首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wetland restoration practices can include rehabilitating degraded wetlands or creating new wetlands. Empirical evidence is needed to determine if both rehabilitated and created wetlands can support the same macroinvertebrate communities as their natural counterparts. We measured long‐term macroinvertebrate community change in seasonal wetlands known as Delmarva Bays in Maryland, U.S.A. We compared a rehabilitated, a created, and a natural Delmarva Bay. We hypothesized that the created and rehabilitated wetlands would develop different macroinvertebrate communities. We also hypothesized that the community composition of the rehabilitated wetland would become more similar to that of the natural wetland than to that of the created wetland over 9 years encompassed by this study. We monitored the macroinvertebrates, including both predators and primary consumers, and environmental conditions in the three wetlands from March to August in 2005, 2006, 2007, and 2012. Cluster analysis indicated that from 2005 to 2007, the macroinvertebrate community of the rehabilitated wetland and the created wetland were more similar to each other than to the natural wetland. In 2012, the rehabilitated wetland was more similar to the natural wetland than to the created wetland. This similarity was driven principally by changes in the composition of primary consumer taxa. Our results suggest that rehabilitated Delmarva Bays are more likely to support a natural macroinvertebrate community than are created wetlands. Restoration practices that rehabilitate existing wetlands may be preferred over practices that create new wetlands when restoration project goals include developing natural macroinvertebrate communities in a short period of time.  相似文献   

2.

Macroinvertebrate community structure and assemblages associated with the planted, native submerged aquatic vegetation (SAV) species Heteranthera dubia (Jacq.) MacMillan and Potamogeton nodosus Poiret were examined in a series of constructed urban floodway wetlands, the Dallas Floodway Extension Lower Chain of Wetlands, Dallas, TX, USA. Macroinvertebrate community metrics, including abundance, richness, diversity, and evenness associated with SAV and three different wetlands of varying construction completion dates, water sources (direct or wetland-channeled wastewater effluent), and ecosystem management stage (established/reference or developing) were compared and analyzed. Assemblages at sampling sites were also classified and related to vegetation and wetland physicochemical parameters. Plant species affected only macroinvertebrate abundance, with the less-dissected P. nodosus supporting higher counts than H. dubia. Wetland age and water-effluent type had the most substantial effect on macroinvertebrate communities. The older, longer-managed wetland and wetland-channeled effluent habitat consistently demonstrated higher quality metrics and biodiversity than newly constructed, direct effluent wetland habitat. Increased vegetation cover and wetland age, coupled with moderate water temperature, pH, and DO levels were characteristics of more rich and diverse macroinvertebrate communities, including pollutant-sensitive taxa, such as Ephemeroptera and Trichoptera.

  相似文献   

3.
Restoration efforts are being implemented globally to mitigate the degradation and loss of wetland habitat; however, the rate and success of wetland vegetation recovery post‐restoration is highly variable across wetland classes and geographies. Here, we measured the recovery of plant diversity along a chronosequence of restored temporary and seasonal prairie wetlands ranging from 0 to 23 years since restoration, including drained and natural wetlands embedded in agricultural and natural reserve landscapes in central Alberta, Canada. We assessed plant diversity using the following structural indicators: percent cover of hydrophytes, native and non‐native species, species richness, and community composition. Our findings indicate that plant diversity recovered to resemble reference wetlands in agricultural landscapes within 3–5 years of restoration; however, restored wetlands maintained significantly lower species richness and a distinct community composition compared to reference wetlands located within natural reserves. Early establishment of non‐native species during recovery, dispersal limitation, and depauperated native seed bank were probable barriers to complete recovery. Determining the success of vegetation recovery provides important knowledge that can be used to improve restoration strategies, especially considering projected future changes in land use and climate.  相似文献   

4.
Wetlands are among the most threatened habitats and the species they support among the most endangered taxa. Measuring and monitoring wetland biodiversity is vital for conservation, restoration and management, and often relies on the use of surrogate taxa. Waterbirds are commonly used as flagships of biodiversity and are the subject of major conservation initiatives. Therefore, it is important to assess the extent to which waterbirds indicate the general biodiversity of wetlands and serve as surrogates.We explore the relationships between community composition and species richness of waterbirds and aquatic macroinvertebrates in 36 Ramsar wetlands in southern Spain to assess if waterbirds are good surrogates for other taxonomic groups. Specifically, we aimed to (i) test the congruence of patterns of species composition and richness among waterbirds and aquatic macroinvertebrates; and (ii) investigate which environmental variables are associated with the biodiversity patterns of waterbirds and macroinvertebrates, with the purpose of identifying key factors explaining potential discordance in these patterns.We found a limited concordance between assemblage patterns of both taxonomic groups that may be related to their contrasting responses to environmental gradients. Assemblages of waterbirds appear to be more affected by climate variables and water surface area, whereas conductivity was the most important factor influencing macroinvertebrate communities. Furthermore, we found a negligible or inverse relationship in their patterns of richness, with wetlands with higher waterbird species richness showing significantly lower richness of Hemiptera and macroinvertebrate families, and no significant relationship with Coleoptera. In addition, GLM models showed that, in general, different environmental variables are related with the richness patterns of the different taxonomic groups.Given the importance of the Ramsar convention for the conservation of an international network of wetlands, our findings underline the limited potential of waterbirds as aquatic biodiversity indicators in Mediterranean wetlands, and the need for caution when using waterbirds as flagships. An integrative analysis of different biological communities, using datasets from different taxonomic groups, is a necessary precursor for successful conservation policies and monitoring. Our results illustrate the need to create a diversified and complete network of protected sites able to conserve multiple components of wetland biodiversity.  相似文献   

5.
Measuring the success of wetland restoration efforts requires an assessment of the wetland plant community as it changes following restoration. But analyses of restored wetlands often include plant community data from only one time period. We studied the development of plant communities at 13 restored marshes in northern New York for 4 years, including 1 year prior to restoration and 3 years afterwards. Restored wetlands ranged in size from 0.23 to 1.70 ha. Four reference wetlands of similar basin morphology, soil type, and size (0.29–0.48 ha) that occurred naturally in the same area were studied as comparisons. Dike construction to restore hydrology disturbed the existing vegetation in some parts of the restored sites, and vegetation was monitored in both disturbed and undisturbed areas. Undisturbed areas within the restored sites, which were dominated by upland field grasses before restoration, developed wetland plant communities with lower wetland index values but comparable numbers of wetland plant species than the reference wetlands, and they lagged behind the reference sites in terms of total wetland plant cover. There were significantly more plant species valuable as food sources for wetland birds, and a significantly higher percent cover of these species, at the undisturbed areas of the restored sites than at the reference wetlands. Areas of the restored sites that were disturbed by dike construction, however, often developed dense, monospecific cattail stands. In general, the plant communities at restored sites became increasingly similar to those at the reference wetlands over time, but higher numbers of herbaceous plants developed at the restored sites, including food plants for waterfowl, rails, and songbirds. Differences in shrub cover will probably lessen as natural recolonization increases shrub cover at the restored sites. Natural recolonization appears to be an effective technique for restoring wetlands on abandoned agricultural fields with established plant cover, but it is less successful in areas where soil has been exposed by construction activity.  相似文献   

6.
Few wetland restoration projects include long‐term hydrologic and floristic data collection, limiting our understanding of community assembly over restored hydrologic gradients. Although reference sites are commonly used to evaluate outcomes, it remains unclear whether restoring similar water levels to reference sites also leads to similar plant communities. We evaluated long‐term datasets from reference and restored wetlands 15 years after restoration to test whether similar water levels in reference and restored sites led to vegetation similarity. We compared the hydrologic regimes for three different wetland types, tested whether restored wetland water levels were different from reference water levels, and whether hydrologic similarity between reference and restored wetlands led to similarity in plant species composition. We found restored wetlands had similar water levels to references 15 years after restoration, and that species richness was higher in reference than restored wetlands. Vegetation composition was similar across all wetland types and was weakly correlated to wetland water levels overall. Contrary to our hypothesis, water table depth similarity between restored and reference wetlands did not lead to similar plant species composition. Our results highlight the importance of the initial planting following restoration and the importance of hydrologic monitoring. When the restoration goal is to create a specific wetland type, plant community composition may not be a suitable indicator of restoration progress in all wetland types.  相似文献   

7.
Wetland restoration has been implemented widely but evaluation of the effectiveness of wetland restoration has been limited. In this study, we aimed to investigate the utility of aquatic invertebrate assemblages as potential indicators of restoration condition in wetlands of the Sanjiang Plain, Northeastern China. Results from non‐metric multidimensional scaling analysis of invertebrate assemblages showed that study wetlands (n = 16) divided into two groups: natural wetlands and wetlands that have been restored for 4 years were classified as a group, and impaired wetlands and wetlands restored for only 1 year were classified into another group. After 4 years of recovery, 47.9% of invertebrate taxa found at the natural wetlands could also be found at the restored wetlands, primarily insects with aerial dispersal capabilities for rapid colonization. Indicator species analysis identified differences in community composition among wetland types, and Amphiagrion sp. and Bezzia sp. were indicators of the restored wetlands. In Northeastern China, aquatic invertebrate assemblages and certain indicator species may provide robust measures of wetland restoration. It is urgent for further exploration to monitor restored wetlands in the long‐time series and fully assess the efficiency of the restoration.  相似文献   

8.
Drainage is a major disturbance affecting wetlands, as drains lower water tables and convert lentic habitats to lotic ones. Consequently, invertebrate communities in drained wetlands are likely to differ from those in unimpacted wetlands. This study investigated the effect of hydrological restoration on invertebrate communities in small drains in a New Zealand fen. Invertebrates were collected over 4 summers from 10 drains within the wetland, one of which was blocked as part of a restoration program. The sampling protocol thus represented a Before‐After Control‐Impact experiment. Invertebrate community composition varied over the 4 years, but variability was greatest in the manipulated drain before and after it was blocked. Relative abundance of the amphipod Paraleptamphopus decreased after blockage, whereas those of the midges Chironomus zelandicus and Tanypodinae increased. Relative abundances of these taxa in control sites were unchanged. Hydraulic restoration thus had a demonstrable impact on the invertebrate communities. The invertebrate community of the blocked drain was compared to that of natural wetlands in undisturbed catchments. Similarity was very low prior to drain blockage, but increased following drain blockage. Invertebrate communities in the restored drain were more similar to those of low pH wetlands than high pH wetlands. Given the goal of restoring the communities to those similar to natural conditions, this was a beneficial result. These results, coupled with studies that showed a decline in the cover of alien pasture grasses around the blocked drain, suggest that drain blockage represents a cost‐effective way of restoring wetland plant and aquatic invertebrate communities, especially where connectivity allows for the natural recruitment of these organisms into restored areas.  相似文献   

9.
Wetlands historically provided many ecosystem services but most have been lost or degraded through land conversion. Recent appreciation for wetland values and increasing ecotourism in the Central Platte River Valley (U.S.A.) has promoted restoration of wet meadow systems, although recovery patterns are not well known. We quantified plant community structure in sloughs (deeper habitats) and adjacent margins (slightly higher elevation) of six wetland sites, restored for 1–7 years at the onset of a 3-year study, and three natural wetlands to assess recovery dynamics. Plant community metrics recovered differentially between habitats. Within restored margins, richness and diversity showed a weak quadratic response with time since restoration, indicating that both indexes overshoot natural levels shortly following restoration. Within sloughs, richness and diversity showed no change with time, suggesting that recovery occurs more quickly in these deeper, moister habitats. Percent similarity of plant communities in restorations and natural wetlands increased linearly over time. However, ordinations of plant community composition showed that recovery was strongly influenced by site-specific hydrology and that recovery may not be a linear trajectory toward natural systems. The analysis and interpretation of plant community dynamics revealed several challenges to restoration assessment, including the role of interannual variability in precipitation, limitations to hydrologic recovery, and temporal variability in plant community structure in natural systems that resulted in "moving targets" for recovery comparisons. Temporal variability in climate must be considered when assessing restoration success in systems where plant community structure is responsive to variable moisture regimes.  相似文献   

10.
11.
12.
Macroinvertebrates have a successful history of use as indicators of human impact in lotic environments. More recently, macroinvertebrate indices have been recommended for use in certain wetland types. Yet some authors do not recommend macroinvertebrates indices of wetland condition in areas with pronounced natural environmental heterogeneity. Our study provides a preliminary assessment of the feasibility of using macroinvertebrates for bioassessment of temporary isolated depression wetlands in the south-western Cape region of South Africa. We expected natural environmental heterogeneity among wetlands to exert a stronger influence on macroinvertebrates than human disturbance factors. Partitioning of the variation in macroinvertebrate assemblage composition that could be attributed to human disturbance factors (within and adjacent to wetlands), environmental variables and spatio-temporal factors indicated that environmental and spatio-temporal factors independent of human disturbances largely determined assemblage composition, whilst human disturbance played a relatively minor role. Linear regressions of taxon richness/diversity measures, individual families and a collation of metrics against measures of habitat transformation around wetlands and scores from a rapid assessment index of human disturbance revealed poor relationships. The univariate and multivariate patterns observed in this study do not lend themselves to the creation of a macroinvertebrate index of human disturbance for temporary wetlands in the region.  相似文献   

13.
Recognition of wetland ecosystem services has led to substantial investment in wetland restoration in recent decades. Wetland restorations can be designed to meet numerous goals, among which reestablishing a diverse native wetland plant community is a common aim. In agricultural areas, where previously drained wetland basins can fill with eroded sediment from the surrounding landscape, restoration often includes excavation to expose buried seed banks. The extent to which excavation improves the diversity of wetland plant communities is unclear, particularly in terms of longer‐term outcomes. We examined plant species diversity and community composition in 24 restored agricultural wetlands across west‐central Minnesota, U.S.A. In all study wetlands, hydrology was restored by removing subsurface drainage and plugging drainage ditches, thus reestablishing groundwater connectivity and hydroperiod (“business as usual” treatment). In half of the wetlands, accumulated sediment was removed from the basin and redeposited on the surrounding landscape (“excavated” treatment). Initially, sediment removal significantly decreased invasive species cover, particularly of hybrid cattail (Typha × glauca) and reed canary grass (Phalaris arundinacea), and increased community diversity and evenness. Over time, the effects of sediment removal diminished, and eventually disappeared by approximately 6 years after restoration. While our results demonstrate that sediment removal improves initial restoration outcomes for plant communities, longer‐term benefits require sustained management, such as invasive species control or resetting of basins through additional excavation.  相似文献   

14.
Stream restorations that increase geomorphic stability can improve habitat quality, which should benefit selected species and local aquatic ecosystems. This assumption is often used to define primary restoration goals; yet, biological responses to restoration are rarely monitored or evaluated methodically. Macroinvertebrate communities were inventoried at 6 study reaches within 5 Catskill Mountain streams between 2002 and 2006 to characterize their responses to natural‐channel‐design (NCD) restoration. Although bank stability increased significantly at most restored reaches, analyses of variation showed that NCD restorations had no significant effect on 15 of 16 macroinvertebrate community metrics. Multidimensional scaling ordination indicated that communities from all reach types within a stream were much more similar to each other within any given year than they were in the same reaches across years or within any type of reach across streams. These findings indicate that source populations and watershed‐scale factors were more important to macroinvertebrate community characteristics than were changes in channel geomorphology associated with NCD restoration. Furthermore, the response of macroinvertebrates to restoration cannot always be used to infer the response of other stream biota to restoration. Thus, a broad perspective is needed to characterize and evaluate the full range of effects that restoration can have on stream ecosystems.  相似文献   

15.
Natural wetland ecosystems continue to suffer widespread destruction and degradation. Many recent studies argue that artificial or restored wetlands compensate for wetland loss and are valuable for waterbird conservation. However, detailed comparisons of the value of natural, artificial and restored wetlands are lacking. Our aim was to assess if the restoration or creation of wetlands can fully compensate for the loss of natural wetlands for waterbirds. We compared the waterbird communities in a set of 20 natural, restored and artificial wetlands, all of which are considered important for waterbirds and are located within the same protected area (Doñana Natural Space, south‐west Spain). We used different measures of diversity, including phylogenetic relatedness, and the proportion of threatened species at national, European and international levels. We found that artificial wetlands have consistently lower value than restored and natural wetlands, with little difference between the latter two. Natural wetlands are essential for conserving diversity across the tree of life and for threatened species, but restored wetlands can be of similar value and can assure maintenance of key ecological processes. Thus, when economic costs per unit area are similar, resources for wetland conservation are better invested in restoration projects than in wetland creation, and caution is required when suggesting that artificial wetlands compensate for the loss of natural wetlands.  相似文献   

16.
通过幼苗萌发法和样方调查相结合的方法对三江平原不同演替恢复阶段的种子库特征及其与植被的关系进行了研究。将开垦湿地、不同演替恢复阶段湿地以及天然湿地不同土壤层次(0-5、5-10 cm和根茎)的种子库在两种水分条件下(湿润、淹水10 cm)进行萌发处理。结果表明: 随着演替恢复阶段的进行, 种子库的结构和规模逐渐扩大, 地表群落表现出由旱生物种占优势的群落逐渐演变成以小叶章(Calamagrostis angustifolia)占优势的湿生群落的演替趋势。恢复7年湿地、恢复14年湿地、天然湿地土壤种子库萌发物种数分别为24种、29种、39种, 植被物种数为21种、25种、14种。湿地类型、水分条件和土壤层次均显著影响种子库萌发的物种数及幼苗数(p < 0.01)。种子库具有明显的分层现象, 天然湿地0-5 cm土层种子库种子萌发密度是5-10 cm土层的4倍左右, 而恢复湿地仅1.3倍左右, 且土层间萌发物种相似性系数较低。湿润条件下的萌发物种数显著高于淹水条件, 且两种水分条件下萌发物种的生活型不同。由于恢复时间较短, 不同演替恢复阶段的种子库与植被相似性维持在30%以下。湿地中根茎分蘖出大量的湿地物种, 对于小叶章等优势物种的繁殖具有重要作用。研究表明, 在开垦湿地退耕后的次生演替阶段, 种子库能够保持大量的湿地物种, 通过对湿地种子库与植被的关系研究, 能够为三江平原湿地群落演替与湿地恢复提供策略指导。  相似文献   

17.
Mangrove wetland restoration and creation efforts are increasingly proposed as mechanisms to compensate for mangrove wetland losses. However, ecosystem development and functional equivalence in restored and created mangrove wetlands are poorly understood. We compared a 20-year chronosequence of created tidal wetland sites in Tampa Bay, Florida (USA) to natural reference mangrove wetlands. Across the chronosequence, our sites represent the succession from salt marsh to mangrove forest communities. Our results identify important soil and plant structural differences between the created and natural reference wetland sites; however, they also depict a positive developmental trajectory for the created wetland sites that reflects tightly coupled plant-soil development. Because upland soils and/or dredge spoils were used to create the new mangrove habitats, the soils at younger created sites and at lower depths (10–30?cm) had higher bulk densities, higher sand content, lower soil organic matter (SOM), lower total carbon (TC), and lower total nitrogen (TN) than did natural reference wetland soils. However, in the upper soil layer (0–10?cm), SOM, TC, and TN increased with created wetland site age simultaneously with mangrove forest growth. The rate of created wetland soil C accumulation was comparable to literature values for natural mangrove wetlands. Notably, the time to equivalence for the upper soil layer of created mangrove wetlands appears to be faster than for many other wetland ecosystem types. Collectively, our findings characterize the rate and trajectory of above- and below-ground changes associated with ecosystem development in created mangrove wetlands; this is valuable information for environmental managers planning to sustain existing mangrove wetlands or mitigate for mangrove wetland losses.  相似文献   

18.
Livestock grazing can compromise the biotic integrity and health of wetlands, especially in remotes areas like Patagonia, which provide habitat for several endemic terrestrial and aquatic species. Understanding the effects of these land use practices on invertebrate communities can help prevent the deterioration of wetlands and provide insights for restoration. In this contribution, we assessed the responses of 36 metrics based on the structural and functional attributes of invertebrates (130 taxa) at 30 Patagonian wetlands that were subject to different levels of livestock grazing intensity. These levels were categorized as low, medium and high based on eight features (livestock stock densities plus seven wetland measurements). Significant changes in environmental features were detected across the gradient of wetlands, mainly related to pH, conductivity, and nutrient values. Regardless of rainfall gradient, symptoms of eutrophication were remarkable at some highly disturbed sites. Seven invertebrate metrics consistently and accurately responded to livestock grazing on wetlands. All of them were negatively related to increased levels of grazing disturbance, with the number of insect families appearing as the most robust measure. A multivariate approach (RDA) revealed that invertebrate metrics were significantly affected by environmental variables related to water quality: in particular, pH, conductivity, dissolved oxygen, nutrient concentrations, and the richness and coverage of aquatic plants. Our results suggest that the seven aforementioned metrics could be used to assess ecological quality in the arid and semi-arid wetlands of Patagonia, helping to ensure the creation of protected areas and their associated ecological services.  相似文献   

19.
US federal conservation programs, including the National Resource Conservation Service’s Wetland Reserve Program (WRP) and the US Fish and Wildlife Service’s Partners for Fish and Wildlife Program (PFWP), partner with private landowners to conserve and restore wetland habitats. Despite the success of these programs in terms of wetland area enrolled, uncertainties exist as to whether they are meeting their stated goals, including the restoration of wildlife habitat. In the St. Lawrence Valley of New York State, we investigated two questions related to WRP and PFWP wetland restorations. First, was whether restorations provide habitat for wetland-associated wildlife, including Species of Greatest Conservation Need (SGCN) prioritized by the New York State Wildlife Action Plan (SWAP). Second, was whether restorations support wildlife assemblages that are comparable to natural reference wetlands. Bird, anuran, turtle, snake, and fish species assemblages were surveyed at 47 WRP and PFWP restorations, and 18 natural reference wetlands. We detected 31 SGCN at restorations, including SGCN from each assemblage surveyed. Assemblage metrics, including species richness and relative abundance, did not differ between restored and reference wetlands for any of the assemblages surveyed. These results indicate that restorations provide habitat for SGCN and other wetland-associated wildlife, and that assemblages at restorations are similar to those at natural reference wetlands. We conclude that WRP and PFWP wetland restorations in this region are meeting federal program-level goals related to the restoration of wildlife habitat, and are contributing to the recovery of SGCN.  相似文献   

20.
Recognition that intermittent pools are a single habitat phase of an intermittent pool bed that cycles between aquatic and terrestrial habitat greatly enhances their usefulness for addressing general questions in ecology. The aquatic phase has served as a model system in many ecological studies, because it has distinct habitat boundaries in space and time and is an excellent experimental system, but the aquatic to terrestrial transition and terrestrial phase remain largely unstudied. We conducted a field experiment within six replicate natural intermittent pool beds to explore macroinvertebrate community dynamics during the transition from aquatic to terrestrial habitat and during the terrestrial phase. We monitored and compared macroinvertebrate communities within leaf packs that i) remained wet, ii) underwent drying (i.e., started wet and then dried), and iii) remained dry. Our results show that i) a diverse macroinvertebrate community inhabits all phases of intermittent pool beds, ii) pool drying involves colonization by an assemblage of macroinvertebrates not recorded in permanently terrestrial leaf packs, iii) the community within dried leaf packs remains distinct from that of permanently terrestrial leaf packs for an extended period following drying (possibly until subsequent refilling), and iv) there are likely to be strong spatial and temporal resource linkages between the aquatic and terrestrial communities. The unique environmental characteristics of intermittent pool beds, which repeatedly cycle from aquatic to terrestrial habitat, should continue to make them valuable study systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号