首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Understanding the population dynamics of migratory animals and predicting the consequences of environmental change requires knowing how populations are spatially connected between different periods of the annual cycle. We used stable isotopes to examine patterns of migratory connectivity across the range of the western sandpiper Calidris mauri. First, we developed a winter isotope basemap from stable‐hydrogen (δD), ‐carbon (δ13C), and ‐nitrogen (δ15N) isotopes of feathers grown in wintering areas. δD and δ15N values from wintering individuals varied with the latitude and longitude of capture location, while δ13C varied with longitude only. We then tested the ability of the basemap to assign known‐origin individuals. Sixty percent of wintering individuals were correctly assigned to their region of origin out of seven possible regions. Finally, we estimated the winter origins of breeding and migrant individuals and compared the resulting empirical distribution against the distribution that would be expected based on patterns of winter relative abundance. For breeding birds, the distribution of winter origins differed from expected only among males in the Yukon‐Kuskokwim (Y‐K) Delta and Nome, Alaska. Males in the Y‐K Delta originated overwhelmingly from western Mexico, while in Nome, there were fewer males from western North America and more from the Baja Peninsula than expected. An unexpectedly high proportion of migrants captured at a stopover site in the interior United States originated from eastern and southern wintering areas, while none originated from western North America. In general, we document substantial mixing between the breeding and wintering populations of both sexes, which will buffer the global population of western sandpipers from the effects of local habitat loss on both breeding and wintering grounds.  相似文献   

2.
The strength of migratory connectivity is a measure of the cohesion of populations among phases of the annual cycle, including breeding, migration, and wintering. Many Nearctic‐Neotropical species have strong migratory connectivity between breeding and wintering phases of the annual cycle. It is less clear if this strength persists during migration when multiple endogenous and exogenous factors may decrease the cohesion of populations among routes or through time along the same routes. We sampled three bird species, American redstart Setophaga ruticilla, ovenbird Seiurus aurocapilla, and wood thrush Hylocichla mustelina, during spring migration through the Gulf of Mexico region to test if breeding populations differentiate spatially among migration routes or temporally along the same migration routes and the extent to which within‐population timing is a function of sex, age, and carry‐over from winter habitat, as measured by stable carbon isotope values in claws (δ13C). To make quantitative comparisons of migratory connectivity possible, we developed and used new methodology to estimate the strength of migratory connectivity (MC) from probabilistic origin assignments identified using stable hydrogen isotopes in feathers (δ2H). We found support for spatial differentiation among routes by American redstarts and ovenbirds and temporal differentiation along routes by American redstarts. After controlling for breeding origin, the timing of American redstart migration differed among ages and sexes and ovenbird migration timing was influenced by carry‐over from winter habitat. The strength of migratory connectivity did not differ among the three species, with each showing weak breeding‐to‐spring migration MC relative to prior assessments of breeding‐wintering connectivity. Our work begins to fill an essential gap in methodology and understanding of the extent to which populations remain together during migration, information critical for a full annual cycle perspective on the population dynamics and conservation of migratory animals.  相似文献   

3.
Linking isotopic and migratory patterns in a pelagic seabird   总被引:1,自引:0,他引:1  
The value of stable isotope analysis in tracking animal migrations in marine environments is poorly understood, mainly due to insufficient knowledge of isotopic integration into animal tissues within distinct water masses. We investigated isotopic and moult patterns in Cory’s shearwaters to assess the integration of different stable isotopes into feathers in relation to the birds’ transoceanic movements. Specimens of Mediterranean Cory’s shearwater Calonectris diomedea diomedea caught accidentally by Catalan longliners were collected and the signatures of stable isotopes of C (δ13C), N (δ15N) and S (δ34S) were analysed in 11 wing and two tail feathers from 20 birds, and in some breast feathers. Based on isotopic signatures and moult patterns, the feathers segregated into two groups (breeding and wintering), corresponding to those grown in the Mediterranean or Atlantic regions, respectively. In addition, feathers grown during winter, i.e. moulted in Atlantic waters, were grouped into two isotopically distinct profiles, presumably corresponding to the two main wintering areas previously identified for Mediterranean Cory’s shearwater in tracking studies. N signatures mainly indicated the Mediterranean-to-Atlantic migration, whereas C and S signatures differed according to the Atlantic wintering area. Our results indicate that isotopic signatures from distant oceanic regions can integrate the feathers of a given bird and can indicate the region in which each feather was grown. This study thus underscores how stable isotope analysis can link marine animals to specific breeding and wintering areas, and thereby shed new light on studies involving assignment, migratory connectivity and carry-over effects in the marine environment. Xavier Ruiz deceased 27 April 2008.  相似文献   

4.
Understanding what drives or prevents long‐distance migrants to respond to environmental change requires basic knowledge about the wintering and breeding grounds, and the timing of movements between them. Both strong and weak migratory connectivity have been reported for Palearctic passerines wintering in Africa, but this remains unknown for most species. We investigated whether pied flycatchers Ficedula hypoleuca from different breeding populations also differ in wintering locations in west‐Africa. Light‐level geolocator data revealed that flycatchers from different breeding populations travelled to different wintering sites, despite similarity in routes during most of the autumn migration. We found support for strong migratory connectivity showing an unexpected pattern: individuals breeding in Fennoscandia (S‐Finland and S‐Norway) wintered further west compared to individuals breeding at more southern latitudes in the Netherlands and SW‐United Kingdom. The same pattern was found in ring recovery data from sub‐Saharan Africa of individuals with confirmed breeding origin. Furthermore, population‐specific migratory connectivity was associated with geographical variation in breeding and migration phenology: birds from populations which breed and migrate earlier wintered further east than birds from ‘late’ populations. There was no indication that wintering locations were affected by geolocation deployment, as we found high repeatability and consistency in δ13C and δ15N stable isotope ratios of winter grown feathers of individuals with and without a geolocator. We discuss the potential ecological factors causing such an unexpected pattern of migratory connectivity. We hypothesise that population differences in wintering longitudes of pied flycatchers result from geographical variation in breeding phenology and the timing of fuelling for spring migration at the wintering grounds. Future research should aim at describing how temporal dynamics in food availability across the wintering range affects migration, wintering distribution and populations’ capacity to respond to environmental changes.  相似文献   

5.
There is an overdue and urgent need to establish patterns of migratory connectivity linking breeding grounds, stopover sites, and wintering grounds of migratory birds. Such information allows more effective application of conservation efforts by applying focused actions along movement trajectories at the population level. Stable isotope methods, especially those using stable hydrogen isotope abundance in feathers (δ2Hf) combined with Bayesian assignment techniques incorporating prior information such as relative abundance of breeding birds, now provide a fast and reliable means of establishing migratory connectivity, especially for Neotropical migrants that breed in North America and molt prior to fall migration. Here we demonstrate how opportunistic sampling of feathers of 30 species of wintering birds in Cuba, Venezuela, Guatemala, Puerto Rico, and Mexico, regions that have typically been poorly sampled for estimating migratory connectivity, can be assigned to breeding areas in North America through both advanced spatial assignment to probability surfaces and through simpler map lookup approaches. Incorporating relative abundance information from the North American Breeding Bird Survey in our Bayesian assignment models generally resulted in a reduction in potential assignment areas on breeding grounds. However, additional tools to constrain longitude such as DNA markers or other isotopes would be desirable for establishing breeding or molt origins of species with broad longitudinal distributions. The isotope approach could act as a rapid means of establishing basic patterns of migratory connectivity across numerous species and populations. We propose a large‐scale coordinated sampling effort on the wintering grounds to establish an isotopic atlas of migratory connectivity for North American Neotropical migrants and suggest that isotopic variance be considered as a valuable metric to quantify migratory connectivity. This initiative could then act as a strategic template to guide further efforts involving stable isotopes, light‐sensitive geolocators, and other technologies.  相似文献   

6.
In migratory species breeding in temperate zones and wintering in tropical areas, the prevalence of blood parasites may be affected by migratory strategies and winter habitat choice. We explored whether African winter habitat was linked to the probability of haemosporidian infection in the House Martin Delichon urbicum breeding in Spain, and tested for potential differences between age‐classes. As a proxy for winter habitat features, we analysed stable isotope (δ2H, δ13C and δ15N) values of winter‐grown feathers moulted in tropical Africa. Rainfall at the African winter grounds was related to the probability of being infected with haemosporidians and this effect differed among age‐classes. We found that haemosporidian prevalence was similar for young and experienced birds wintering in habitats of higher rainfall (2H‐depleted), whereas there were great differences in winter habitats of lower rainfall (2H‐enriched), with young having a much higher prevalence compared with experienced birds. Likewise, experienced birds wintering in habitats of higher rainfall had a higher probability of haemosporidian infection compared with experienced birds wintering in habitats of lower rainfall. By contrast, young birds wintering in habitats of lower rainfall had a higher probability of haemosporidian infection compared with young birds wintering in habitats of higher rainfall. These outcomes highlight the interaction of age with haemosporidian infection in the migratory ecology of the House Martin, which may drive carry‐over effects in this long‐distance aerial insectivore.  相似文献   

7.
To investigate migratory connectivity in the Reed Warbler Acrocephalus scirpaceus, we analysed (1) all available sub-Saharan ringing recoveries and (2) stable isotopes in feathers grown in Africa sampled at 17 European breeding sites across a migratory divide. A cluster analysis of ringing recoveries showed remarkable connectivity between breeding and non-breeding grounds. Two main clusters represented populations taking the two main migratory routes [southwesterly (SW) and southeasterly (SE)]. Stable isotope analysis confirmed the separation of wintering areas of SW- and SE-migrating populations. Higher δ15N values in feathers of SE-migrating birds indicated that they occupied more xeric biome types. Values of δ13C that did not differ significantly among populations were higher than those from feathers of known European origin and indicated a C4 biome. Three populations with an unknown migratory direction were assigned to the SE-migrating populations on the basis of δ15N values.  相似文献   

8.
Understanding connections between breeding, stopover and wintering grounds for long‐distance migratory birds can provide important insight into factors influencing demography and the strength of carry‐over effects among various periods of the annual cycle. Using previously described, multi‐isotope (δ13C, δ15N, δ2H) feather isoscapes for Africa, we identified the most probable wintering areas for house martins Delichon urbica breeding at Badajoz in southwestern Spain. We identified two most‐probable wintering areas differing in isotopic signature in west Africa. We found that the probability to winter in the isotopic cluster two was related to age and sex of individuals. Specifically, experienced males (i.e. two years or older) winter in the isotopic cluster two with a greater probability than experienced females, whereas first‐year females winter in the isotopic cluster two with a greater probability than first‐year males. In addition, wintering area was correlated with breeding phenology, with individuals wintering in the isotopic cluster two initiating their clutches earlier than those wintering in the isotopic cluster one. For birds wintering in the isotopic cluster two, there was no relationship between age and clutch initiation date. In contrast, young birds wintering in the isotopic cluster one initiated their clutches earlier than experienced birds wintering in this area. There was no significant correlation between wintering area and clutch size or the number of fledglings produced. We hypothesize that the relationship among social status, population density and winter habitat quality should be the most important driver of the carry‐over effect we found for this population.  相似文献   

9.
Analyses of the stable isotope composition of feathers can provide significant insight into the spatial structure of bird migration. We collected feathers from Great Reed Warblers Acrocephalus arundinaceus, Clamorous Reed Warblers A. stentoreus and a small sample of their hybrids in a sympatric breeding population in Kazakhstan to assess natural variation in stable isotope signatures and delineate wintering sites. The Great Reed Warbler is a long‐distance migrant that overwinters in sub‐Saharan Africa, whereas the Clamorous Reed Warbler performs a short‐distance migration to the Indian sub‐continent. Carbon (δ13C), nitrogen (δ15N) and deuterium (δD) isotope signatures were obtained from winter‐grown feathers of adult birds. There were highly significant differences in δD and less significant differences in δ13C between Great and Clamorous Reed Warblers. Thus, our results show that the stable isotope technique, and in particular the deuterium (δD) signal, resolves continental variation in winter distribution between these closely related Acrocephalus species with sympatric natal origin. The isotope signatures of hybrid Great × Clamorous Reed Warblers clustered with those of the Great Reed Warblers. Hence, a parsimonious suggestion is that the hybrids undergo moult in Afrotropical wintering grounds, as do the Great Reed Warblers. The observed δD values fell within the range of expected values based on available precipitation data collected at precipitation stations across the wintering continents of each species. However, the power to predict the winter origin of birds in our study system using these data was weak as the expected values ranged widely at this broad continental scale.  相似文献   

10.
ABSTRACT Understanding turnover rates of stable isotopes in metabolically active tissues is critical for making spatial connections for migratory birds because samples provide information about pre‐migratory location only until the tissue turns over to reflect local values. We calculated stable‐hydrogen isotope (δ2H) turnover rate in the red blood cells of two long‐distance migratory songbirds, Bicknell's Thrushes (Catharus bicknelli) and Swainson's Thrushes (Catharus ustulatus), using samples collected at a breeding site in New Brunswick, Canada. Blood from both species captured early in the breeding site was more positive in δ2H than blood sampled later in the summer, but did not match blood values for wintering Bicknell's Thrushes. An asymptotic exponential model was used to estimate turnover of red blood cell δ2H and yielded a half‐life estimate of 21 days and 14 days for Bicknell's and Swainson's thrushes, respectively. Red blood cells of both species approached the local breeding site value one month after the first individuals were detected at the site. For Bicknell's Thrushes, estimated δ2H in blood at arrival (?72‰) was closer to blood collected at wintering sites (mean ?61‰) than to expected breeding site δ2H (?120‰). Discrimination values calculated for red blood cells collected at the breeding site for both species were greater than expected based on studies using keratin. Turnover during migration currently limits the use of blood sampled early in the breeding season for connectivity/carry‐over effect studies. However, direct tracking technology such as geolocators can provide information about migration duration, timing, and stopovers that can be used to improve isotopic turnover equations for metabolically active tissues.  相似文献   

11.
 To determine whether stable isotopes can be used for identifying the geographic origins of migratory bird populations, we examined the isotopic composition of hydrogen (deuterium, δD), carbon (δ13C), and strontium (δ87Sr) in tissues of a migratory passerine, the black-throated blue warbler (Dendroica caerulescens), throughout its breeding range in eastern North America. δD and δ13C values in feathers, which are grown in the breeding area, varied systematically along a latitudinal gradient, being highest in samples from the southern end of the species’ breeding range in Georgia and lowest in southern Canada. In addition, δD decreased from east to west across the northern part of the breeding range, from New Brunswick to Michigan. δ87Sr ratios were highest in the Appalachian Mountains, and decreased towards the west. These patterns are consistent with geographical variation in the isotopic composition of the natural environment, i.e., with that of precipitation, plants, and soils for δD, δ13C, and δ87Sr, respectively. Preliminary analyses of the δD and δ13C composition of feathers collected from warblers in their Caribbean winter grounds indicate that these individuals were mostly from northern breeding populations. Furthermore, variances in isotope ratios in samples from local areas in winter tended to be larger than those in summer, suggesting that individuals from different breeding localities may mix in winter habitats. These isotope markers, therefore, have the potential for locating the breeding origins of migratory species on their winter areas, for quantifying the degree of mixing of breeding populations on migratory and wintering sites, and for documenting other aspects of the population structure migratory animals – information needed for studies of year-round ecology of these species as well as for their conservation. Combining information from several stable isotopes will help to increase the resolution for determining the geographic origins of individuals in such highly vagile populations. Received: 24 April 1995 / Accepted: 2 June 1996  相似文献   

12.
In this study we test the potential of stable isotope analysis to reveal wintering origins of waders mixing at stopover sites, using the dunlin Calidris alpina as a case study. We determined stable carbon (δ13C) and nitrogen (δ15N) isotope signatures of toenails of dunlins captured during winter at reference sites along the East‐Atlantic Flyway, from Mauritania to the United Kingdom. Afterwards, during spring migration, dunlins were sampled at the Tagus estuary, Portugal, and assigned to their wintering grounds according to their stable isotope signatures. Toenails from wintering dunlins at different sites had significantly different δ13C and δ15N signatures, despite some overlap in isotopic carbon ratios of birds from Morocco, Portugal and the UK. Among birds sampled during migration in Portugal, we found a clear bimodal pattern in δ13C values, corresponding to passage migrants from Mauritania (enriched δ13C values) and wintering birds from the Tagus estuary (depleted δ13C values). The first passage migrants from Mauritania appeared at the Tagus estuary by the end of March, with peak numbers during late April and early May. Our study provides evidence that isotopic signatures of toenails can play a determinant role in tracing the wintering origins of migrant dunlins at their stopover areas. Toenails, instead of feathers, can be the powerful and innovating tissue to sample in wader studies, allowing to bridge the gap in the field of migratory connectivity between sites used in different phases of the life cycle of waders.  相似文献   

13.
Despite recent advances in technology, it remains difficult to connect breeding and non‐breeding areas of populations of migratory organisms due to the challenges of year‐round tracking. Here, we used the Eurasian reed warbler Acrocephalus scirpaceus, a passerine with a pronounced migratory divide to demonstrate the promise of integrating several sources of information within the Bayesian modelling framework for the study of migratory connectivity. To this end, we combined data from stable hydrogen isotope ratios (δ2H) of feathers, ring recoveries, and the geographic delineation of sub‐populations on either side of the migratory divide. Feather δ2H measurements from local juvenile birds sampled across the breeding range tightly correlated with amount‐weighted mean annual precipitation δ2H values predicted for the natal sites. Predicted natal origins of birds intercepted en route in the Mediterranean region largely differed among the five stopover sites. Thanks to the different migratory pathways used by different breeding populations and the existence of a migratory divide, we were able to effectively narrow the assigned regions of origin. Our results show that spatial resolution of likelihood‐based assignments of geographic origins based on δ2H measurements may improve significantly when prior probabilities derived from population‐specific migratory directions are included. Integrating information from stable isotopes, ring recoveries, geolocators and other sources within the Bayesian modelling framework will provide an extremely useful toolbox for the study of animal movements in the future.  相似文献   

14.
Differences in seasonal migratory behaviours are thought to be an important component of reproductive isolation in many organisms. Stable isotopes have been used with success in estimating the location and qualities of disjunct breeding and wintering areas. However, few studies have used isotopic data to estimate the movements of hybrid offspring in species that form hybrid zones. Here, we use stable hydrogen to estimate the wintering locations and migratory patterns of two common and widespread migratory birds, Audubon's (Setophaga auduboni) and myrtle (S. coronata) warblers, as well as their hybrids. These two species form a narrow hybrid zone with extensive interbreeding in the Rocky Mountains of British Columbia and Alberta, Canada, which has been studied for over four decades. Isotopes in feathers grown on the wintering grounds or early on migration reveal three important patterns: (1) Audubon's and myrtle warblers from allopatric breeding populations winter in isotopically different environments, consistent with band recovery data and suggesting that there is a narrow migratory transition between the two species, (2) most hybrids appear to overwinter in the south‐eastern USA, similar to where myrtle warblers are known to winter, and (3) some hybrid individuals, particularly those along the western edge of the hybrid zone, show Audubon's‐like isotopic patterns. These data suggest there is a migratory divide between these two species, but that it is not directly coincident with the centre of the hybrid zone in the breeding range. We interpret these findings and discuss them within the context of previous research on hybrid zones, speciation and migratory divides.  相似文献   

15.
Despite a commitment by the European Union to protect its migratory bat populations, conservation efforts are hindered by a poor understanding of bat migratory strategies and connectivity between breeding and wintering grounds. Traditional methods like mark-recapture are ineffective to study broad-scale bat migratory patterns. Stable hydrogen isotopes (δD) have been proven useful in establishing spatial migratory connectivity of animal populations. Before applying this tool, the method was calibrated using bat samples of known origin. Here we established the potential of δD as a robust geographical tracer of breeding origins of European bats by measuring δD in hair of five sedentary bat species from 45 locations throughout Europe. The δD of bat hair strongly correlated with well-established spatial isotopic patterns in mean annual precipitation in Europe, and therefore was highly correlated with latitude. We calculated a linear mixed-effects model, with species as random effect, linking δD of bat hair to precipitation δD of the areas of hair growth. This model can be used to predict breeding origins of European migrating bats. We used δ(13)C and δ(15)N to discriminate among potential origins of bats, and found that these isotopes can be used as variables to further refine origin predictions. A triple-isotope approach could thereby pinpoint populations or subpopulations that have distinct origins. Our results further corroborated stable isotope analysis as a powerful method to delineate animal migrations in Europe.  相似文献   

16.
Mediterranean woodlands and associated shrub formations of southern Iberia are key habitats for conservation of migratory birds. In some bird species, migratory and sedentary conspecifics meet in these areas during winter, but our understanding of how each population group is distributed over available habitats and the factors that determine their spatial organization are still unclear. This seriously limits our ability to assess their vulnerability to ongoing environmental changes affecting wintering habitats in this region. We used hydrogen isotopic signatures of feathers (δDf) to shed light on the habitat distribution of seasonally sympatric European Robin Erithacus rubecula populations wintering in Campo de Gibraltar that are currently facing a drastic decline. In contrast to previous studies that used morphological methods to distinguish the migratory behaviour of wintering Robins in this area, our isotopic approach revealed that sedentary Robins were not outcompeted upon the arrival of migrants and remained in the woodlands where they reproduce, which agrees with results obtained in other regions. Interestingly, we also found that migratory Robins with a closer breeding origin (higher δDf values) had a higher probability of occupying woodlands than did migrants coming from further away. Overall, our results suggest that the role of breeding origin in shaping the distribution of Robins during winter in Campo de Gibraltar is more relevant than the effects of sex, age or body size, which might facilitate the evolution of local adaptations for the exploitation of each habitat type.  相似文献   

17.
ABSTRACT Avian age‐class discrimination is typically based on the completeness of the first prebasic molt. In several calidrid sandpiper species, juvenal flight feathers grown on Arctic breeding grounds are retained through the first three migrations. Thereafter, flight feathers are grown annually at temperate migratory stopover sites during the fall or on the subtropical wintering grounds. Standard methods for distinguishing age classes of sandpipers rely on a combination of traits, including body plumage, coloration of protected inner median covert edges, and extent of flight feather wear. We tested the ability of stable hydrogen isotope ratios in flight feathers (δDf) to distinguish young birds in their first winter through second fall from older adults in three calidrid sandpiper species, Western (Calidris mauri), Least (C. minutilla), and Semipalmated (C. pusilla) sandpipers. We compared the apparent reliability of the isotope approach to that of plumage‐based aging. The large expected differences in δDf values of flight feathers grown at Arctic versus non‐Arctic latitudes enabled use of this technique to discriminate between age‐classes. We determined δDf values of known Arctic‐grown feathers from juveniles that grew their flight feathers on the breeding grounds. Flight feather δDf values of southward‐migrating adults showed bimodal distributions for all three species. Negative values overlapped with species‐specific juvenile values, identifying putative second fall birds with high‐latitude grown juvenal feathers retained from the previous year. The more positive values identified older adults who grew their feathers at mid‐ and low latitudes. Importantly, δDf analysis successfully identified first‐winter and second‐fall birds not detected by plumage‐based aging. Flight feather wear alone was a poor basis for age classification because scores overlapped extensively between putative second fall birds and older adults. Flight feather hydrogen isotope analysis enables more definitive assignment of age classes when standard plumage methods are unreliable.  相似文献   

18.
Winter habitat quality can influence breeding phenology and reproductive success of migratory birds. Using stable isotope ratios of carbon (δ13C) from bird claws and red blood cells collected in Massachusetts, USA, we assessed if winter habitat occupancy carried over to affect prairie warbler Setophaga discolor breeding arrival dates, body condition upon arrival, pairing success, first‐egg dates and reproductive success. In two of three years (in 2011 and 2012, but not in 2013), after‐second‐year (ASY) males wintering in drier habitat, as indicated by enriched δ13C values, arrived later on the breeding grounds. Based on the North Atlantic Oscillation index, there was likely less rainfall in the Caribbean wintering grounds during the winters of 2011 and 2012 compared to the winter of 2013, suggesting increased winter rainfall in 2013 may have diminished the influence of winter habitat occupancy on arrival date. We did not find any effects of winter habitat on breeding season phenomena for second‐year (SY) males or females, but our sample sizes for these age/sex classes were relatively low. Although winter habitat quality influenced arrival dates of ASY males, there was no evidence that it affected reproductive performance, perhaps because of high rates of nest depredation in our system. Our study adds to a growing body of research that shows the influence of carry‐over effects can differ among species and within populations, and also can be modulated by other environmental conditions. This information enriches our understanding of the role of carry‐over effects in population limitation for migratory birds.  相似文献   

19.
Stable isotope analysis of feathers can be useful in the study of seasonal interactions and migratory connectivity in birds. For the Palaearctic–African migration system, however, the lack of isotope data from feathers of known origin in Africa renders the geographic assignment of birds captured on European breeding grounds to potential wintering areas problematic. Rectrices of the threatened aquatic warbler Acrocephalus paludicola grown in Africa were sampled across six European countries to assess whether birds in different breeding populations shared similar isotopic signatures and so were likely to have wintered in the same region in Africa. Freshly grown feathers of aquatic warblers collected at the only known wintering site in Senegal showed high variation in carbon, nitrogen, and hydrogen isotope ratios. Due to similarly high variation in isotope ratios of African‐grown feathers within all breeding populations, it was not possible to determine whether different populations wintered in different regions. However, isotope signatures of 20% of birds captured on European breeding grounds fell outside the range of those captured in Senegal, suggesting a wider wintering distribution than is currently known. We therefore assessed whether the origin of these feathers could be estimated by trying to establish isotopic gradients across sub‐Saharan West Africa. Feathers of three ecologically similar surrogate species were sampled from wetlands across a 3000 km east‐west and a 2000 km north–south transect. Within‐site variation in feather isotope ratios was frequently larger than the difference predicted by gradients across West Africa. Thus, predicting the origin of individual feathers using single‐isotope gradients was not reliable. The large within‐site variability of feather isotope ratios of a habitat specialist species like the aquatic warbler indicates that using feather isotope ratios will require large sample sizes from many locations, and may thus not be an efficient tool in identifying wintering areas of Palaearctic–African migrants.  相似文献   

20.
Conservation of migratory wildlife requires knowledge of migratory connectivity between breeding and non-breeding locations. Stable isotopes in combination with geographical isotopic patterns (isoscapes) can provide inferences about migratory connectivity. This study examines whether such an approach can be used to infer wintering areas in sub-Saharan Africa, where we lack such knowledge for many species, but where this method has not been used widely. We measured δ 2H, δ 13C and δ 15N in winter-grown feathers of a breeding Swiss and Spanish population of European hoopoe Upupa epops—a typical Palaearctic-Afrotropical migrant. δ 2H values predicted that ~70 % of the hoopoes spent the non-breeding season in the western portion of their potential winter range. This was corroborated by a shallow east–west gradient in feather-δ 2H values of museum specimens from known African origin across the potential winter range and by the recovery of Swiss hoopoes marked with geolocators. Hoopoes categorized as from eastern versus western regions of the wintering range were further delineated spatially using feather δ 13C and δ 15N. δ 15N showed no trend, whereas adults were more enriched in 13C in the western portion of the range, with eastern adults being in addition more depleted in 13C than eastern juveniles. This suggests that eastern juveniles may have occupied more xeric habitats than sympatric adults. We demonstrated that stable isotopes, especially δ 2H, could only very roughly delineate the winter distribution of a trans-Saharan Palaearctic migrant restricted primarily to the Sahelian and savanna belt south of the Sahara. Further refinements of precipitation isoscapes for Africa as well the development of isoscapes for δ 13C and δ 15N may improve assignment of this and other migrants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号