首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fic (filamentation induced by cAMP) proteins regulate diverse cell signaling events by post-translationally modifying their protein targets, predominantly by the addition of an AMP (adenosine monophosphate). This modification is called Fic-mediated adenylylation or AMPylation. We previously reported that the human Fic protein, HYPE/FicD, is a novel regulator of the unfolded protein response (UPR) that maintains homeostasis in the endoplasmic reticulum (ER) in response to stress from misfolded proteins. Specifically, HYPE regulates UPR by adenylylating the ER chaperone, BiP/GRP78, which serves as a sentinel for UPR activation. Maintaining ER homeostasis is critical for determining cell fate, thus highlighting the importance of the HYPE-BiP interaction. Here, we study the kinetic and structural parameters that determine the HYPE-BiP interaction. By measuring the binding and kinetic efficiencies of HYPE in its activated (Adenylylation-competent) and wild type (de-AMPylation-competent) forms for BiP in its wild type and ATP-bound conformations, we determine that HYPE displays a nearly identical preference for the wild type and ATP-bound forms of BiP in vitro and preferentially de-AMPylates the wild type form of adenylylated BiP. We also show that AMPylation at BiP’s Thr366 versus Thr518 sites differentially affect its ATPase activity, and that HYPE does not adenylylate UPR accessory proteins like J-protein ERdJ6. Using molecular docking models, we explain how HYPE is able to adenylylate Thr366 and Thr518 sites in vitro. While a physiological role for AMPylation at both the Thr366 and Thr518 sites has been reported, our molecular docking model supports Thr518 as the structurally preferred modification site. This is the first such analysis of the HYPE-BiP interaction and offers critical insights into substrate specificity and target recognition.  相似文献   

2.
《Journal of molecular biology》2019,431(12):2266-2282
During disease, cells experience various stresses that manifest as an accumulation of misfolded proteins and eventually lead to cell death. To combat this stress, cells activate a pathway called unfolded protein response that functions to maintain endoplasmic reticulum (ER) homeostasis and determines cell fate. We recently reported a hitherto unknown mechanism of regulating ER stress via a novel post-translational modification called Fic-mediatedadenylylation/AMPylation. Specifically, we showed that the human Fic (filamentation induced by cAMP) protein, HYPE/FicD, catalyzes the addition of an adenosine monophosphate (AMP) to the ER chaperone, BiP, to alter the cell's unfolded protein response-mediated response to misfolded proteins. Here, we report that we have now identified a second target for HYPE—alpha-synuclein (αSyn), a presynaptic protein involved in Parkinson's disease. Aggregated αSyn has been shown to induce ER stress and elicit neurotoxicity in Parkinson's disease models. We show that HYPE adenylylates αSyn and reduces phenotypes associated with αSyn aggregation invitro, suggesting a possible mechanism by which cells cope with αSyn toxicity.  相似文献   

3.
4.
5.
Eukaryotic cells respond to stress caused by the accumulation of unfolded/misfolded proteins in the endoplasmic reticulum by activating the intracellular signaling pathways referred to as the unfolded protein response (UPR). In metazoans, UPR consists of three parallel branches, each characterized by its stress sensor protein, IRE1, ATF6, and PERK, respectively. In Drosophila, IRE1/XBP1 pathway is considered to function as a major branch of UPR; however, its physiological roles during the normal development and homeostasis remain poorly understood. To visualize IRE1/XBP1 activity in fly tissues under normal physiological conditions, we modified previously reported XBP1 stress sensing systems (Souid et al., Dev Genes Evol 217: 159–167, 2007; Ryoo et al., EMBO J 26: 242-252, 2007), based on the recent reports regarding the unconventional splicing of XBP1/HAC1 mRNA (Aragon et al., Nature 457: 736–740, 2009; Yanagitani et al., Mol Cell 34: 191–200, 2009; Science 331: 586–589, 2011). The improved XBP1 stress sensing system allowed us to detect new IRE1/XBP1 activities in the brain, gut, Malpighian tubules, and trachea of third instar larvae and in the adult male reproductive organ. Specifically, in the larval brain, IRE1/XBP1 activity was detected exclusively in glia, although previous reports have largely focused on IRE1/XBP1 activity in neurons. Unexpected glial IRE1/XBP1 activity may provide us with novel insights into the brain homeostasis regulated by the UPR.  相似文献   

6.
7.
Accumulation of unfolded protein or misfolded protein causes endoplasmic reticulum (ER) stress. Increased salt concentration activates a stress response pathway in the ER in Arabidopsis thaliana to induce the expression of several salt stress response genes, leading to a more optimal protein folding environment in the ER. In addition, some salt stress-regulated proteins require zinc for their activity, including some zinc-dependent DNA binding proteins and zinc-finger proteins. In a recent study, we reported that ZTP29, a putative zinc transporter at the ER membrane, is involved in the response to salt stress through regulation of zinc level in the ER to induce the UPR pathway. In this addendum, we propose a testable hypothesis for the role of ZTP29 in the response to salt stress via the regulation of zinc levels in the ER.Key words: zinc, ER stress, unfolded protein response, salt stress, arabidopsisHigh salinity is a common abiotic stress that adversely affects plant growth and crop production.1 Plants must sense the stress and transduce stress signals to activate response pathways leading to adaptation to, or tolerance of, the abiotic stress in salt environment.2 Salt stress activates a stress response pathway in the endoplasmic reticulum (ER) in Arabidopsis thaliana, indicating that the adaptation of plants to salt stress involves ER stress signal regulation.3,4 There is limited understanding of molecular mechanisms on ER stress in plants, as compared to yeast and mammalian cells. bZIP60, bZIP28, bZIP17 are three membrane-associated basic domain/leucine zipper (bZIP) factors, which have been reported as candidates for ER-folding proteins in plants.57 BiP acts as a general chaperone in the ER lumen, due to its ability to discriminate between properly folded and unfolded protein structures.8 Unfolded or misfolded proteins are retained in the ER and form stable complexes with BiP and other ER resident chaperones.9 Zinc deficiency induces unfolded protein response (UPR) in most eukaryotes.10 Zinc is an important trace element, which participates in physiological and biochemical process in vivo. The requirement of zinc for proper ER function is evolutionarily conserved.  相似文献   

8.
A signaling network called the unfolded protein response (UPR) resolves the protein-folding defects in the endoplasmic reticulum (ER) from yeasts to humans. In the yeast Saccharomyces cerevisiae, the UPR activation involves (i) aggregation of the ER-resident kinase/RNase Ire1 to form an Ire1 focus, (ii) targeting HAC1 pre-mRNA toward the Ire1 focus that cleaves out an inhibitory intron from the mRNA, and (iii) translation of Hac1 protein from the spliced mRNA. Targeting HAC1 mRNA to the Ire1 focus requires a cis-acting bipartite element (3′BE) located at the 3′ untranslated leader. Here, we report that the 3′BE plays an additional role in promoting translation from the spliced mRNA. We also report that a high dose of either of two paralogue kinases, Kin1 and Kin2, overcomes the defective UPR caused by a mutation in the 3′BE. These results define a novel role for Kin kinases in the UPR beyond their role in cell polarity and exocytosis. Consistently, targeting, splicing, and translation of HAC1 mRNA are substantially reduced in the kin1Δ kin2Δ strain. Furthermore, we show that Kin2 kinase domain itself is sufficient to activate the UPR, suggesting that Kin2 initiates a signaling cascade to ensure an optimum UPR.  相似文献   

9.
HLA-B27 plays a central role in the pathogenesis of many spondyloarthropathies and in particular ankylosing spondylitis. The observation that the HLA-B27 heavy chain has a tendency to misfold has raised the possibility that associated diseases may belong in a rapidly expanding category of protein misfolding disorders. The synthesis of the HLA-B27 heavy chain, assembly with β2m and the loading of peptide cargo, occurs in the endoplasmic reticulum (ER) before transport to the cell surface. The evidence indicates that misfolding occurs in the ER prior to β2m association and peptide optimization and is manifested in the formation of aberrant inter- and intra-chain disulfide bonds and accumulation of heavy chain bound to the chaperone BiP. Enhanced accumulation of misfolded heavy chains during the induction of class I expression by cytokines, can cause ER stress resulting in activation of the unfolded protein response (UPR).Effects of UPR activation on cytokine production are beginning to emerge and may provide important missing links between HLA-B27 misfolding and spondyloarthritis. In this chapter we will review what has been learned about HLA-B27 misfolding in human cells and in the transgenic rat model of spondyloarthritis-like disease, considering it in the context of other protein misfolding disorders. These studies provide a framework to support much needed translational work assessing HLA-B27 misfolding and UPR activation in patient-derived material, its consequences for disease pathogenesis and ultimately how and where to focus intervention strategies.Key words: ankylosing spondylitis, arthritis, protein misfolding, unfolded protein response, interleukin (IL)-17, cytokines  相似文献   

10.
11.
12.
13.
14.
Molecular chaperones and foldases are a diverse group of proteins that in vivo bind to misfolded or unfolded proteins (non-native or unstable proteins) and play important role in their proper folding. Stress conditions compel altered and heightened chaperone and foldase expression activity in the endoplasmic reticulum (ER), which highlights the role of these proteins, due to which several of the proteins under these classes were identified as heat shock proteins. Different chaperones and foldases are active in different cellular compartment performing specific tasks. The review will discuss the role of ER chaperones and foldases under stress conditions, to maintain proper protein folding dynamics in the plant cells and recent advances in the field. The ER chaperones and foldases, which are described in article, are binding protein (BiP), glucose regulated protein (GRP94), protein-disulfide isomerase (PDI), peptidyl-prolyl isomerases (PPI) or immunophilins, calnexin and calreticulin.Key words: Abiotic stress, chaperones, endoplasmic reticulum, foldases, immunophilins, protein folding, signal transduction  相似文献   

15.
The unfolded protein response (UPR) is an intracellular signaling pathway that counteracts variable stresses that impair protein folding in the endoplasmic reticulum (ER). As such, the UPR is thought to be a homeostat that finely tunes ER protein folding capacity and ER abundance according to need. The mechanism by which the ER stress sensor Ire1 is activated by unfolded proteins and the role that the ER chaperone protein BiP plays in Ire1 regulation have remained unclear. Here we show that the UPR matches its output to the magnitude of the stress by regulating the duration of Ire1 signaling. BiP binding to Ire1 serves to desensitize Ire1 to low levels of stress and promotes its deactivation when favorable folding conditions are restored to the ER. We propose that, mechanistically, BiP achieves these functions by sequestering inactive Ire1 molecules, thereby providing a barrier to oligomerization and activation, and a stabilizing interaction that facilitates de-oligomerization and deactivation. Thus BiP binding to or release from Ire1 is not instrumental for switching the UPR on and off as previously posed. By contrast, BiP provides a buffer for inactive Ire1 molecules that ensures an appropriate response to restore protein folding homeostasis to the ER by modulating the sensitivity and dynamics of Ire1 activity.  相似文献   

16.
The membrane of the endoplasmic reticulum (ER) of a cell forms contacts directly with mitochondria whereby the contact is referred to as the mitochondrion-associated ER membrane or the MAM. Here we found that the MAM regulates cellular survival via an MAM-residing ER chaperone the sigma-1 receptor (Sig-1R) in that the Sig-1R chaperones the ER stress sensor IRE1 to facilitate inter-organelle signaling for survival. IRE1 is found in this study to be enriched at the MAM in CHO cells. We found that IRE1 is stabilized at the MAM by Sig-1Rs when cells are under ER stress. Sig-1Rs stabilize IRE1 and thus allow for conformationally correct IRE1 to dimerize into the long-lasting, activated endonuclease. The IRE1 at the MAM also responds to reactive oxygen species derived from mitochondria. Therefore, the ER-mitochondrion interface serves as an important subcellular entity in the regulation of cellular survival by enhancing the stress-responding signaling between mitochondria, ER, and nucleus.  相似文献   

17.
Sarcolemmal membrane-associated protein (SLMAP) is a tail-anchored protein involved in fundamental cellular processes, such as myoblast fusion, cell cycle progression, and chromosomal inheritance. Further, SLMAP misexpression is associated with endothelial dysfunctions in diabetes and cancer. SLMAP is part of the conserved striatin-interacting phosphatase and kinase (STRIPAK) complex required for specific signaling pathways in yeasts, filamentous fungi, insects, and mammals. In filamentous fungi, STRIPAK was initially discovered in Sordaria macrospora, a model system for fungal differentiation. Here, we functionally characterize the STRIPAK subunit PRO45, a homolog of human SLMAP. We show that PRO45 is required for sexual propagation and cell-to-cell fusion and that its forkhead-associated (FHA) domain is essential for these processes. Protein-protein interaction studies revealed that PRO45 binds to STRIPAK subunits PRO11 and SmMOB3, which are also required for sexual propagation. Superresolution structured-illumination microscopy (SIM) further established that PRO45 localizes to the nuclear envelope, endoplasmic reticulum, and mitochondria. SIM also showed that localization to the nuclear envelope requires STRIPAK subunits PRO11 and PRO22, whereas for mitochondria it does not. Taken together, our study provides important insights into fundamental roles of the fungal SLMAP homolog PRO45 and suggests STRIPAK-related and STRIPAK-unrelated functions.  相似文献   

18.
Accumulation of misfolded secretory proteins causes cellular stress and induces the endoplasmic reticulum (ER) stress pathway, the unfolded protein response (UPR). Although the UPR has been extensively studied, little is known about the molecular changes that distinguish the homeostatic and stressed ER. The increase in levels of misfolded proteins and formation of complexes with chaperones during ER stress are predicted to further crowd the already crowded ER lumen. Surprisingly, using live cell fluorescence microscopy and an inert ER reporter, we find the crowdedness of stressed ER, treated acutely with tunicamycin or DTT, either is comparable to homeostasis or significantly decreases in multiple cell types. In contrast, photobleaching experiments revealed a GFP-tagged variant of the ER chaperone BiP rapidly undergoes a reversible quantitative decrease in diffusion as misfolded proteins accumulate. BiP mobility is sensitive to exceptionally low levels of misfolded protein stressors and can detect intermediate states of BiP availability. Decreased BiP availability temporally correlates with UPR markers, but restoration of BiP availability correlates less well. Thus, BiP availability represents a novel and powerful tool for reporting global secretory protein misfolding levels and investigating the molecular events of ER stress in single cells, independent of traditional UPR markers.  相似文献   

19.
As the biopharmaceutical industry expands, improving the production of therapeutic proteins using Chinese hamster ovary (CHO) cells is important. However, excessive and complicated protein production causes protein misfolding and triggers endoplasmic reticulum (ER) stress. When ER stress occurs, cells mediate the unfolded protein response (UPR) pathway to restore protein homeostasis and folding capacity of the ER. However, when the cells fail to control prolonged ER stress, UPR induces apoptosis. Therefore, monitoring the degree of UPR is required to achieve high productivity and the desired quality. In this study, we developed a fluorescence-based UPR monitoring system for CHO cells. We integrated mGFP into endogenous HSPA5 encoding BiP, a major ER chaperone and the primary ER stress activation sensor, using CRISPR/Cas9-mediated targeted integration. The mGFP expression level changed according to the ER stress induced by chemical treatment and batch culture in the engineered cell line. Using this monitoring system, we demonstrated that host cells and recombinant CHO cell lines with different mean fluorescence intensities (MFI; basal expression levels of BiP) possess a distinct capacity for stress culture conditions induced by recombinant protein production. Antibody-producing recombinant CHO cell lines were generated using site-specific integration based on host cells equipped with the BiP reporter system. Targeted integrants showed a strong correlation between productivity and MFI, reflecting the potential of this monitoring system as a screening readout for high producers. Taken together, these data demonstrate the utility of the endogenous BiP reporter system for the detection of real-time dynamic changes in endogenous UPR and its potential for applications in recombinant protein production during CHO cell line development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号