首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Quite unexpectedly, THz and infraredspectroscopy has now a real chance to solveproblems in the nanosciences. This rests ona new microscope technique that overcomesthe Abbe diffraction limit, by using thenear field of a metal antenna in closeproximity to a scanned sample surface. HereI briefly summarize present activities inthe microwave, mid-infrared and visiblespectral ranges. It seems straightforwardand highly desirable to fill the existinggap between about 20 GHz and 20 THz, andattain spatial resolution of 10 nm andbelow also in this important part of theelectromagnetic spectrum.  相似文献   

2.
Significant advances in fluorescence microscopy tend be a balance between two competing qualities wherein improvements in resolution and low light detection are typically accompanied by losses in acquisition rate and signal-to-noise, respectively. These trade-offs are becoming less of a barrier to biomedical research as recent advances in optoelectronic microscopy and developments in fluorophore chemistry have enabled scientists to see beyond the diffraction barrier, image deeper into live specimens, and acquire images at unprecedented speed. Selective plane illumination microscopy has provided significant gains in the spatial and temporal acquisition of fluorescence specimens several mm in thickness. With commercial systems now available, this method promises to expand on recent advances in 2-photon deep-tissue imaging with improved speed and reduced photobleaching compared to laser scanning confocal microscopy. Superresolution microscopes are also available in several modalities and can be coupled with selective plane illumination techniques. The combination of methods to increase resolution, acquisition speed, and depth of collection are now being married to common microscope systems, enabling scientists to make significant advances in live cell and in situ imaging in real time. We show that light sheet microscopy provides significant advantages for imaging live zebrafish embryos compared to laser scanning confocal microscopy.  相似文献   

3.
4.
5.
We present a novel slit scanning confocal microscope with a CCD camera image sensor and a virtual slit aperture for descanning that can be adjusted during post-processing. A very efficient data structure and mathematical criteria for aligning the virtual aperture guarantee the ease of use. We further introduce a method to reduce the anisotropic lateral resolution of slit scanning microscopes. System performance is evaluated against a spinning disk confocal microscope on identical specimens. The virtual slit scanning microscope works as the spinning disk type and outperforms on thick specimens.  相似文献   

6.
We present a multimodal in vivo skin imaging instrument that is capable of simultaneously acquiring multiphoton and reflectance confocal images at up to 27 frames per second with 256 × 256 pixel resolution without the use of exogenous contrast agents. A single femtosecond laser excitation source is used for all channels ensuring perfect image registration between the two‐photon fluorescence (TPF), second harmonic generation (SHG), and reflectance confocal microscopy (RCM) images. Images and videos acquired with the system show that the three imaging channels provide complementary information in in vivo human skin measurements. In the epidermis, cell boundaries are clearly seen in the RCM channel, while cytoplasm is better seen in the TPF imaging channel, whereas in the dermis, SHG and TPF channels show collagen bundles and elastin fibers, respectively. The demonstrated fast imaging speed and multimodal imaging capabilities of this MPM/RCM instrument are essential features for future clinical application of this technique. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
A developed temporal focusing‐based multiphoton excitation microscope (TFMPEM) has a digital micromirror device (DMD) which is adopted not only as a blazed grating for light spatial dispersion but also for patterned illumination simultaneously. Herein, the TFMPEM has been extended to implement spatially modulated illumination at structured frequency and orientation to increase the beam coverage at the back‐focal aperture of the objective lens. The axial excitation confinement (AEC) of TFMPEM can be condensed from 3.0 μm to 1.5 μm for a 50 % improvement. By using the TFMPEM with HiLo technique as two structured illuminations at the same spatial frequency but different orientation, reconstructed biotissue images according to the condensed AEC structured illumination are shown obviously superior in contrast and better scattering suppression. Picture : TPEF images of the eosin‐stained mouse cerebellar cortex by conventional TFMPEM (left), and the TFMPEM with HiLo technique as 1.09 μm?1 spatially modulated illumination at 90° (center) and 0° (right) orientations.

  相似文献   


8.
Photoacoustic microscopy (PAM) provides a fundamentally new tool for a broad range of studies of biological structures and functions. However, the use of PAM has been largely limited to small vertebrates due to the large size/weight and the inconvenience of the equipment. Here, we describe a portable optical‐resolution photoacoustic microscopy (pORPAM) system for 3‐dimensional (3D) imaging of small‐to‐large rodents and humans with a high spatiotemporal resolution and a large field of view. We show extensive applications of pORPAM to multiscale animals including mice and rabbits. In addition, we image the 3D vascular networks of human lips, and demonstrate the feasibility of pORPAM to observe the recovery process of oral ulcer and cancer‐associated capillary loops in human oral cavities. This technology is promising for broad biomedical studies from fundamental biology to clinical diseases.   相似文献   

9.
SYNOPSIS. The structure and morphogenesis of the ventral ciliature of Paraurostyla hymenophora (Stokes) are described. The oral primordium apparently originates in association with transverse cirrus #6, from which it migrates anteriorly simultaneous with kinetosomal proliferation. The primordium eventually forms an elongate ciliary field from which the future opisthe's fronto-ventro-transverse (FVT) and undulating membrane primordial fields arise. Concomitantly, the future proter's FVT primordial field is initiated by the disaggregation of frontal cirri #4, #5, and #6. Primordia then develop simultaneously within marginal and ventral cirral rows by a disaggregation of cirri within the respective rows, and do not give rise to new cirri until the FVT fields complete segregation into discrete cirri. Near the completion of cirral production from the FVT primordia, each ventral cirral primordium (VCP) forms the 2 rightmost transverse cirri. Segregation of new cirri within the marginal cirral primordia and VCP then occurs, eventually replacing all old cirri within their respective marginal and ventral cirral rows. At the end of cortical morphogenesis, all old ciliary organelles, with the exception of the adoral zone of membranelles, are either reorganized or replaced. These results suggest an evolutionary affinity between the ventral and marginal cirral rows and raise questions about the control of the developmental competence of individual primordia.  相似文献   

10.
Actin is a multifunctional eukaryotic protein with a globular monomer form that polymerizes into a thin, linear microfilament in cells. Through interactions with various actin-binding proteins (ABPs), actin plays an active role in many cellular processes, such as cell motility and structure. Microscopy techniques are powerful tools for determining the role and mechanism of actin–ABP interactions in these processes. In this article, we describe the basic concepts of fluorescent speckle microscopy, total internal reflection fluorescence microscopy, atomic force microscopy, and cryoelectron microscopy and review recent studies that utilize these techniques to visualize the binding of actin with ABPs.  相似文献   

11.
El‐Bakry, A.M. 2011. Comparative study of the corneal epithelium in some reptiles inhabiting different environments. —Acta Zoologica (Stockholm) 92 : 54–61. The vertebrate cornea functions in either aquatic or aerial environments and in some cases in both. In terrestrial and aerial vertebrates, the cornea contributes most of the refractive powers of the eye because of the large variation in refractive index between the air and the cornea. The present study aimed to examine and compare the main features of the corneal epithelial surface of three reptilian species related to three different families (Caretta caretta, Varanus griseus and Mabuya quinquetaeniata) and inhabiting different environment, by light, scanning (SEM) and transmission electron microscopy. The mean epithelial cell densities of the species of the study were 8.670 ± 3.134, 5.945 ± 2.144 and 2.124 ± 713 respectively. The corneal epithelium of the three species observed by SEM showed a similarity to one another indicating that the apical cell surfaces possess regular polygonal cells with varieties of microprocesses. These microprocesses were represented by microplicae, numerous microvilli and some long microridges in C. caretta, microplicae and minute microholes in V. griseus and microplicae intermingled with short microvilli in M. quinquetaeniata. According to the densities of these microprocesses, three polymorphic cell types (light, medium and dark) appeared in C. caretta, light and medium cell types were observed in V. griseus and medium and dark cell types were noticed in M. quinquetaeniata. Different types of tight adhesions were observed by transmission electron microscopy between the cell borders of the epithelial cells which differ according to environment where the species occupy. In conclusion, variation in the structure of the corneal epithelial cells appears to be related to the living environment, such as aerial, terrestrial and aquatic ones, which is occupied by every species.  相似文献   

12.
Summary— Confocal scanning optical microscopy has significant advantages over conventional fluorescence microscopy: it rejects the out-of-locus light and provides a greater resolution than the wide-field microscope. In laser scanning optical microscopy, the specimen is scanned by a diffraction-limited spot of laser light and the fluorescence emission (or the reflected light) is focused onto a photodetector. The imaged point is then digitized, stored into the memory of a computer and displayed at the appropriate spatial position on a graphic device as a part of a two-dimensional image. Thus, confocal scanning optical microscopy allows accurate non-invasive optical sectioning and further three-dimensional reconstruction of biological specimens. Here we review the recent technological aspects of the principles and uses of the confocal microscope, and we introduce the different methods of three-dimensional imaging.  相似文献   

13.
We have imaged microtubules, essential structural elements of the cytoskeleton in eukaryotic cells, in physiological conditions by scanning force microscopy. We have achieved molecular resolution without the use of cross-linking and chemical fixation methods. With tip forces below 0.3 nN, protofilaments with ~6 nm separation could be clearly distinguished. Lattice defects in the microtubule wall were directly visible, including point defects and protofilament separations. Higher tip forces destroyed the top half of the microtubules, revealing the inner surface of the substrate-attached protofilaments. Monomers could be resolved on these inner surfaces.Abbreviations APTS (3-aminopropyl)triethoxysilane - DETA N1-[3-(trimethoxysilyl)propyl]diethylenetriamine - EM electron microscopy - MT microtubule - SFM scanning force microscopy  相似文献   

14.
Cryo-electron tomography of cells: connecting structure and function   总被引:3,自引:3,他引:0  
Cryo-electron tomography (cryo-ET) allows the visualization of cellular structures under close-to-life conditions and at molecular resolution. While it is inherently a static approach, yielding structural information about supramolecular organization at a certain time point, it can nevertheless provide insights into function of the structures imaged, in particular, when supplemented by other approaches. Here, we review the use of experimental methods that supplement cryo-ET imaging of whole cells. These include genetic and pharmacological manipulations, as well as correlative light microscopy and cryo-ET. While these methods have mostly been used to detect and identify structures visualized in cryo-ET or to assist the search for a feature of interest, we expect that in the future they will play a more important role in the functional interpretation of cryo-tomograms.  相似文献   

15.
Correlative light/electron microscopy (CLEM) allows the simultaneous observation of a given subcellular structure by fluorescence light microscopy (FLM) and electron microscopy. The use of this approach is becoming increasingly frequent in cell biology. In this study, we report on a new high data output CLEM method based on the use of cryosections. We successfully applied the method to analyze the structure of rough and smooth Russell bodies used as model systems. The major advantages of our method are (i) the possibility to correlate several hundreds of events at the same time, (ii) the possibility to perform three-dimensional (3D) correlation, (iii) the possibility to immunolabel both endogenous and recombinantly expressed proteins at the same time and (iv) the possibility to combine the high data analysis capability of FLM with the high precision-accuracy of transmission electron microscopy in a CLEM hybrid morphometry analysis. We have identified and optimized critical steps in sample preparation, defined routines for sample analysis and retracing of regions of interest, developed software for semi/fully automatic 3D reconstruction and defined preliminary conditions for an hybrid light/electron microscopy morphometry approach.  相似文献   

16.
Polarimetric measurements in multiphoton microscopy can reveal information about the local molecular order of a sample. However, the presence of a dichroic through which the excitation beam propagates will generally scramble its polarization. We propose a simple scheme whereby a second properly‐oriented compensation dichroic is used to negate any alteration regardless of the wavelength and the initial polarization. We demonstrate how this robust and rapid approach simplifies polarimetric measurements in second‐harmonic generation, two‐photon excited fluorescence and coherent anti‐Stokes Raman scattering.

Illustration of the polarization maintaining strategy with the compensating dichroic oriented such that its s‐ and p‐axes are interchanged with these of the primary dichroic.  相似文献   


17.
Although negative stain electron microscopy is a wonderfully simple way of directly visualizing protein complexes and other biological macromolecules, the images are not really comparable to those of objects seen in everyday life. The failure to appreciate this has recently led to an incorrect interpretation of RecA‐family filament structures.  相似文献   

18.
19.
郑明杰 《激光生物学报》2010,19(3):423-426,F0003,390
光学显微镜的发展历史是一段不断提高显微镜的分辨率和对比度的历史。双光子显微镜是近30年来非线性显微镜的研究发展的代表。它在分辨率上与共聚焦显微镜相当,但在成像的层析穿透深度上有显著提高,并且大大减少了光毒性与光漂白。由于生物细胞组织中富有各种自家荧光源,因此双光子显微镜被广泛应用于皮肤组织甚至癌组织以及细胞的成像。基于共聚焦扫描显微镜的双光子显微镜可以很容易的与二次谐波显微镜组合,对皮肤组织中的重要成分胶原纤维进行成像。双光子显微镜还可以结合其他非线性光学现象对组织以及细胞进行成像,显示其强大的生命力。将来随着携带方便且廉价的双光子显微镜的出现,双光子显微镜有望在临床医学上发挥其有效的作用。  相似文献   

20.
Secondary ion mass spectrometry (SIMS) microscopy, a mass spectrometry method designed in the 1960s, offers new analytical capabilities, high sensitivity (ppm to ppb region), high specificity and improved lateral resolution, thus facilitating insight into many physiological and biomedical questions. Apart from the sample preparation and the physical characteristics of the detection, the biological model must also be considered. SIMS analysis of diffusible ions and molecules requires strict cryogenic procedures which always begin by a flash-freeze fixation. Cellular integrity can be checked by mapping the major element distributions since intra and extracellular ions are redistributed only in damaged cells. Cryofixing may be followed either by a freeze-fracture methodology or by cryoembedding and dry-cutting. Chemical sample preparation is only used for ions or molecules bound to fixed cell structures. The use of scanning procedures ameliorates the lateral resolution and chromosome imaging has been reported with probe size of below 50nm. Absolute quantification can be derived for embedded specimen by using internal references included in tissue equivalent resins. The sensitivity is limited by the ionization yield of the tag element and may be further impaired when working at high mass resolution (≥5000) to eliminate interfering cluster ions. SIMS drug mapping is usually performed after in vitro administration of a molecule to cell culture systems. Drug detection is accomplished indirectly by detecting a tag isotope naturally present or introduced by labelling, mainly with halogens,15N and14C. Molecular imaging with TOF-SIMS is an appealing alternative especially for heavier compounds. We stress some biological problems through a critical review of published SIMS drug studies. SIMS proved useful in assessing the targeting specificity of nuclear medicine pharmaceutics, even after in vivo administration. The first microscopic evidence of a thionamide induced follicular blockade of the iodine organification process is presented in a human sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号