首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A shift in the magnitude and timing of animal migrations is one of the most documented ecological effects of climate change. Although migrations are largely driven by spatial variation in resource gradients, few studies connect expected changes in primary production with geographic patterns in migratory behavior. Here, we link lake primary production to the occurrence of sea migrations in the partially anadromous salmonid Arctic char (Salvelinus alpinus L.). We compiled presence/absence records of anadromous char populations spanning productivity and temperature gradients along the Norwegian coast. The probability of anadromy decreased with increasing migration distance, maximum slope of the migration route and lake productivity. There was a significant interaction between lake productivity and migration distance. The negative effect of longer migration distances was more severe in lakes with higher productivity, indicating reduced relative profitability of migration with increased feeding opportunities in freshwater. Lake productivity was mainly driven by terrestrial primary production in the catchment. We predicted future distributions of anadromous char given downscaled temperature and precipitation changes projected by two different emission scenarios and global climate models (GCMs). Projected increases in temperature and precipitation in 2071–2100 increased terrestrial primary production and, compared to the control scenario (1961–1990), decreased the range of anadromous populations. The prevalence of anadromy decreased by 53% in the HadAm3H GCM with the A2 emission scenario, 61% in HadAm3H with the B2 scenario and 22% in ECHAM4 with the B2 scenario. Cross‐ecosystem studies (e.g., terrestrial to freshwater) are critical for understanding ecological impacts of climate change. In this case, climate‐driven increases in terrestrial primary production are expected to increase primary production in lakes and ultimately reduce the prevalence of anadromy in Arctic char populations.  相似文献   

2.
Ungulate populations exhibiting partial migration present a unique opportunity to explore the causes of the general phenomenon of migration. The European roe deer Capreolus capreolus is particularly suited for such studies due to a wide distribution range and a high level of ecological plasticity. In this study we undertook a comparative analysis of roe deer GPS location data from a representative set of European ecosystems available within the EURODEER collaborative project. We aimed at evaluating the ecological factors affecting migration tactic (i.e. occurrence) and pattern (i.e. timing, residence time, number of migratory trips). Migration occurrence varied between and within populations and depended on winter severity and topographic variability. Spring migrations were highly synchronous, while the timing of autumn migrations varied widely between regions, individuals and sexes. Overall, roe deer were faithful to their summer ranges, especially males. In the absence of extreme and predictable winter conditions, roe deer seemed to migrate opportunistically, in response to a tradeoff between the costs of residence in spatially separated ranges and the costs of migratory movements. Animals performed numerous trips between winter and summer ranges which depended on factors influencing the costs of movement such as between‐range distance, slope and habitat openness. Our results support the idea that migration encompasses a behavioural continuum, with one‐trip migration and residence as its end points, while commuting and multi‐trip migration with short residence times in seasonal ranges are intermediate tactics. We believe that a full understanding of the variation in tactics of temporal separation in habitat use will provide important insights on migration and the factors that influence its prevalence.  相似文献   

3.
Two populations of beluga whales (Delphinapterus leucas), the Eastern Beaufort Sea (BS) and Eastern Chukchi Sea (ECS), make extensive seasonal migrations into the Pacific Arctic. However, the extent to which these populations overlap in time and space is not known. We quantified distribution and migration patterns for BS and ECS belugas using daily locations from whales tracked with satellite-linked transmitters. Home ranges and core areas in summer (July and August) and in each month (July–November), daily displacement, dispersal from core areas, and autumn migration timing were estimated. Distinct summer and fall distribution patterns and staggered autumn migration timing were identified for BS and ECS whales. Summer home ranges for each population had less than 10 % overlap. Monthly home ranges were also relatively distinct between populations except in September (up to 88 % home range overlap). A distinct east–west shift in focal area use occurred in September that persisted into October, with the two populations essentially switching longitudinal positions. Highest daily displacements occurred during the migratory period in September for BS whales and October for ECS whales, further indicating westward fall migration was offset between populations. Sexual segregation of males and females within a population also varied monthly. Autumn migration timing as well as differences in spatial and temporal segregation between BS and ECS beluga populations may be a result of maternally driven philopatry and population-specific adaptations to dynamically available resources. Our results contribute to the management of these populations by identifying seasonal area use and differences in migration patterns.  相似文献   

4.
Resource selection by ungulates is driven by trade-offs between foraging and predation avoidance or by intraspecific competition. Ungulates use migratory flexibility to optimize access to spatially and temporally variable resources across seasons, sometimes even adaptively switching between migrant and resident strategy as conditions change. After an 80% increase in red deer (Cervus elaphus) population and simultaneous recovery of wolves (Canis lupus) in the Kremnica Mountains, Slovakia, a significant portion of the deer population started to migrate downhill (<?700 m) to marginal habitats during winter. Building on available spatial data on forage availability, predation risk, and deer abundance, we tested for differences in habitat selection of migrant and resident male red deer to assess possible reasons for this change. On high-altitude (700–1100 m) summer ranges, deer were not forced to trade-off forage to avoid predation within their home ranges. However, during winter, residents remaining on high-altitude ranges selected for areas with highly abundant forage only under low predation risk or at high deer abundance. Downhill migration exposed migrants to 15% lower forage availability but simultaneously reduced wolf predation risk by 39% relative to residents. Consequently, the limited access to forage resources at low-altitude ranges have reduced antler growth, especially in young males. Our study represents one of few that address the role of predation risk in driving seasonal migrations in temperate systems where snow is not likely to be the major driver of migration to low-altitude winter ranges.  相似文献   

5.
How animals use their range can have physiological, ecological, and demographic repercussions, as well as impact management decisions, species conservation, and human society. Fidelity, the predictable return to certain places, can improve fitness if it is associated with high‐quality habitat or helps enable individuals to locate heterogenous patches of higher‐quality habitat within a lower‐quality habitat matrix. Our goal was to quantify patterns of fidelity at different spatial scales to better understand the relative plasticity of habitat use of a vital subsistence species that undergoes long‐distance migrations. We analyzed a decade (2010–2019) of GPS data from 240 adult, female Western Arctic Herd (WAH) caribou (Rangifer tarandus) from northwest Alaska, U.S.A. We assessed fidelity at 2 spatial scales: to site‐specific locations within seasonal ranges and to regions within the herd''s entire range by using 2 different null datasets. We assessed both area and consistency of use during 6 different seasons of the year. We also assessed the temporal consistency of migration and calving events. At the scale of the overall range, we found that caribou fidelity was greatest during the calving and insect relief (early summer) seasons, where the herd tended to maximally aggregate in the smallest area, and lowest in winter when the seasonal range is largest. However, even in seasons with lower fidelity, we found that caribou still showed fidelity to certain regions within the herd''s range. Within those seasonal ranges, however, there was little individual site‐specific fidelity from year to year, with the exception of summer periods. Temporally, we found that over 90% of caribou gave birth within 7 days of the day they gave birth the previous year. This revealed fairly high temporal consistency, especially given the spatial and temporal variability of spring migration. Fall migration exhibited greater temporal variability than spring migration. Our results support the hypothesis that higher fidelity to seasonal ranges is related to greater environmental and resource predictability. Interestingly, this fidelity was stronger at larger scales and at the population level. Almost the entire herd would seek out these areas with predictable resources, and then, individuals would vary their use, likely in response to annually varying conditions. During seasons with lower presumed spatial and/or temporal predictability of resources, population‐level fidelity was lower but individual fidelity was higher. The herd would be more spread out during the seasons of low‐resource predictability, leading to lower fidelity at the scale of their entire range, but individuals could be closer to locations they used the previous year, leading to greater individual fidelity, perhaps resulting from memory of a successful outcome the previous year. Our results also suggest that fidelity in 1 season is related to fidelity in the subsequent season. We hypothesize that some differences in patterns of range fidelity may be driven by seasonal differences in group size, degree of sociality, and/or density‐dependent factors. Climate change may affect resource predictability and, thus, the spatial fidelity and temporal consistency of use of animals to certain seasonal ranges.  相似文献   

6.
Habitat selection can be considered as a hierarchical process in which animals satisfy their habitat requirements at different ecological scales. Theory predicts that spatial and temporal scales should co‐vary in most ecological processes and that the most limiting factors should drive habitat selection at coarse ecological scales, but be less influential at finer scales. Using detailed location data on roe deer Capreolus capreolus inhabiting the Bavarian Forest National Park, Germany, we investigated habitat selection at several spatial and temporal scales. We tested 1) whether time‐varying patterns were governed by factors reported as having the largest effects on fitness, 2) whether the trade‐off between forage and predation risks differed among spatial and temporal scales and 3) if spatial and temporal scales are positively associated. We analysed the variation in habitat selection within the landscape and within home ranges at monthly intervals, with respect to land‐cover type and proxys of food and cover over seasonal and diurnal temporal scales. The fine‐scale temporal variation follows a nycthemeral cycle linked to diurnal variation in human disturbance. The large‐scale variation matches seasonal plant phenology, suggesting food resources being a greater limiting factor than lynx predation risk. The trade‐off between selection for food and cover was similar on seasonal and diurnal scale. Habitat selection at the different scales may be the consequence of the temporal variation and predictability of the limiting factors as much as its association with fitness. The landscape of fear might have less importance at the studied scale of habitat selection than generally accepted because of the predator hunting strategy. Finally, seasonal variation in habitat selection was similar at the large and small spatial scales, which may arise because of the marked philopatry of roe deer. The difference is supposed to be greater for wider ranging herbivores.  相似文献   

7.
Habitat selection in ungulates should ensure access to abundant forage of sufficiently high quality. Species living in rugged mountain areas have to face nutritional bottlenecks regularly and should show particularly sophisticated habitat selection behaviour. However, patterns and mechanisms of such adaptations remain little studied. We analysed habitat selection and its seasonal variability of 10 GPS‐collared red deer Cervus elaphus living in a topographically challenging landscape of the Swiss Alps. We hypothesised that resource selection by red deer was scale‐dependent and predicted that scale‐dependence would vary among seasons in relation to seasonal changes of available forage biomass and quality, which we sampled across the entire study area of 250 km2. The studied population of Alpine red deer undertook altitudinal migrations and showed scale‐dependent habitat selection that was strongest in winter and declined through spring and summer. Selection occurred mostly at the larger (landscape/home‐range location) scale and less so at the smaller (within home‐range) scale. Topographic parameters were selected mainly at the landscape scale and mostly in winter. About 70% of all instances of preference for habitat parameters were associated with above‐average forage characteristics, represented mostly by higher crude protein content, in a few cases also by higher biomass or both. The overall pattern of space use by red deer characterised by migration and seasonal habitat selection was therefore closely linked to the quality of food resources, although some trade‐offs with avoiding human disturbance may also have been involved.  相似文献   

8.
How herbivore behaviour is influenced by changes in resource levels is central for understanding trophic interactions. We examined whether foraging tradeoffs change with food levels by comparing habitat selection and space use within and between two neighbouring, predator‐free Svalbard reindeer populations. The populations faced different food levels due to contrasting grazing history. Summer resource selection in radiocollared females was assessed by a multi‐dimensional niche approach based on habitat variables obtained from a satellite image (e.g. the normalised difference vegetation index, NDVI) and a digital terrain model. The population at the overgrazed Brøggerhalvøya faced overall lower plant cover, biomass and primary productivity (i.e. lower NDVI) than the population at Sarsøyra. At Brøggerhalvøya, most reindeer selected for productive habitat when choosing home range and patches within the home range. In contrast, habitat selection at Sarsøyra was more affected by abiotic conditions such as moisture, which may influence plant quality. Here, reindeer used patches with even less biomass than the average reindeer at the poorer Brøggerhalvøya. Such a difference in habitat preference with different habitat availability (a functional response in habitat selection) probably reflected increased selection for high‐quality forage at the expense of high forage quantity at Sarsøyra. Accordingly, a negative relationship between habitat productivity and home range size was only present across individuals within Brøggerhalvøya, where forage quantity was the important foraging niche component. Individuals having poor (and large) home ranges apparently could not compensate for this by higher patch selectivity compared to individuals with richer home ranges. The results indicate changes in foraging tradeoffs at contrasting resource levels and that strong interactions occur between habitat selection, space use and the foraging niche structure in the absence of predation.  相似文献   

9.
Seasonal elevational migrations have important implications for life-history evolution and ecological responses to environmental change. However, for most species, particularly invertebrates, evidence is still scarce for the existence of such migrations, as well as for the potential causes. We tested the extent to which seasonal abundance patterns in central Spain for overwintering (breeding) and summer (non-breeding) individuals of the butterfly Gonepteryx rhamni were consistent with three hypotheses explaining elevational migration: resource limitation (host plant and flower availability), physiological constraints of weather (maximum temperatures) and habitat limitation (forest cover for overwintering). For overwintering adults, abundance was positively associated with host plant density during two intensive survey seasons (2007–2008), and the elevational distribution was relatively stable over a 7-year period (2006–2012). The elevational distribution of summer adults was highly variable, apparently related both to temperature and habitat type. Sites occupied by adults in the summer were on average 3 °C cooler than their breeding sites, and abundance showed negative associations with summer temperature, and positive associations with forest cover and host plant density in 2007 and 2008. The results suggest that the extent of uphill migration in summer could be driven by different factors, depending on the year, and are mostly consistent with the physiological constraint and habitat limitation hypotheses. In contrast, the patterns for overwintering adults suggest that downhill migration can be explained by resource availability. Climate change could generate bottlenecks in the populations of elevational migrant species by constraining the area of specific seasonal habitat networks or by reducing the proximity of environments used at different times of year.  相似文献   

10.
Habitat selection is a hierarchical process that may yield various patterns depending on the scales of investigation. We employed satellite radio‐telemetry to examine patterns of habitat selection by female woodland caribou in central Saskatchewan at both coarse (seasonal range) and fine (daily area) scales. At each scale, we converted spatial data describing compositions of available and used habitat to standardised resource selection indices and examined them with multivariate analyses of variance. Seasonal ranges generally showed preferential inclusion of peatlands and black spruce dominated stands relative to recently disturbed stands and early seral stage forests. In all populations, caribou preferred peatlands and black spruce forests to all other habitat types at the daily area scale, in general, these patterns may reveal the effective avoidance of wolves, the primary factor limiting caribou throughout the boreal forest. In three populations where seasonal ranges showed the selective inclusion of either young jack pine stands or clearcuts along with peatlands and black spruce forests, we found a relative avoidance of the clearcuts and young jack pine stands at the daily area scale. As all caribou populations in the area are thought to be relics of a once more continuous distribution, the seasonal range selection by animals in disturbed areas may better describe historic rather than current habitat selection. We found inter‐annual variation in selection at the coarser spatial scale in one population, and inter‐seasonal variation in selection at the finer spatial scale in three populations, indicating that the relative grains of the spatial and temporal scales coincide. We were better able to explain the seasonal variations in finer scale selection by considering available forage, a factor less likely than predation to limit woodland caribou populations. The data agree with the theory that the spatial and temporal hierarchy of habitat selection reflects the hierarchy of factors potentially limiting individual fitness.  相似文献   

11.
The habitat associations of individuals underpin the dynamics of species distributions. Broad‐scale gradients in climate can alter habitat associations across species’ geographic ranges, but topographic heterogeneity creates local microclimates which could generate variation in habitat use at finer spatial scales. We examined the selection of microhabitats for egg‐laying by populations of a thermally‐constrained butterfly, the skipper Hesperia comma, across 16 sites with different regional temperatures and topographic microclimates. Using models of thermal microclimate, we examined how the association between eggs and warm bare ground microhabitats varied with ambient temperature, and predicted bare ground associations in 287 existing H. comma populations, to investigate the relative impacts of regional temperatures and topographic microclimates on microhabitat use. Eggs were most strongly associated with bare ground in relatively cool sites, indicating climate‐driven changes in microhabitat use. The majority of temperature variation between study sites was attributable to topographic microclimates rather than regional temperature differences, such that changes in microhabitat associations occurred principally between north‐ and south‐facing slopes within the same region. Predicted microhabitat associations across the UK distribution of H. comma showed that, due to the large temperature differences generated by topography, most of the between‐population variation in microhabitat use occurs locally within 5 km grid squares, with a smaller proportion occurring at a regional level between 5 km squares. Our findings show how microclimatic variation generated by topography alters the habitat associations of populations at fine spatial scales, suggesting that microclimate‐driven changes in habitat suitability could shape species’ distribution dynamics and their responses to environmental change.  相似文献   

12.
Recently, it was proposed that stable isotope patterns can be used to quantify the width of the ecological niche of animals. However, the potential effects of habitat use on isotopic patterns of consumers have not been fully explored and consequently isotopic patterns may yield deceptive estimates of niche width. Here, we simulated four different scenarios of a consumer foraging across an isotopically heterogeneous landscape to test the combined effects of habitat and diet selection on the widths of the isotopic niche. We then modeled the actions of a naïve researcher who randomly sampled consumers from the simulated populations, and used these results to assess the overlap and partitioning of the isotopic and the ecological niches when habitat‐derived differences among isotope signatures are not considered. Our results suggest that populations of dietary specialists exhibited broader isotopic niches than populations composed of dietary generalists, and habitat generalists exhibited narrower isotopic niche widths compared with populations of individuals that foraged in specific habitats. The conversion of isotopic niches to ecological niches without knowledge of foraging behavior and habitat‐derived isotopic differences transformed an informative δ‐space into ‘a blurry p‐space’. Therefore, knowledge of habitat‐derived differences in stable isotope values and understanding of habitat use and individual foraging behavior are critical for the correct quantification of the ecological niche.  相似文献   

13.
Understanding how animals utilize their habitat provides insights about their ecological needs and is of importance for both theoretical and applied ecology. As changing seasons impact prey habitat selection and vegetation itself, it is important to understand how seasonality impacts microhabitat choice in optimal foragers and their prey. We followed habituated bat‐eared foxes (Otocyon megalotis) in the Kalahari, South Africa, to study their seasonal habitat selection patterns and relate them to the habitat preferences of their main prey, termites (Hodotermes mossambicus). We used Resource Selection Functions (RSFs) to study bat‐eared foxes’ 3rd‐ and 4th‐order habitat selection by comparing used locations to random ones within their home ranges. Third‐order habitat selection for habitat type and composition was weak and varied little between seasons. We found that patterns of fox habitat selection did not mirror habitat selection of Hodotermes (quantified using RSFs), even when feeding on them (4th‐order). Taken together, these results might indicate that bat‐eared foxes’ food resources are homogenously distributed across habitats and that prey other than Hodotermes play an important role in bat‐eared foxes’ space use.  相似文献   

14.
Threats to several of the world's great animal migrations necessitate a research agenda focused on identifying drivers of their population dynamics. The monarch butterfly is an iconic species whose continental migratory population in eastern North America has been declining precipitously. Recent analyses have linked the monarch decline to reduced abundance of milkweed host plants in the USA caused by increased use of genetically modified herbicide‐resistant crops. To identify the most sensitive stages in the monarch's annual multi‐generational migration, and to test the milkweed limitation hypothesis, we analyzed 22 years of citizen science records from four monitoring programs across North America. We analyzed the relationships between butterfly population indices at successive stages of the annual migratory cycle to assess demographic connections and to address the roles of migrant population size versus temporal trends that reflect changes in habitat or resource quality. We find a sharp annual population decline in the first breeding generation in the southern USA, driven by the progressively smaller numbers of spring migrants from the overwintering grounds in Mexico. Monarch populations then build regionally during the summer generations. Contrary to the milkweed limitation hypothesis, we did not find statistically significant temporal trends in stage‐to‐stage population relationships in the mid‐western or northeastern USA. In contrast, there are statistically significant negative temporal trends at the overwintering grounds in Mexico, suggesting that monarch success during the fall migration and re‐establishment strongly contributes to the butterfly decline. Lack of milkweed, the only host plant for monarch butterfly caterpillars, is unlikely to be driving the monarch's population decline. Conservation efforts therefore require additional focus on the later phases in the monarch's annual migratory cycle. We hypothesize that lack of nectar sources, habitat fragmentation, continued degradation at the overwintering sites, or other threats to successful fall migration are critical limiting factors for declining monarchs.  相似文献   

15.
The northern mockingbird Mimus polyglottos is a native species that is more abundant in urban than non‐urban habitats (i.e. an urban‐positive species). Abundance alone, however, is not an accurate index of habitat quality because urban habitats could represent ecological traps (attractive sink habitat) for urban‐positive species. We compared mockingbird nesting productivity, apparent survival, and decision rules governing site fidelity in urban and rural habitats. If the higher abundance of mockingbirds in urban habitats is driven by higher quality urban habitat, then we predicted that productivity of urban mockingbirds would exceed the estimated source‐sink threshold and productivity of non‐urban mockingbirds. If, on the other hand, urban habitats act as ecological traps, productivity would be lower in urban habitats and would fall below the estimated source‐sink threshold. Productivity of urban pairs exceeded that of non‐urban pairs and more than offset estimated adult mortality, which makes urban habitat a likely source habitat. Apparent adult survival was higher in urban habitats than in non‐urban habitats, although this could be driven by dispersal more than mortality. Decision rules also appeared to differ between urban and non‐urban populations. Females in urban habitats with successful nests were more likely to return than those with unsuccessful nests, whereas return rates of females in nonurban habitats were unrelated to nesting success and may be more related to nesting habitat availability. We conclude that urban habitats do not act as ecological traps that lure mockingbirds into sink habitat and that increased breeding productivity contributes to their success in urban habitats.  相似文献   

16.
For declining wild populations, a critical aspect of effective conservation is understanding when and where the causes of decline occur. The primary drivers of decline in migratory and seasonal populations can often be attributed to a specific period of the year. However, generic, broadly applicable indicators of these season‐specific drivers of population decline remain elusive. We used a multi‐generation experiment to investigate whether habitat loss in either the breeding or non‐breeding period generated distinct signatures of population decline. When breeding habitat was reduced, population size remained relatively stable for several generations, before declining precipitously. When non‐breeding habitat was reduced, between‐season variation in population counts increased relative to control populations, and non‐breeding population size declined steadily. Changes in seasonal vital rates and other indicators were predicted by the season in which habitat loss treatment occurred. Per capita reproductive output increased when non‐breeding habitat was reduced and decreased with breeding habitat reduction, whereas per capita non‐breeding survival showed the opposite trends. Our results reveal how simple signals inherent in counts and demographics of declining populations can indicate which period of the annual cycle is driving declines.  相似文献   

17.
Population divergence and speciation are often explained by geographical isolation, but may also be possible under high gene flow due to strong ecology‐related differences in selection pressures. This study combines coalescent analyses of genetic data (11 microsatellite loci and 1 Kbp of mtDNA) and ecological modelling to examine the relative contributions of isolation and ecology to incipient speciation in the scincid lizard Chalcides sexlineatus within the volcanic island of Gran Canaria. Bayesian multispecies coalescent dating of within‐island genetic divergence of northern and southern populations showed correspondence with the timing of volcanic activity in the north of the island 1.5–3.0 Ma ago. Coalescent estimates of demographic changes reveal historical size increases in northern populations, consistent with expansions from a volcanic refuge. Nevertheless, ecological divergence is also supported. First, the two morphs showed non‐equivalence of ecological niches and species distribution modelling associated the northern morph with mesic habitat types and the southern morph with xeric habitat types. It seems likely that the colour morphs are associated with different antipredator strategies in the different habitats. Second, coalescent estimation of gene copy migration (based on microsatellites and mtDNA) suggest high rates from northern to southern morphs demonstrating the strength of ecology‐mediated selection pressures that maintain the divergent southern morph. Together, these findings underline the complexity of the speciation process by providing evidence for the combined effects of ecological divergence and ancient divergence in allopatry.  相似文献   

18.
Habitat selection fundamentally drives the distribution of organisms across landscapes; density-dependent habitat selection (DDHS) is considered a central component of ecological theories explaining habitat use and population regulation. A preponderance of DDHS theories is based on ideal distributions, such that organisms select habitat according to either the ideal free, despotic, or pre-emptive distributions. Models that can be used to simultaneously test competing DDHS theories are desirable to help improve our understanding of habitat selection. We developed hierarchical, piecewise linear models that allow for simultaneous testing of DDHS theories and accommodate densities from multiple habitats and regional populations, environmental covariates, and random effects. We demonstrate the use of these models with data on mule deer (Odocoileus hemionus) abundance and net energy costs in different snow depths within winter ranges of five regional populations in western Idaho, USA. Regional population density explained 40 % of the variation in population growth, and we found that deer were ideal free in winter ranges. Deer occupied habitats with lowest net energy costs at higher densities and at a higher rate than compared to habitats with intermediate and high energy costs. The proportion of a regional population in low energy cost habitat the previous year accounted for a significant amount of variation in population growth (17 %), demonstrating the importance of winter habitat selection in regulating deer populations. These linear models are most appropriate for empirical data collected from centralized habitat patches within the local range of a species where individuals are either year-round residents or migratory (but have already arrived from migration).  相似文献   

19.
The Ponto‐Caspian brackish‐water fauna inhabits estuaries and rivers of the Black, Azov and Caspian seas and is fragmented by higher salinity waters and a major interbasin watershed. The fauna is known for the high levels of endemism, complex zoogeographic histories, and as a recent source of successful invasive species. It remains debated whether the Black and Azov Sea brackish‐water populations survived unfavourable Pleistocene conditions in multiple separate refugia or whether the two seas were (repeatedly) recolonized from the Caspian. Using microsatellite and mtDNA markers, we demonstrate deep among‐ and within‐basin subdivisions in a widespread Ponto‐Caspian mysid crustacean Paramysis lacustris. Five genetic clusters were identified, but their relationships did not reflect the geography of the region. The Azov cluster was the most distinct (4–5% COI divergence), despite its geographic position in the corridor between Black and Caspian seas, and may represent a new species. In the northern Black Sea area, the Dnieper cluster was closer to the Caspian cluster than to the neighbouring Danube–Dniester–Bug populations, suggesting separate colonizations of the Black Sea. Overall, the data implied a predominant gene flow from the east to the Black Sea and highlight the importance of Caspian Sea transgressions in facilitating dispersal. Yet, the presence of distinct lineages in the Black Sea points to the persistence of isolated refugial populations that have gained diagnostic differences under presumably high mutation rates and large population sizes. The unfavourable Pleistocene periods in the Black Sea therefore appear to have promoted diversification of the brackish‐water lineages, rather than extirpated them.  相似文献   

20.
A broad range of migration strategies exist in avian species, and different strategies can occur in different populations of the same species. For the breeding Osprey Pandion haliaetus populations of the Mediterranean, sporadic observations of ringed birds collected in the past suggested variations in migratory and wintering behaviour. We used GPS tracking data from 41 individuals from Corsica, the Balearic Islands and continental Italy to perform the first detailed analysis of the migratory and wintering strategies of these Osprey populations. Ospreys showed heterogeneous migratory behaviour, with 73% of the individuals migrating and the remaining 27% staying all year round at breeding sites. For migratory individuals, an extremely short duration of migration (5.2 ± 2.6 days) was recorded. Mediterranean Ospreys were able to perform long non‐stop flights over the open sea, sometimes overnight. They also performed pre‐ and post‐migratory trips to secondary sites, before or after crossing the sea during both autumn and spring migration. Ospreys spent the winter at temperate latitudes and showed high plasticity in habitat selection, using marine bays, coastal lagoons/marshland and inland freshwater sites along the coasts of different countries of the Mediterranean basin. Movements and home‐range areas were restricted during the wintering season. The short duration of trips and high levels of variability in migratory routes and wintering grounds revealed high behavioural plasticity among individuals, probably promoted by the relatively low seasonal variability in ecological conditions throughout the year in the Mediterranean region, and weak competition for non‐breeding sites. We stress the importance of considering the diversity in migration strategies and the particular ecology of these vulnerable populations, especially in relation to proactive management measures for the species at the scale of the Mediterranean region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号