首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 2S RNA synthesized in vitro by the RNA polymerase of a defective interfering (DI) particle of vesicular stomatitis virus was labeled at its 3' terminus with 32P-cytidine 3', 5' bisphosphate and RNA ligase. Analysis of the labeled RNA showed that it was a family of RNAs of different length but all sharing the same 5' terminal sequence. The largest labeled RNA was purified by gel electrophoresis, and the sequence of 41 of its 46 nucleotides was determined by rapid RNA sequencing methods. The assignment of the remaining 5 nucleotides was made on the basis of an analysis of one of the smaller RNAs and published data. A new approach in RNA sequencing based on the identification of 3' terminal nucleotides of rna fragments originally present in the DI product or generated during the ligation reaction confirmed most of the sequence. The complete sequence of this 46 nucleotide long plus-sense RNA is: ppACGAAGACCACAAAACCAGAUAAAAAA UAAAAACCACAAGAGGGUC-OH. This RNA anneals to the RNA of the DI particle from which it was synthesized, indicating that its synthesis is template-specified. At least the first 17 and possibly all of the nucleotides are also complementary to sequences at the 3' end of two other VSV DI particles which were derived independently and whose genomes differ significantly in length. These data suggest a common 3' terminal sequence among all VSV DI particles which contain part of the Lgene region of the parental genome.  相似文献   

2.
3.
RNA genomes from standard vesicular stomatitis virus and two defective interfering (DI) particles dI 0.33 (DI-T) and DI 0.52, were purified and digested with RNase T1. The resulting oligonucleotides were labeled at the 5' end with [32P]ATP and separated by two-dimensional electrophoresis in polyacrylamide gels. All of the major oligonucleotides containing 20 or more nucleotides were sequenced. Those oligonucleotides that were thought to be in common by their migration on polyacrylamide gels actually did have identical sequences. Those oligonucleotides thought to be unique to the DI RNAs either differed by only one nucleotide from oligonucleotides of the standard RNA or contained new sequences which were complementary to known sequences at the 5' end. These data indicate that RNAs from DI particles are not simple deletions but contain point mutations and additional complementary sequences.  相似文献   

4.
5.
6.
The polyribosomal fraction from chicken embryo fibroblasts infected with B77 avian sarcoma virus contained 38S, 28S, and 21S virus-specific RNAs in which sequences identical to the 5'-terminal 101 bases of the 38S genome RNA were present. The only polyadenylic acid-containing RNA species with 5' sequences which was detectable in purified virions had a sedimentation coefficient of 38S. This evidence is consistent with the hypothesis that a leader sequence derived from the 5' terminus of the RNA is spliced to the bodies of the 28S and 21S mRNA's, both of which have been shown previously to be derived from the 3' terminal half of the 38S RNA. The entire 101-base 5' terminal sequence of the genome RNA appeared to be present in the majority of the subgenomic intracellular virus-specific mRNA's, as established by several different methods. First, the extent of hybridization of DNA complementary to the 5'-terminal 101 bases of the genome to polyadenylic acid-containing subgenomic RNA was similar to the extent of its hybridization to 38S RNA from infected cells and from purified virions. Second, the fraction of the total cellular polyadenylic acid-containing RNA with 5' sequences was similar to the fraction of RNA containing sequences identical to the extreme 3' terminus of the genome RNA when calculated by the rate of hybridization of the appropriate complementary DNA probes. This suggests that most intracellular virus-specific RNA molecules contain sequences identical to those present in the 5'-terminal 101 bases of the genome. Third, the size of most of the radioactively labeled DNA complementary to the 5'-terminal 101 bases of the genome remained unchanged after the probe was annealed to either intracellular 38S RNA or to various size classes of subgenomic RNA and the hybrids were digested with S1 nuclease and denatured with alkali. However, after this procedure some DNA fragments of lower molecular weight were present. This was not the case when the DNA complementary to the 5'-terminal 101 bases of the genome was annealed to 38S genome RNA. These results suggest that, although the majority of the intracellular RNA contains the entire 101-base 5'-terminal leader sequence, a small population of virus-specific RNAs exist that contain either a shortened 5' leader sequence or additional splicing in the terminal 101 bases.  相似文献   

7.
8.
9.
Y J Lin  M M Lai 《Journal of virology》1993,67(10):6110-6118
All of the defective interfering (DI) RNAs of mouse hepatitis virus (MHV) contain both the 5' and 3' ends of the viral genomic RNA, which presumably include the cis sequences required for RNA replication. To define the replication signal of MHV RNA, we have used a vaccinia virus-T7 polymerase-transcribed MHV DI RNA to study the effects of sequence deletion on DI RNA replication. Following infection of susceptible cells with a recombinant vaccinia virus expressing T7 RNA polymerase, various cDNA clones derived from a DI RNA (DIssF) of the JHM strain of MHV, which is a 3.5-kb naturally occurring DI RNA, behind a T7 promoter were transfected. On superinfection with a helper MHV, the ability of various DI RNAs to replicate was determined. Serial deletions from the middle of the RNA toward both the 5' and 3' ends demonstrated that 859 nucleotides from the 5' end and 436 nucleotides from the 3' end of the MHV RNA genome were necessary for RNA replication. Surprisingly, an additional stretch of 135 nucleotides located at 3.1 to 3.3 kb from the 5' end of the genome was also required. This stretch is discontiguous from the 5'-end cis replication signal and is present in all of the naturally occurring DI RNAs studied so far. The requirement for a long stretch of 5'- and 3'-end sequences predicts that the subgenomic MHV mRNAs cannot replicate. The efficiency of RNA replication varied with different cDNA constructs, suggesting possible interaction between different regions of DI RNA. The identification of MHV RNA replication signals allowed the construction of an MHV DI-based expression vector, which can express foreign genes, such as the chloramphenicol acetyltransferase gene.  相似文献   

10.
11.
12.
13.
14.
S Makino  K Yokomori    M M Lai 《Journal of virology》1990,64(12):6045-6053
We have previously shown that most of the defective interfering (DI) RNA of mouse hepatitis virus (MHV) are not packaged into virions. We have now identified, after 21 serial undiluted passages of MHV, a small DI RNA, DIssF, which is efficiently packaged into virions. The DIssF RNA replicated at a high efficiency on its transfection into the helper virus-infected cells. The virus released from the transfected cells interfered strongly with mRNA synthesis and growth of helper virus. cDNA cloning and sequence analysis of DIssF RNA revealed that it is 3.6 kb and consists of sequences derived from five discontinuous regions of the genome of the nondefective virus. The first four regions (domains I to IV) from the 5' end are derived from gene 1, which presumably encodes the RNA polymerase of the nondefective virus. The entire domain I (859 nucleotides) and the first 750 nucleotides of domain II are also present in a previously characterized DI RNA, DIssE, which is not efficiently packaged into virions. Furthermore, the junction between these two domains is identical between the two DI RNAs. The remaining 77 nucleotides at the 3' end of domain II and all of domains III (655 nucleotides) and IV (770 nucleotides) are not present in DIssE RNA. These four domains are derived from gene 1. In contrast, the 3'-most domain (domain V, 447 nucleotides) is derived from the 3' end of the genomic RNA and is also present in DIssE. The comparison of primary sequences and packaging properties between DIsse and DIssF RNAs suggested that domains III and IV and part of the 3' end of domain II contain the packaging signal for MHV RNA. This conclusion was confirmed by inserting these DIssF-unique sequences into a DIssE cDNA construct; the in vitro-transcribed RNA from this hybrid construct was efficiently packaged into virion particles. DIssF RNA also contains an open reading frame, which begins from domain I and ends at the 5'-end 20 bases of domain III. In vitro translation of DIssF RNA and metabolic labeling of the virus-infected cells showed that this open reading frame is indeed translated into a 75-kDa protein. The structures of both DIssE and DIssF RNAs suggest that a protein-encoding capability is a common characteristic of MHV DI RNA.  相似文献   

15.
We sequenced the 5' and 3' RNA termini of 16 defective interfering (DI) particles of vesicular stomatitis virus (VSV) isolated at intervals from persistent infections and from a series of undiluted lytic passages. All DI RNAs exhibited complementary termini, but sequences internal to these termini were extensively rearranged in a variety of ways. Despite extensive rearrangement, these internal sequences (in addition to the termini) apparently are important for DI particle interference properties. Some of these DI particles are derived from multiple intrastrand and interstrand recombination events, and the generation of each can be explained by current replicase error models. During viral evolution in persistent and acute infections, DI particles with specific termini base substitutions are selected. One DI particle exhibits a remarkable clustering of specific A----G (and complementary U----C) substitutions, apparently as a result of repetitive misincorporations by an error-prone viral polymerase complex.  相似文献   

16.
17.
The genome structure and terminal sequences of a 'copyback' defective interfering (DI) particle ST1, and a novel complexly rearranged 'snapback' DI particle ST2 of vesicular stomatitis virus have been determined. The ST1 DI genome RNA possesses 54 base long inverted complementary termini, the 5' end of which is homologous to the standard virus genome 5' end. Following this region of inverted complementarity the DI RNA 5' end continues to be homologous to standard virus RNA 5' sequences, whereas the 3' end diverges into sequences within the virus L gene internal sequences. ST2 DI genome RNA does not contain colinear covalently linked plus and minus sense RNA copies of the standard infectious virus RNA 5' terminus as predicted from the prototype snapback DI structure, but instead appears to be a hairpin copy of the ST1 DI RNA genome. This is the first evidence suggesting that DI particles may be generated from RNA templates other than the standard virus RNA. Generation models and the implications of these findings for RNA virus evolution are discussed.  相似文献   

18.
Recombination between satellite RNAs of turnip crinkle virus.   总被引:13,自引:0,他引:13       下载免费PDF全文
  相似文献   

19.
Three of six independently derived defective interfering (DI) particles of Sindbis virus generated by high-multiplicity passaging in cultured cells have tRNAAsp sequences at the 5' terminus of their RNAs (Monroe and Schlesinger, J. Virol. 49:865-872, 1984). In the present work, we found that the 5'-terminal sequences of the three tRNAAsp-negative DI RNAs were all derived from viral genomic RNA. One DI RNA sample had the same 5'-terminal sequence as the standard genome. The DI RNAs from another DI particle preparation were heterogeneous at the 5' terminus, with the sequence being either that of the standard 5' end or rearrangements of regions near the 5' end. The sequence of the 5' terminus of the third DI RNA sample consisted of the 5' terminus of the subgenomic 26S mRNA with a deletion from nucleotides 24 to 67 of the 26S RNA sequence. These data showed that the 5'-terminal nucleotides can undergo extensive variations and that the RNA is still replicated by virus-specific enzymes. DI RNAs of Sindbis virus evolve from larger to smaller species. In the two cases in which we followed the evolution of DI RNAs, the appearance of tRNAAsp-positive molecules occurred at the same time as did the emergence of the smaller species of DI RNAs. In pairwise competition experiments, one of the tRNAAsp-positive DI RNAs proved to be the most effective DI RNA, but under identical conditions, a second tRNAAsp-positive DI RNA was unable to compete with the tRNAAsp-negative DIs. Therefore, the tRNAAsp sequence at the 5' terminus of a Sindbis DI RNA is not the primary factor in determining which DI RNA becomes the predominant species in a population of DI RNA molecules.  相似文献   

20.
Three defective interfering (DI) particles of vesicular stomatitis virus (VSV), all derived from the same parental standard San Juan strain (Indiana serotype), were used in various combinations to infect cells together with the parental virus. The replication of their RNA genomes in the presence of other competing genomes was described by the hierarchical sequence: DI 0.52 particles greater than DI 0.45 particles less than or equal to DI-T particles greater than standard VSV. The advantage of one DI particle over another was not due simply to multiplicity effects nor to the irreversible occupation of limited cellular sites. Interference, however, did correlate with a change in the ratio of plus and minus RNA templates that accumulated intracellularly and with the presence of new sequences at the 3' end of the DI genomes. DI 0.52 particles contained significantly more nucleotides at the 3' end that were complementary to those at the 5' end of its RNA than did DI-T or DI 0.45 particles. The first 45 nucleotides at the 3' ends of all of the DI RNAs were identical. VSV and its DI particles can be separated into three classes, depending on their terminal RNA sequences. These sequences suggest two mechanisms, one based on the affinity of polymerase binding and the other on the affinity of N-protein binding, that may account for interference by DI particles against standard VSV and among DI particles themselves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号