首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abscisic acid (ABA) is important in seed maturation, seed dormancy, stomatal closure, and stress response. Many genes that function in ABA signal transduction pathways have been identified. However, most important signaling molecules involved in the perception of the ABA signal or with ABA receptors have not been identified yet. Receptor-like kinase1 (RPK1), a Leu-rich repeat (LRR) receptor kinase in the plasma membrane, is upregulated by ABA in Arabidopsis thaliana. Here, we show the phenotypes of T-DNA insertion mutants and RPK1-antisense plants. Repression of RPK1 expression in Arabidopsis decreased sensitivity to ABA during germination, growth, and stomatal closure; microarray and RNA gel analysis showed that many ABA-inducible genes are downregulated in these plants. Furthermore, overexpression of the RPK1 LRR domain alone or fused with the Brassinosteroid-insensitive1 kinase domain in plants resulted in phenotypes indicating ABA sensitivity. RPK1 is involved in the main ABA signaling pathway and in early ABA perception in Arabidopsis.  相似文献   

2.
Plant hormone abscisic acid (ABA) plays an indispensable role in the control of leaf senescence, during which ABA signaling depends on its biosynthesis. Nevertheless, the role of ABA transport in leaf senescence remains unknown. Here, we identified two novel RING-box protein-encoding genes UBIQUITIN LIGASE of SENESCENCE 1 and 2 (ULS1 and ULS2) involved in leaf senescence. Lack of ULS1 and ULS2 accelerates leaf senescence, which is specifically promoted by ABA treatment. Furthermore, the expression of senescence-related genes is significantly affected in mature leaves of uls1/uls2 double mutant (versus wild type (WT)) in an ABA-dependent manner, and the ABA content is substantially increased. ULS1 and ULS2 are mainly expressed in the guard cells and aging leaves, and the expression is induced by ABA. Further RNA-seq and quantitative proteomics of ubiquitination reveal that ABA transporter ABCG40 is highly expressed in uls1/uls2 mutant versus WT, though it is not the direct target of ULS1/2. Finally, we show that the acceleration of leaf senescence, the increase of leaf ABA content, and the promotion of stomatal closure in uls1/usl2 mutant are suppressed by abcg40 loss-of-function mutation. These results indicate that ULS1 and ULS2 function in feedback inhibition of ABCG40-dependent ABA transport during ABA-induced leaf senescence and stomatal closure.  相似文献   

3.
S W Hong  J H Jon  J M Kwak    H G Nam 《Plant physiology》1997,113(4):1203-1212
A cDNA clone for a receptor-like protein kinase gene (RPK1) was isolated from Arabidopsis thaliana. The clone is 1952 bp long with 1623 bp of an open reading frame encoding a peptide of 540 amino acids. The deduced peptide (RPK1) contains four distinctive domains characteristic of receptor kinases: (a) a putative amino-terminal signal sequence domain; (b) a domain with five extracellular leucine-rich repeat sequences; (c) a membrane-spanning domain; and (d) a cytoplasmic protein kinase domain that contains all of the 11 subdomains conserved among protein kinases. The RPK1 gene is expressed in flowers, stems, leaves, and roots. Expression of the RPK1 gene is induced within 1 h after treatment with abscisic acid (ABA). The gene is also rapidly induced by several environmental stresses such as dehydration, high salt, and low temperature, suggesting that the gene is involved in a general stress response. The dehydration-induced expression is not impaired in aba-1, abi1-1, abi2-1, and abi3-1 mutants, suggesting that the dehydration-induced expression of the RPK1 gene is ABA-independent. A possible role of this gene in the signal transduction pathway of ABA and the environmental stresses is discussed.  相似文献   

4.
Rab family proteins are small GTP-binding proteins involved in intracellular trafficking. They play critical roles in several plant development processes. Different expression patterns of 46 Rabs in the rice genome were examined in various rice tissues and in leaves treated with plant growth regulators and under senescence conditions. One of the OsRab genes, OsRab7B3, closely associated with senescence in expression pattern, was chosen for functional analysis. Expression of sGFP under the control of the OsRab7B3 promoter increased in leaves when ABA and NaCl were applied or when kept in dark. In transgenic rice overexpressing OsRab7B3, the senescence-related genes were upregulated and leaf senescence was significantly enhanced under dark conditions. Moreover, leaf yellowing occurred earlier in the transgenic plants than in the wild type at the ripening stage. Hence it is suggested that OsRab7B3 act as a stress-inducible gene that plays an important role in the leaf senescence process.  相似文献   

5.
Precocious leaf senescence can reduce crop yield and quality by limiting the growth stage. Melatonin has been shown to delay leaf senescence; however, the underlying mechanism remains obscure. Here, we show that melatonin offsets abscisic acid (ABA) to protect photosystem II and delay the senescence of attached old leaves under the light. Melatonin induced H2O2 accumulation accompanied by an upregulation of melon respiratory burst oxidase homolog D (CmRBOHD) under ABA-induced stress. Both melatonin and H2O2 induced the accumulation of cytoplasmic-free Ca2+ ([Ca2+]cyt) in response to ABA, while blocking of Ca2+ influx channels attenuated melatonin- and H2O2-induced ABA tolerance. CmRBOHD overexpression induced [Ca2+]cyt accumulation and delayed leaf senescence, whereas deletion of Arabidopsis AtRBOHD, a homologous gene of CmRBOHD, compromised the melatonin-induced [Ca2+]cyt accumulation and delay of leaf senescence in Arabidopsis under ABA stress. Furthermore, melatonin, H2O2 and Ca2+ attenuated ABA-induced K+ efflux and subsequent cell death. CmRBOHD overexpression and AtRBOHD deletion alleviated and aggravated the ABA-induced K+ efflux, respectively. Taken together, our study unveils a new mechanism by which melatonin offsets ABA action to delay leaf senescence via RBOHD-dependent H2O2 production that triggers [Ca2+]cyt accumulation and subsequently inhibits K+ efflux and delays cell death/leaf senescence in response to ABA.  相似文献   

6.
In the present study, we evaluate the protective effect of nitric oxide (NO) against senescence of rice leaves promoted by ABA. Senescence of rice leaves was determined by the decrease of protein content. ABA treatment resulted in (1) induction of leaf senescence, (2) increase in H2O2 and malondialdehyde (MDA) contents, (3) decrease in reduced form glutathione (GSH) and ascorbic acid (AsA) contents, and (4) increase in antioxidative enzyme activities (superoxide dismutase, ascorbate peroxidase, glutathione reductase, and catalase). All these ABA effects were reduced by free radical scavengers such as sodium benzoate and GSH. NO donors [N-tert-butyl-alpha-phenylnitrone (PBN), sodium nitroprusside, 3-morpholinosydonimine, and AsA + NaNO2] were effective in reducing ABA-induced leaf senescence. PBN prevented ABA-induced increase in the contents of H2O2 and MDA, decrease in the contents of GSH and AsA, and increase in the activities of antioxidative enzymes. The protective effect of PBN on ABA-promoted senescence, ABA-increased H2O2 content and lipid peroxidation, ABA-decreased GSH and AsA, and ABA-increased antioxidative enzyme activities was reversed by 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, a NO-specific scavenger, suggesting that the protective effect of PBN is attributable to NO released. Reduction of ABA-induced senescence by NO in rice leaves is most likely mediated through its ability to scavenge active oxygen species including H2O2.  相似文献   

7.
Abscisic acid (ABA) regulates vital physiological responses, and a number of events in the ABA signaling cascade remain to be identified. To allow quantitative analysis of genetic signaling mutants, patch-clamp experiments were developed and performed with the previously inaccessible Arabidopsis guard cells from the wild type and ABA-insensitive (abi) mutants. Slow anion channels have been proposed to play a rate-limiting role in ABA-induced stomatal closing. We now directly demonstrate that ABA strongly activates slow anion channels in wild-type guard cells. Furthermore, ABA-induced anion channel activation and stomatal closing were suppressed by protein phosphatase inhibitors. In abi1-1 and abi2-1 mutant guard cells, ABA activation of slow anion channels and ABA-induced stomatal closing were abolished. These impairments in ABA signaling were partially rescued by kinase inhibitors in abi1 but not in abi2 guard cells. These data provide cell biological evidence that the abi2 locus disrupts early ABA signaling, that abi1 and abi2 affect ABA signaling at different steps in the cascade, and that protein kinases act as negative regulators of ABA signaling in Arabidopsis. New models for ABA signaling pathways and roles for abi1, abi2, and protein kinases and phosphatases are discussed.  相似文献   

8.
Senescence is the last phase of the plant life cycle and has an important role in plant development. Degradation of membrane lipids is an essential process during leaf senescence. Several studies have reported fundamental changes in membrane lipids and phospholipase D (PLD) activity as leaves senesce. Suppression of phospholipase Dα1 (PLDα1) retards abscisic acid (ABA)-promoted senescence. However, given the absence of studies that have profiled changes in the compositions of membrane lipid molecules during leaf senescence, there is no direct evidence that PLD affects lipid composition during the process. Here, we show that application of n-butanol, an inhibitor of PLD, and N-Acylethanolamine (NAE) 12∶0, a specific inhibitor of PLDα1, retarded ABA-promoted senescence to different extents. Furthermore, phospholipase Dδ (PLDδ) was induced in leaves treated with ABA, and suppression of PLDδ retarded ABA-promoted senescence in Arabidopsis. Lipid profiling revealed that detachment-induced senescence had different effects on plastidic and extraplastidic lipids. The accelerated degradation of plastidic lipids during ABA-induced senescence in wild-type plants was attenuated in PLDδ-knockout (PLDδ-KO) plants. Dramatic increases in phosphatidic acid (PA) and decreases in phosphatidylcholine (PC) during ABA-induced senescence were also suppressed in PLDδ-KO plants. Our results suggest that PLDδ-mediated hydrolysis of PC to PA plays a positive role in ABA-promoted senescence. The attenuation of PA formation resulting from suppression of PLDδ blocks the degradation of membrane lipids, which retards ABA-promoted senescence.  相似文献   

9.
The role of H2O2 in abscisic acid (ABA)-induced rice leaf senescence is investigated. ABA treatment resulted in H2O2 production in rice leaves, which preceded the occurrence of leaf senescence. Dimethylthiourea, a chemical trap for H2O2, was observed to be effective in inhibiting ABA-induced senescence, ABA-increased malondialdehyde (MDA) content, ABA-increased antioxidative enzyme activities (superoxide dismutase, ascorbate peroxidase, glutathione reductase and catalase), and ABA-decreased antioxidant contents (ascorbic acid and reduced glutathione) in rice leaves. Diphenyleneiodonium chloride (DPI) and imidazole (IMD), inhibitors of NADPH oxidase, and KCN and NaN3, inhibitors of peroxidase, prevented ABA-induced H2O2 production, suggesting NADPH oxidase and peroxidase are H2O2-generating enzymes in ABA-treated rice leaves. DPI, IMD, KCN, and NaN3 also inhibited ABA-promoted senescence, ABA-increased MDA contents, ABA-increased antioxidative enzyme activities, and ABA-decreased antioxidants in rice leaves. These results suggest that H2O2 is involved in ABA-induced senescence of rice leaves.  相似文献   

10.
RPK1 (receptor-like protein kinase 1) localizes to the plasma membrane and functions as a regulator of abscisic acid (ABA) signaling in Arabidopsis. In our current study, we investigated the effect of RPK1 disruption and overproduction upon plant responses to drought stress. Transgenic Arabidopsis overexpressing the RPK1 protein showed increased ABA sensitivity in their root growth and stomatal closure and also displayed less transpirational water loss. In contrast, a mutant lacking RPK1 function, rpk1-1, was found to be resistant to ABA during these processes and showed increased water loss. RPK1 overproduction in these transgenic plants thus increased their tolerance to drought stress. We performed microarray analysis of RPK1 transgenic plants and observed enhanced expression of several stress-responsive genes, such as Cor15a, Cor15b, and rd29A, in addition to H2O2-responsive genes. Consistently, the expression levels of ABA/stress-responsive genes in rpk1-1 had decreased compared with wild type. The results suggest that the overproduction of RPK1 enhances both the ABA and drought stress signaling pathways. Furthermore, the leaves of the rpk1-1 plants exhibit higher sensitivity to oxidative stress upon ABA-pretreatment, whereas transgenic plants overproducing RPK1 manifest increased tolerance to this stress. Our current data suggest therefore that RPK1 overproduction controls reactive oxygen species homeostasis and enhances both water and oxidative stress tolerance in Arabidopsis.  相似文献   

11.
Rab family proteins are small GTP-binding proteins involved in intracellular trafficking. They play critical roles in several plant development processes. Different expression patterns of 46 Rabs in the rice genome were examined in various rice tissues and in leaves treated with plant growth regulators and under senescence conditions. One of the OsRab genes, OsRab7B3, closely associated with senescence in expression pattern, was chosen for functional analysis. Expression of sGFP under the control of the OsRab7B3 promoter increased in leaves when ABA and NaCl were applied or when kept in dark. In transgenic rice overexpressing OsRab7B3, the senescence-related genes were upregulated and leaf senescence was significantly enhanced under dark conditions. Moreover, leaf yellowing occurred earlier in the transgenic plants than in the wild type at the ripening stage. Hence it is suggested that OsRab7B3 act as a stress–inducible gene that plays an important role in the leaf senescence process.  相似文献   

12.
MAPK级联途径参与ABA信号转导调节的植物生长发育过程   总被引:2,自引:0,他引:2  
植物激素ABA参与调控植物生长发育和生理代谢以及多种胁迫应答过程,促分裂原活化蛋白激酶(MAPK)级联途径应答于多种生物和非生物胁迫,广泛参与调控植物的生长发育。MAPK级联途径与ABA信号转导协同作用参与调控植物种子萌发、气孔运动和生长发育,本文主要归纳了植物中受ABA调控激活的MAPK级联途径成员,阐述了它们参与ABA信号转导调控植物生理反应和生长发育的过程,并对MAPK级联途径与ABA信号转导的研究方向作出了展望,指出对MAPK下游底物的筛选是完善MAPK级联途径的重要组成部分。  相似文献   

13.
Leaf senescence is a developmentally programmed event, but the initiation and progression of leaf senescence are affected by a range of plant hormones including abscisic acid (ABA), ethylene and methyl jasmonate (MeJA). To investigate plant hormone crosstalk during leaf senescence, hormone-induced senescence phenotypes were analyzed in three leaf senescence mutants [ore1 (oresara1), ore3 and ore9] showing delayed senescence phenotypes in age-dependent and dark-induced senescence. The ore mutants exhibited delayed leaf senescence phenotypes following treatment with ABA, ACC (aminocyclo-propane-1-carboxylic acid) or MeJA. After each hormone treatment, the photochemical efficiency of photosystem II and chlorophyll content were significantly higher in the ore mutant leaves than in the wild-type leaves. The expression of CAB2 and SEN4 in the wild-type was rapidly altered following each hormone treatment. However, the decrease in CAB2 expression and the induction of SEN4 expression in the mutants were less affected by ABA, ACC or MeJA treatment. It is suggested that ORE1, ORE3 and ORE9 are required for the proper progression of leaf senescence mediated by ABA, ethylene and MeJA. This implies that ORE1, ORE3 and ORE9 may be linked to the crosstalk among senescence pathways induced by ABA, ethylene and MeJA, as well as age and darkness.  相似文献   

14.
Abscisic acid (ABA) significantly stimulated ethylene production in citrus (Citrus sinensis [L.] Osbeck, cv Shamouti orange) leaf discs. The extent of stimulation was dependent upon the concentration of ABA (0.1-1 milimolar) and the duration of treatment (15-300 minutes). Aging the discs before applying ABA increased ABA-induced ethylene production due to enhancement of both ethylene-forming enzyme activity and the responsiveness of ABA. Discs excised from mature leaves were much more responsive to ABA than discs excised from young or senescing leaves. ABA stimulated ethylene production shortly after application, suggesting that ABA does not enhance ethylene production via the acceleration of senescence. The stimulating effect of ABA on ethylene production resulted mainly from the enhancement of 1-aminocylopropane-1-carboxylic acid synthesis. Stimulation of ethylene production by ABA in intact citrus leaves and tomato (Lycopersicon esculentum Mill., cv Castlemart) fruit was small but could be increased by various forms of wounding.  相似文献   

15.
16.
17.
18.
In addition to floral senescence and longevity, the control of leaf senescence is a major factor determining the quality of several cut flowers, including Lilium, in the commercial market. To better understand the physiological process underlying leaf senescence in this species, we evaluated: (i) endogenous variation in the levels of phytohormones during leaf senescence, (ii) the effects of leaf darkening in senescence and associated changes in phytohormones, and (iii) the effects of spray applications of abscisic acid (ABA) and pyrabactin on leaf senescence. Results showed that while gibberellin 4 (GA(4)) and salicylic acid (SA) contents decreased, that of ABA increased during the progression of leaf senescence. However, dark-induced senescence increased ABA levels, but did not affect GA(4) and SA levels, which appeared to correlate more with changes in air temperature and/or photoperiod than with the induction of leaf senescence. Furthermore, spray applications of pyrabactin delayed the progression of leaf senescence in cut flowers. Thus, we conclude that (i) ABA plays a major role in the regulation of leaf senescence in Lilium, (ii) darkness promotes leaf senescence and increases ABA levels, and (iii) exogenous applications of pyrabactin inhibit leaf senescence in Lilium, therefore suggesting that it acts as an antagonist of ABA in senescing leaves of cut lily flowers.  相似文献   

19.
During leaf senescence, resources are recycled by redistribution to younger leaves and reproductive organs. Candidate pathways for the regulation of onset and progression of leaf senescence include ubiquitin‐dependent turnover of key proteins. Here, we identified a novel plant U‐box E3 ubiquitin ligase that prevents premature senescence in Arabidopsis plants, and named it SENESCENCE‐ASSOCIATED E3 UBIQUITIN LIGASE 1 (SAUL1). Using in vitro ubiquitination assays, we show that SAUL1 has E3 ubiquitin ligase activity. We isolated two alleles of saul1 mutants that show premature senescence under low light conditions. The visible yellowing of leaves is accompanied by reduced chlorophyll content, decreased photochemical efficiency of photosystem II and increased expression of senescence genes. In addition, saul1 mutants exhibit enhanced abscisic acid (ABA) biosynthesis. We show that application of ABA to Arabidopsis is sufficient to trigger leaf senescence, and that this response is abolished in the ABA‐insensitive mutants abi1‐1 and abi2‐1, but enhanced in the ABA‐hypersensitive mutant era1‐3. We found that increased ABA levels coincide with enhanced activity of Arabidopsis aldehyde oxidase 3 (AAO3) and accumulation of AAO3 protein in saul1 mutants. Using label transfer experiments, we showed that interactions between SAUL1 and AAO3 occur. This suggests that SAUL1 participates in targeting AAO3 for ubiquitin‐dependent degradation via the 26S proteasome to prevent premature senescence.  相似文献   

20.
The present experiment, involving both the in vivo injection of abscislc acid (ABA) Into apple (Malus domestica Brohk.) fruits and the in vivo Incubation of fruit tissues in ABA-contalnlng medium, revealed that ABA activates both soluble and cell wall-bound acid invertases. Immunoblottlng and enzyme-linked Immunosorbent assays showed that this ABA-induced acid invertase activation is Independent of the amount of enzyme present. The acid Invertase activation induced by ABA is dependent on medium pH, time course, ABA dose, living tissue and developmental stage. Two isomers of cls-(+)-ABA, (-)-ABA and trans- ABA, had no effect on acid invertases, showing that ABA-induced acid invertase activation is specific to physiologically active cis-(+)ABA. Protein kinase inhlbltors K252a and H7 as well as acid phosphatase Increased the ABA-Induced effects. These data indicate that ABA specifically activates both soluble and cell wall-bound acid Invertases by a posttranslational mechanism probably Involving reversible protein phosphorylatlon, and this may be one of the mechanisms by which ABA Is Involved In regulating fruit development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号