, film response reproducibility and long-term stability of LED scanner are slightly better than those of the CCFL. However, the LED based scanner has a strong non-uniform response, up to 9%, that must be adequately corrected for radiotherapy dosimetry QA. The differences in light emission spectra between LED and CCFL lamps and its potential impact on film-scanner sensitivity suggest that the design of a dedicated flat-bed scanner with LEDs may improve sensitivity and dose uncertainty in radiochromic film dosimetry.  相似文献   

19.
Light suppresses melatonin in humans, with the strongest response occurring in the short-wavelength portion of the spectrum between 446 and 477 nm that appears blue. Blue monochromatic light has also been shown to be more effective than longer-wavelength light for enhancing alertness. Disturbed circadian rhythms and sleep loss have been described as risk factors for astronauts and NASA ground control workers, as well as civilians. Such disturbances can result in impaired alertness and diminished performance. Prior to exposing subjects to short-wavelength light from light-emitting diodes (LEDs) (peak λ = 469 nm; 1/2 peak bandwidth = 26 nm), the ocular safety exposure to the blue LED light was confirmed by an independent hazard analysis using the American Conference of Governmental Industrial Hygienists exposure limits. Subsequently, a fluence-response curve was developed for plasma melatonin suppression in healthy subjects (n = 8; mean age of 23.9 ± 0.5 years) exposed to a range of irradiances of blue LED light. Subjects with freely reactive pupils were exposed to light between 2:00 and 3:30 AM. Blood samples were collected before and after light exposures and quantified for melatonin. The results demonstrate that increasing irradiances of narrowband blue-appearing light can elicit increasing plasma melatonin suppression in healthy subjects (P < 0.0001). The data were fit to a sigmoidal fluence-response curve (R(2) = 0.99; ED(50) = 14.19 μW/cm(2)). A comparison of mean melatonin suppression with 40 μW/cm(2) from 4,000 K broadband white fluorescent light, currently used in most general lighting fixtures, suggests that narrow bandwidth blue LED light may be stronger than 4,000 K white fluorescent light for suppressing melatonin.  相似文献   

20.
The use of green, red, and far-red light-emitting diodes (LEDs) as light sources for plant physiological studies is described. LED lamps have the advantage over conventional light sources in that they are lightweight, low cost, portable, easily constructed and, more important, do not require colour filters. Using LED lamps, red/far-red reversal of germination of Grand Rapids lettuce seeds was demonstrated and the effectiveness of a green LED safelight was compared with that of a conventional filtered safelight, using extension growth of photosensitive Avena fatua L. seedlings as an indicator. The green LEDs gave comparable performance to the conventional filter-type safelight. An infra-red LED light source was also evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号