首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 242 毫秒
1.
Aims:  To characterize biofilm formation of a chlorobenzoates (CBs) degrading bacterium, Burkholderia sp. NK8, with another bacterial species, and the biodegradation activity against CBs in the mixed-species biofilm.
Methods and Results:  Burkholderia sp. NK8 was solely or co-cultured with each of five other representative bacteria in microtitre dishes. Biofilm formation involving the strain NK8 was synergistically promoted by co-culturing with only Pseudomonas aeruginosa PAO1. Epifluorescent microscopy revealed that cells of the bacterial strain NK8 were viable and distributed randomly in the mixed-species biofilms. Enumeration of the attached cells on the surface of wells revealed that cells of the strain NK8 increased approx. 10-fold by the co-culture with the strain PAO1 compared to those by monoculture of the strain NK8, and the degradation activity of 3-chlorobenzoate by the dual-species biofilms was more promoted than that by the strain NK8-monocultured biofilms.
Conclusions:  Enhanced biofilm formation of Burkholderia sp. NK8 by the bacterial consortium occurred, but is determined by the partner bacterial species. The mixed-species biofilms have the advantage to degrade CBs on a solid surface.
Significance and Impact of the Study:  This study provides a significance of bacterial consortia on the biofilm formation and the degradation activity of Burkholderia sp. NK8, which contribute for complete degradation of chlorinated aromatics.  相似文献   

2.
AIMS: The demonstration of the antibiofilm effects of pharmaceutical microemulsions. METHODS AND RESULTS: Microemulsions were prepared as physically stable oil/water systems. Previous work by this group has shown that microemulsions are highly effective antimembrane agents that result in rapid losses of viability in planktonic populations of Pseudomonas aeruginosa and Staphylococcus aureus. In this experiment a microemulsion preparation was used upon established biofilm cultures of Ps. aeruginosa PA01 for a period of 4 h. The planktonic MIC of sodium pyrithione and the planktonic and biofilm MICs of cetrimide were used as positive controls and a biofilm was exposed to a volume of normal sterile saline as a treatment (negative) control. Results indicate three log-cycle reductions in viability within the microemulsion treated biofilm, as compared to those observed in control treatments of similar biofilms (one log-cycle reduction in viabilities). CONCLUSIONS: The results indicate that the microemulsions are highly effective antibiofilm agents. SIGNIFICANCE AND IMPACT OF THE STUDY: This study suggests that microemulsions may have a role in the treatment of industrial and environmental biofilms.  相似文献   

3.
AIMS: The aim of this study is to investigate whether pulsed ultrasound (US) in combination with gentamicin yields a decreased viability of bacteria in biofilms on bone cements in vivo. METHODS AND RESULTS: Bacterial survival on bone cement in the presence and absence of ultrasound was compared in a rabbit model. Two bone cement samples with an Escherichia coli ATCC 10798 biofilm were implanted in a total of nine rabbits. In two groups bone cement discs loaded with gentamicin, freshly prepared and aged were used, and in one group unloaded bone cement discs in combination with systemically administered gentamicin. Pulsed ultrasound with a frequency of 28.48 kHz and a maximum acoustic intensity of 500 mW cm(-2) was applied continuously from 24 h till 72 h postsurgery on one of the two implanted discs. After euthanization and removal of the bacteria from the discs, the number of viable bacteria were quantified and skin samples were analysed for histopathological examination. Application of ultrasound, combined with gentamicin, reduced the viability of the biofilms in all three groups varying between 58 and 69% compared with the negative control. Histopathological examinations showed no skin lesions. CONCLUSIONS: Ultrasound resulted in a tendency of improved efficacy of gentamicin, either applied locally or systemically. Usage of ultrasound in this model proved to be safe. SIGNIFICANCE AND IMPACT OF THE STUDY: This study implies that ultrasound could improve the prevention of infection immediately after surgery, especially because the biomaterials, gentamicin and ultrasound used in this model are all in clinical usage, but not yet combined in clinical practice.  相似文献   

4.
The decontamination of implant surfaces represents the basic procedure in the management of peri-implant diseases, but it is still a challenge. The study aimed to evaluate the degradation of oral biofilms grown in situ on machined titanium (Ti) discs by cold atmospheric plasma (CAP). ~ 200 Ti discs were exposed to the oral cavities of five healthy human volunteers for 72?h. The resulting biofilms were divided randomly between the following treatments: CAP (which varied in mean power, treatment duration, and/or the gas mixture), and untreated and treated controls (diode laser, air-abrasion, chlorhexidine). The viability, quantity, and morphology of the biofilms were determined by live/dead staining, inoculation onto blood agar, quantification of the total protein content, and scanning electron microscopy. Exposure to CAP significantly reduced the viability and quantity of biofilms compared with the positive control treatments. The efficacy of treatment with CAP correlated with the treatment duration and plasma power. No single method achieved complete biofilm removal; however, CAP may provide an effective support to established decontamination techniques for treatment of peri-implant diseases.  相似文献   

5.
Deep subsurface biofilms are estimated to host the majority of prokaryotic life on Earth, yet fundamental aspects of their ecology remain unknown. An inherent difficulty in studying subsurface biofilms is that of sample acquisition. While samples from marine and terrestrial deep subsurface fluids have revealed abundant and diverse microbial life, limited work has described the corresponding biofilms on rock fracture and pore space surfaces. The recently established Deep Mine Microbial Observatory (DeMMO) is a long‐term monitoring network at which we can explore the ecological role of biofilms in fluid‐filled fractures to depths of 1.5 km. We carried out in situ cultivation experiments with single minerals representative of DeMMO host rock to explore the ecological drivers of biodiversity and biomass in biofilm communities in the continental subsurface. Coupling cell densities to thermodynamic models of putative metabolic reactions with minerals suggests a metabolic relationship between biofilms and the minerals they colonize. Our findings indicate that minerals can significantly enhance biofilm cell densities and promote selective colonization by taxa putatively capable of extracellular electron transfer. In turn, minerals can drive significant differences in biodiversity between fluid and biofilm communities. Given our findings at DeMMO, we suggest that host rock mineralogy is an important ecological driver in deep continental biospheres.  相似文献   

6.
AIMS: To evaluate the effect of Nidus Vespae extract and chemical fractions on the viability and architecture of Streptococcus mutans biofilms. METHODS AND RESULTS: The raw material was first extracted using 95% ethanol/water. Subsequent fractions were prepared from this extract using cyclohexane/ethyl acetate, petroleum ether/ethyl acetate and chloroform/methanol. The biomass dry weight and total protein of samples treated with Nidus Vespae extract and chemical fractions were significantly less than those treated with the vehicle control (P < 0.05). Biofilms treated with Nidus Vespae also resulted in lower percentage of polysaccharide composition. The pH decrease in the biofilm matrix was retarded by Nidus Vespae compared with the vehicle control. Architecture of biofilms treated with Nidus Vespae was different than in the vehicle control and 0.05% chlorhexidine. CONCLUSIONS: Chloroform/methanol fraction was the most effective treatment. SIGNIFICANCE AND IMPACT OF THE STUDY: The significant antibiofilm activity demonstrated by Nidus Vespae shows it to be a promising source of novel anticariogenic agents.  相似文献   

7.
AIMS: To develop a perfusion biofilm system to model tongue biofilm microflora and their physiological response to sulfur-containing substrates (S-substrates) in terms of volatile sulfide compound (VSC) production. METHODS AND RESULTS: Tongue-scrape inocula were used to establish in vitro perfusion biofilms which were examined in terms of ecological composition using culture-dependent and independent (PCR-DGGE) approaches. VSC-specific activity of cells was measured by a cell suspension assay, using a portable industrial sulfide monitor which was also used to monitor VSC production from biofilms in situ. Quasi steady states were achieved by 48 h and continued to 96 h. The mean (+/-SEM) growth rate for 72-h biofilms (n=4) was micro=0.014 h(-1) (+/-0.005 h(-1)). Comparison of biofilms, perfusate and original inoculum showed their ecological composition to be similar (Pearson coefficient>0.64). Perfusate and biofilm cells derived from the same condition (co-sampled) were equivalent with regard to VSC-specific activities which were up-regulated in the presence of S-substrates. CONCLUSIONS: The model maintained a stable tongue microcosm suitable for studying VSC production; biofilm growth in the presence of S-substrates up-regulated VSC activity. SIGNIFICANCE AND IMPACT OF THE STUDY: The method is apt for studying ecological and physiological aspects of oral biofilms and could be useful for screening inhibitory agents.  相似文献   

8.
Engineered biofilm consortia have the potential to solve important biotechnological problems that have proved difficult for monoculture biofilms and planktonic consortia, such as conversion of lignocellulosic material to useful biochemicals. While considerable experimental progress has been reported for engineering and characterizing biofilm consortia, the field still lacks in silico tools for simulation, design, and optimization of stable, robust, and productive designed consortia. We developed biofilm consortia metabolic models for two coculture systems centered around the ecological design motif of a primary cell type that utilizes a supplied electron donor and secretes acetate as a byproduct and a secondary cell type that consumes the acetate, relieving byproduct inhibition on the primary cell type and enhancing overall system biomass. The models presented in this paper predict that distinct metabolic niches for the two cell types could be established by supplying electron donors and acceptors at opposite ends of the biofilm and that acetate consumption by the secondary cell type could increase total biomass accumulation and the synthesis of valuable biochemicals, such as isobutanol, by the primary cell type. System tunability is enhanced when each cell type is supplied with a unique terminal electron acceptor at opposite ends of the biofilm rather than competing for a common electron acceptor. Our model provides good qualitative agreement with data for a synthetic Escherichia coli coculture system, suggesting that the proposed design rules may have wide applicability to engineered biofilm consortia.  相似文献   

9.
Aims: To investigate carbon transformation by biofilms and changes in biofilm architecture, metabolic activity and planktonic cell yield in response to fluctuating carbon availability. Methods and Results: Pseudomonas sp. biofilms were cultured under alternating carbon‐replete and carbon‐limited conditions. A shift to medium without added carbon led to a 90% decrease in biofilm respiration rate and a 40% reduction in planktonic cell yield within 1 h. Attached cell division and progeny release were shown to contribute to planktonic cell numbers during carbon limitation. Development of a significantly enlarged biofilm surface area during carbon limitation facilitated a rapid increase in whole‐biofilm metabolic activity, cell yield and biomass upon the re‐introduction of carbon after 8 days of limitation. The cumulative number of planktonic cells (>1010 CFU) released from the biofilm during the cultivation period contained only 1·0% of the total carbon available to the biofilm, with 6·5% of the carbon retained in the biofilm and 54% mineralized to CO2. Conclusions: Biofilm‐derived planktonic cell yield is a proliferation mechanism. The rapid response of biofilms to environmental perturbations facilitates the optimal utilization of resources to promote both proliferation and survival. Biofilms function as efficient catalysts for environmental carbon transformation and mineralization. Significance and Impact of the study: A greater understanding of the relationship between biofilm form and function can inform strategies intended to control and/or promote biofilm formation.  相似文献   

10.
AIMS: To study the morphological patterns of Aspergillus niger during biofilm formation on polyester cloth by using cryo-scanning electron microscopy related to lignocellulolytic enzyme productivity. METHODS AND RESULTS: Biofilm and pellet samples obtained from flask cultures were examined at -80 degrees C in a LEO PV scanning electron microscope. Spore adhesion depends on both its rough surface and adhesive substances that form a pad between spore and support. An extracellular matrix surrounding germ tubes and hyphae was also seen. Biofilm mycelia showed an orderly distribution forming surface and inner channels, while pellets showed highly intertwined superficial hyphae and a densely packed deep mycelium. Morphological differences between both types of culture correlated with differences in enzyme volumetric and specific productivities. Biofilm cultures produced higher filter paper cellulase, endoglucanase, beta-glucosidase and xylanase volumetric and specific productivities than submerged cultures. CONCLUSIONS: Fungal biofilms are morphologically efficient systems for enzyme production. Favourable physiological aspects are shared with solid state fermentation, but fungal biofilms present better possibilities for process control and scale-up. SIGNIFICANCE AND IMPACT OF THE STUDY: The results of this study support the importance of morphology in the productivity of fungal submerged processes, placing biofilms in a preferential category.  相似文献   

11.
Phenotypic and genotypic cell differentiation is considered an important feature that confers enhanced antifungal resistance in candidal biofilms. Particular emphasis has been placed in this context on the viability of biofilm subpopulations, and their heterogeneity with regard to the production of extracellular polymeric substances (EPS). We therefore assessed the utility of two different labeled lectins Erythrina cristagalli (ECA) and Canavalia ensiformis (ConA), for EPS visualization. To evaluate the viability of candidal biofilms, we further studied combination stains, SYTO9 and propidium iodide (PI). The latter combination has been successfully used to assess bacterial, but not fungal, viability although PI alone has been previously used to stain nuclei in fungal cells. Candida albicans biofilms were developed in a rotating disc biofilm reactor and observed in situ using confocal scanning laser microscopy (CSLM). Our data indicate that SYTO9 and PI are reliable vital stains that may be used to investigate C. albicans biofilms. When used together with ConA, the lectin ECA optimized EPS visualization and revealed differential production of this material in mature candidal biofilms. The foregoing probes and stains and the methodology described should help better characterize C. albicans biofilms in terms of cell their viability, and EPS production.  相似文献   

12.
Aims: This work describes the effects of the presence of nonconjugative plasmids in Escherichia coli cells forming biofilms on a flow cell system under turbulent conditions. Methods and Results: The pET28 and pUC8 plasmids were separately used to transform E. coli JM109(DE3). Biofilm formation, removal and antimicrobial susceptibility to the cationic biocide benzyldimethyldodecylammonium chloride (BDMDAC) were assessed. Transformed cells formed thicker biofilms with higher cell densities, and the metabolic activity was higher whereas nontransformed cells had higher viabilities. Biocide treatment was not efficient for biofilm removal but was effective for cell killing. Biofilms formed by nontransformed cells were less affected by the treatment. Conclusions: Cell transformation with the tested plasmids has significant impacts on biofilm formation, cell viability, metabolic activity and resistance to biocide treatment. Our results show that in biofilm studies involving deletion/complementation experiments, a control with the strain carrying a plasmid devoid of the gene under investigation must be included so that the real effects of the genetic manipulation are not biased by the presence of the plasmid backbone. Significance and Impact of the Study: This is the first report where the presence of nonconjugative plasmids is assessed in flow conditions analysing biofilm formation, removal and antimicrobial susceptibility of high cell‐density biofilms.  相似文献   

13.
14.
AIMS: To investigate the use of confocal Raman microspectroscopy (CRM) for the analysis of the structure, composition and development of fully hydrated biofilms. METHODS AND RESULTS: Pseudomonas aeruginosa PAO1 biofilms were cultured in a flow cell in minimal nutrient medium (artificial sea water) and their development was followed for up to 3 weeks. The spectroscopic signature of the biofilm cells and extracellular polymeric substances (EPS) were differentiated and their distribution in biofilm colonies and within water channels was mapped in-plane and -depth. The colonies were initially amorphous, mainly composed of cells with no detectable amount of EPS. They developed rapidly to give round colonies composed of a cellular core enclosed in a sheath of EPS. The EPS continued to increase and spread throughout the biofilm to become the dominating feature of aged colonies. Colonies with a liquid core morphology - characteristic of the seeding dispersal process - were also observed. CONCLUSIONS: This study demonstrated that CRM can be used to monitor the distribution of biofilm components in fully hydrated undisturbed biofilms over time. SIGNIFICANCE AND IMPACT OF THE STUDY: Confocal Raman microspectroscopy facilitates the analysis of hydrated, live bacterial biofilms as a function of space and time, thus making it a suitable technique for investigating the effects of various additives and environmental factors on biofilm growth.  相似文献   

15.
Many Candida spp. produce surface-adherent biofilm populations that are resistant to antifungal compounds and other environmental stresses. Recently, certain chelating agents have been recognized as having strong antimicrobial activity against biofilms of Candida species. This study investigated and characterized the concentration- and time-dependent killing of Candida biofilms by the chelators tetrasodium EDTA and sodium diethyldithiocarbamate. Here, Candida albicans and Candida tropicalis biofilms were cultivated in the Calgary Biofilm Device and then exposed to gradient arrays of these agents. Population survival was evaluated by viable cell counting and by confocal laser scanning microscopy (CLSM) in conjunction with fluorescent viability staining. At concentrations of > or =2 mM, both EDTA and diethyldithiocarbamate killed c. 90-99.5% of the biofilm cell populations. Notably, a small fraction (c. 0.5-10%) of biofilm cells were able to withstand the highest concentrations of these antifungals that were tested (16 and 32 mM for EDTA and diethyldithiocarbamate, respectively). Interestingly, CLSM revealed that these surviving cells were irregularly distributed throughout the biofilm community. These data suggest that the use of chelating agents against biofilms of Candida spp. may be limited by the refractory nature of a variant cell subpopulation in the surface-adherent community.  相似文献   

16.
This study investigated the antimicrobial effects of the ethanolic extract of Brazilian red propolis (BRP) on multispecies biofilms. A seven-day-old subgingival biofilm with 32 species was grown in a Calgary device. Biofilms were treated with BRP (1,600, 800, 400 and 200?μg ml?1) twice a day for 1?min, starting from day 3. Chlorhexidine (0.12%) and dilution-vehicle were used as positive and negative controls, respectively. On day 7, metabolic activity and the microbial composition of the biofilms by DNA-DNA hybridization were determined. The viability data were analyzed by one-way ANOVA followed by Tukey’s post hoc, whereas the microbial composition data were transformed via BOX-COX and analyzed using Dunnett’s post hoc. BRP (1,600?μg ml?1) decreased biofilm metabolic activity by 45%, with no significant difference from chlorhexidine-treated samples. BRP (1,600?μg ml?1) and chlorhexidine significantly reduced levels of 14 bacterial species compared to the vehicle control. Taken together, BRP showed promising antimicrobial properties which may be useful in periodontal disease control.  相似文献   

17.
doi:10.1111/j.1741‐2358.2009.00325.x
A study of the efficacy of ultrasonic waves in removing biofilms Objective: The removal of adherent biofilms was assessed using ultrasonic waves in a non‐contact mode. Materials and Methods: In in vitro experiments, Streptococcus mutans (S. mutans) biofilms were exposed to ultrasonic waves at various frequencies (280 kHz, 1 MHz, or 2 MHz), duty ratios (0–90%), and exposure times (1–3 minutes), and the optimal conditions for biofilm removal were identified. Furthermore, the effect of adding a contrast medium, such as micro bubbles (Sonazoid®), was examined. The spatial distribution and architecture of S. mutans biofilms before and after ultrasonic wave exposure were examined via scanning electron microscopy. The biofilm removal effect was also examined in in vivo experiments, using a custom‐made oral cleaning device. Results: When a 280 kHz probe was used, the biofilm‐removing effect increased significantly compared to 1 and 2 MHz probes; more than 80% of the adherent biofilm was removed with a duty cycle of 50–90% and a 3 minutes exposure time. The maximum biofilm‐removing effect was observed with a duty cycle of 80%. Furthermore, the addition of micro bubbles enhanced this biofilm‐removing effect. In in vivo experiments, moderate biofilm removal was observed when a 280 kHz probe was used for 5 minutes. Conclusions: This study demonstrated that ultrasonic wave exposure in a non‐contact mode effectively removed adherent biofilms composed of S. mutans in vitro.  相似文献   

18.
AIM: To investigate the effect of starvation, surface attachment and growth in a biofilm on the susceptibility of Aureobasidium pullulans to the biocides 2-n-octyl-4-isothiazolin-3-one (OIT) and sodium hypochlorite (NaOCl). METHODS AND RESULTS: Fluorescence loss from a green fluorescent protein (GFP)-transformed strain was used to monitor real-time loss in viability as previously described in situ in 96-well plates. Exponential phase, yeast-like (YL) cells were settled in the bottom of the wells as a low-density monolayer (LDM) and were susceptible to all biocide concentrations (25-100 mug ml(-1)). The exponential phase YL cells were either starved for 48 h in suspension or starved for 48 h as LDMs in the wells. Starvation in both cases led to a small reduction in susceptibility to the biocides. In contrast, 48-h biofilms grown in malt extract broth showed an apparent lack of susceptibility to 25 and 50 mug ml(-1) OIT and to 25-100 mug ml(-1) NaOCl. However, when the OIT concentration was increased to compensate for the higher cell density in the biofilm, the biofilms were found to be equally susceptible to the LDM. CONCLUSIONS: Starvation of A. pullulans YL cells either in suspension or as attached LDM resulted in a decrease in susceptibility to low concentrations of both OIT and NaOCl while the apparent reduced susceptibility of mature biofilms was due to the increase in biofilm cell density rather than true biofilm resistance per se. SIGNIFICANCE AND IMPACT OF THE STUDY: Monitoring fluorescence loss from the GFP-transformed strain of A. pullulans can be used as a fast and reliable method for monitoring cell death in real time as a response to biocide and antimicrobial challenge.  相似文献   

19.
AIMS: The aim of this study was to use confocal laser scanning microscopy (CLSM) to examine the spatial distribution of both viable and nonviable bacteria within microcosm dental plaques grown in vitro. Previous in vivo studies have reported upon the distribution of viable bacteria only. METHODS AND RESULTS: Oral biofilms were grown on hydroxyapatite (HA) discs in a constant-depth film fermenter (CDFF) from a saliva inoculum. The biofilms were stained with the BacLight LIVE/DEAD system and examined by CLSM. Fluorescence intensity profiles through the depth of the biofilm showed an offset between the maximum viable intensity and the maximum nonviable intensity. Topographical differences between the surface properties of the viable and nonviable biofilm virtual surfaces were also measured. CONCLUSIONS: The profile of fluorescence intensity from viable and nonviable staining suggested that the upper layers of the biofilm contain proportionally more viable bacteria than the lower regions of the biofilm. SIGNIFICANCE AND IMPACT OF STUDY: Viability profiling records the transition from predominantly viable to nonviable bacteria through biofilms suggesting that this technique may be of use for quantifying the effects of antimicrobial compounds upon biofilms. The distribution of viable bacteria was similar to that found in dental plaque in vivo suggesting that the CDFF produces in vitro biofilms which are comparable to their in vivo counterparts in terms of the spatial distribution of viable bacteria.  相似文献   

20.
AIMS: To evaluate both the antimicrobial activity and the effectiveness of a combination of sodium hypochlorite and hydrogen peroxide (Ox-B) for killing Pseudomonas aeruginosa ATCC 19142 cells and removing P. aeruginosa biofilms on aluminum or stainless steel surfaces. METHODS AND RESULTS: Pseudomonas aeruginosa biofilms were developed in tryptic soy broth containing vertically suspended aluminium or stainless steel plates. Biofilms were exposed to a mixed sodium hypochlorite and hydrogen peroxide solution as a sanitizer for 1, 5 and 20 min. The sanitizer was then neutralized, the cells dislodged from the test surfaces, and viable cells enumerated. Cell morphologies were determined using scanning (SEM) and transmission electron microscopy (TEM). Cell viability was determined by confocal scanning laser microscopy (CSLM). Biofilm removal was monitored by Fourier transform infrared (FTIR) spectrophotometry. Cell numbers were reduced by 5-log to 6-log after 1 min exposure and by 7-log after 5 min exposure to Ox-B. No viable cells were detected after a 20 min exposure. Treatment with equivalent concentrations of sodium hypochlorite reduced viable numbers by 3-log to 4-log after 1 min exposure and by 4-log to 6-log after 5 min, respectively. A 20 min exposure achieved a 7-log reduction. Hydrogen peroxide at test concentration treatments showed no effect. FTIR analysis of treated pseudomonad biofilms on aluminium or stainless steel plates showed either a significant reduction or complete removal of biofilm material after a 5 min exposure to the mixed sodium hypochlorite and hydrogen peroxide solution. SEM and TEM images revealed damage to cell wall and cell membranes. CONCLUSIONS: A combination of sodium hypochlorite and hydrogen peroxide effectively killed P. aeruginosa cells and removed biofilms from both stainless steel and aluminium surfaces. SIGNIFICANCE AND IMPACT OF THE STUDY: The combination of sodium hypochlorite and hydrogen peroxide can be used as an alternative disinfectant and/or biofilm remover of contaminated food processing equipment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号