首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The effects of positive and negative air ions on the active and residual iron fractions of barley seedlings were studied during the course of iron chlorosis. Active iron is that fraction localized in the chloroplasts which dissolves in 1.0 N HC1 and participates in the biosynthesis of chlorophyll. Residual iron is not soluble in 1.0 N HC1 and is not concerned with the biosynthesis of chlorophyll. Air ions of either charge induced a significant decrease in active iron content which was associated with a decrease in chlorophyll content. Concomitantly there occurred an increase in both the residual iron and the cytochrome c fractions of the seedlings. There is evidence that the rise in residual iron content may involve not only cytochrome c but also other cytochromes and iron-containing enzymes as well. We have theorized that the site of air ion action in the experiments reported may be the regulatory systems controlling iron metabolism in the seed and young seedling. Through this action air ions apparently divert endogenous free-state iron from conversion to active iron and make it available for the production of a number of ironcontaining compounds which are components of the residual iron fraction.
Zusammenfassung Die Wirkung von positiven und negativen Luftionen auf die Aktiv- und Rest-EisenfraktÏon in Gerstenkeimlingen wurde im Verlauf der Eisenchlorose untersucht. Aktiv-Eisen ist die Fraktion in dem FarbstofftrÄger, die in 1.0 N HC1 lösbar und an der Chlorophyllsynthese beteiligt ist. Rest-Eisen istnicht löslich in 1.0 N HC1 und an der Chlorophyllsynthese unbeteiligt. Positive und negative Luftionen bewirkten eine signifikante Verminderung des Gehalts an Aktiv-Fe und Chlorophyll. Gleichzeitig wurden höhere Anteile an Rest-Fe und Cytochrom c gefunden. Es sind Hinweise dafür vorhanden, dass die Zunahme des Rest-Fe nicht nur das Cytochrom c,sondern auch andere Fe-haltige Enzyme betrifft. Die Autoren nehmen an, dass die Luftionen an dem Regulationssystem angreifen, das den Eisenstoffwechsel der Samen und Keimlinge kontrolliert. Luftionen verhindern scheinbar die Umbildung von endogenem Fe-freier Form zu Aktiv-Fe und machen es für die Bildung einer Reihe von Fe-haltigen Verbindungen zugÄnglich, die in der Rest-Fe Fraktion enthalten sind.

Resume Les effets de l'ionisation positive ou négative de l'air ont été étudiés fraction active et sur la fraction résiduelle du Fer contenu dans des germes d'orge au cours de la sidérochlorose. Le Fer actif est la fraction des chloroplastes soluble dans l'Acide Chlorhydrique 1,0 N et participant à la biosynthèse de la chlorophylle. Le Fer résiduel n'est pas soluble dans H C1 1,0 N et n'entre pas dans la biosynthèse de la chlorophylle. Les ions positifs et négatifs de l'air ont provoqué une réduction significative de la teneur en Fer actif et en chlorophylle. Simultanément, il est apparu un accroissement de Fer résiduel et du Cytochrome c. Certains indices suggèrent que l'accroissement du Fer actif porte non seulement sur le Cytochrome c mais aussi sur d'autres enzymes contenant du Fer. Les auteurs pensent que les ions de l'air agissent au niveau des systèmes de régulation du métabolisme du Fer dans les graines et dans les germes. Les ions de l'air détournent apparemment le Fer libre endogène de la conversion en Fer actif et le rendent disponible pour la formation d'un certain nombre de composés contenant du Fer qui entrent dans la fraction du Fer résiduel.
  相似文献   

2.
Nitrobacter agilis cytochrome c-550 was purified to an electrophoreticallyhomogeneous state, and some of its properties were determined.The cytochrome showed an absorption peak at 410 nm in the oxidizedform, and peaks at 416, 521 and 550 nm in the reduced form.Its isoelectric point was 8.1 at 5?C. Analysis of the aminoacid composition showed that the cytochrome molecule was composedof 108 amino acid residues, 16 of which were lysine residues. The cytochrome reacted rapidly with N. agilis cytochrome c oxidaseand yeast cytochrome c peroxidase and more slowly with Pseudomonasaeruginosa nitrite reductase and bovine cytochrome c oxidase.The reactivities with these redox enzymes suggested that thecytochrome might be an evolutionary stage between bacterialand eukaryotic cytochromes c. The primary structure of the cytochrome from the N-terminusto the 85th residue was determined. The N-terminal sequencewas homologous to the corresponding portion of the primary structureof horse cytochrome c. 1 Present adress: Department of Chemistry, Faculty of Science,Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo,152, Japan. (Received December 3, 1981; Accepted January 28, 1982)  相似文献   

3.
The specificities for cytochrome c of the aa3-type cytochromec oxidase were studied with enzymes derived from Thiobacillusnovellas, Nitrobacter agilis, Paracoccus denitrificans and thecow in reaction with the cytochromes c from 5 prokaryotes and7 eukaryotes. The T. novellus enzyme reacted most rapidly withthe cytochromes c of Candida krusei, tuna and bonito as wellas T. novellus cytochrome c; the specificity for cytochromec of the N. agilis enzyme was similar to that of the T. novellusenzyme. The bovine enzyme reacted rapidly with all the eukaryoticcytochromes c tested. The P. denitrificans enzyme showed a specificitysimilar to that of the bovine enzyme, except that it reactedrapidly with P. denitrificans cytochrome c, while the bovineenzyme reacted with it very poorly. All four kinds of enzymesshowed an extremely limited reaction with Pseudomonas aeruginosacytochrome c. The amino acid composition of subunit I of the N. agilis enzymeresembled that of the bovine enzyme, while the compositionsof their subunits II were different. On the basis of these results,an evolutionary relationship between bacterial and eukaryoticenzymes was discussed. (Received May 21, 1981; Accepted August 20, 1981)  相似文献   

4.
Investigations were made of the properties of diaphorase, cytochromec reductases, cytochrome c oxidase, and other components ofelectron transfer system in various fractions of leaf homogenateof Begonia semperflorens.
  1. All the fractions tested showed the existence of cytochromec oxidase, succinic- and reduced diphosphopyridine nucleotide-cytochromec reductases, and diaphorase. Activities of these enzymes werefound to be associated mainly with the particulate fractions.The particulate fractions showed, in particular, a capacityof reducing oxidized cytochrome c with fumarate, malate, -ketoglutarate,ß-hydroxy-butyrate, and citrate.
  2. Optimum pH foroxidation of cytochrome c by the particulatefractions was foundto be 5.5, while that for reduction was7.2.
  3. The activityof cytochrome c reductase was partially suppressedby malonate.Partial inhibition of cytochrome c oxidase wascaused by azideand cyanide, the inhibitory effects observedbeing strongerwith particulate fractions than with solublefractions.
(Received August 11, 1962; )  相似文献   

5.
Nitrate reductase (NR) from the leaves of Hordeum distichumwas very susceptible to inactivation by barley leaf thiol proteinase,trypsin, and papain. A cytochrome c reductase species with amolecular weight of about 40,000 was derived from the NR complexby the proteolytic actions. The barley proteinase seemed toattack the Mo+-containing component of NR, just like trypsinand papain. It showed a preference for the alanine and tryptophanesters among the carbobenzoxyamino acid-nitrophenylesters tested. In vivo NR activity in the presence of leupeptin was fairlyhigher than that in its absence. Leupeptin also protected NRfrom its cleavage to small cytochrome c reductase species, suggestingthat the barley proteinase may play a role in the in vivo changein NR activity. (Received May 21, 1984; Accepted September 10, 1984)  相似文献   

6.
Effects of cytochrome c on the mitochondrial apoptosis-induced channel MAC   总被引:3,自引:0,他引:3  
Recent studies indicate that cytochrome c is released early in apoptosis without loss of integrity of the mitochondrial outer membrane in some cell types. The high-conductance mitochondrial apoptosis-induced channel (MAC) forms in the outer membrane early in apoptosis of FL5.12 cells. Physiological (micromolar) levels of cytochrome c alter MAC activity, and these effects are referred to as types 1 and 2. Type 1 effects are consistent with a partitioning of cytochrome c into the pore of MAC and include a modest decrease in conductance that is dose and voltage dependent, reversible, and has an increase in noise. Type 2 effects may correspond to "plugging" of the pore or destabilization of the open state. Type 2 effects are a dose-dependent, voltage-independent, and irreversible decrease in conductance. MAC is a heterogeneous channel with variable conductance. Cytochrome c affects MAC in a pore size-dependent manner, with maximal effects of cytochrome c on MAC with conductance of 1.9–5.4 nS. The effects of cytochrome c, RNase A, and high salt on MAC indicate that size, rather than charge, is crucial. The effects of dextran molecules of various sizes indicate that the pore diameter of MAC is slightly larger than that of 17-kDa dextran, which should be sufficient to allow the passage of 12-kDa cytochrome c. These findings are consistent with the notion that MAC is the pore through which cytochrome c is released from mitochondria during apoptosis. patch clamp; ion channels  相似文献   

7.
The chloroplast isozyme of ascorbate peroxidase from tea leaveswas digested with lysyl endopeptidase, and the amino acid sequencesof the peptide fragments were determined. These sequences accountedfor 64% of the amino acids in the entire protein. The sequenceof one of the peptides can be aligned with the region whichincludes the proximal histidine that serves as the fifth ligandof the heme iron in guaiacol peroxidases and cytochrome c peroxidase.The sequences of the peptides from ascorbate peroxidase exhibita higher degree of homology to the sequence of cytochrome cperoxidase from yeast than to those of guaiacol peroxidasesfrom plants. In addition, three of the peptides from ascorbateperoxidase show a high degree of homology to triose-phosphateisomerase from maize. From the available amino acid sequencesand the enzymatic and molecular properties of ascorbate andcytochrome c peroxidases, we propose that these hydrogen peroxide-scavengingperoxidases that use either cytochrome c or ascorbate as theelectron donor originated from the same ancestral protein. (Received July 5, 1991; Accepted December 6, 1991)  相似文献   

8.
Cytochrome c activates K+ channels before inducing apoptosis   总被引:10,自引:0,他引:10  
Cellshrinkage is an early prerequisite for apoptosis. Theapoptotic volume decrease is due primarily to loss ofcytoplasmic ions. Increased outward K+ currents have indeedbeen implicated in the early stage of apoptosis in many celltypes. We found that cytoplasmic dialysis of cytochrome c(cyt-c), a mitochondria-dependent apoptotic inducer,increases K+ currents before inducing nuclear condensationand breakage in pulmonary vascular smooth muscle cells. Thecyt-c-mediated increase in K+ currents tookplace rapidly and was not affected by treatment with a specificinhibitor of caspase-9. Cytoplasmic dialysis of recombinant (active)caspase-9 negligibly affected the K+ currents. Furthermore,treatment of the cells with staurosporine (ST), an apoptosisinducer that mediates translocation of cyt-c frommitochondria to the cytosol, also increased K+ currents,caused cell shrinkage, and induced apoptosis (determined byapoptotic nuclear morphology and TdT-UTP nick end labeling assay).The staurosporine-induced increase in K+ currents concurredto the volume decrease but preceded the activation of apoptosis(nuclear condensation and breakage). These results suggest that thecyt-c-induced activation of K+ channels and theresultant K+ loss play an important role in initiating theapoptotic volume decrease when cells undergo apoptosis.

  相似文献   

9.
Nitric oxide (NO) is an intercellular signaling molecule; among its many and varied roles are the control of blood flow and blood pressure via activation of the heme enzyme, soluble guanylate cyclase. A growing body of evidence suggests that an additional target for NO is the mitochondrial oxygen-consuming heme/copper enzyme, cytochrome c oxidase. This review describes the molecular mechanism of this interaction and the consequences for its likely physiological role. The oxygen reactive site in cytochrome oxidase contains both heme iron (a3) and copper (CuB) centers. NO inhibits cytochrome oxidase in both an oxygen-competitive (at heme a3) and oxygen-independent (at CuB) manner. Before inhibition of oxygen consumption, changes can be observed in enzyme and substrate (cytochrome c) redox state. Physiological consequences can be mediated either by direct "metabolic" effects on oxygen consumption or via indirect "signaling" effects via mitochondrial redox state changes and free radical production. The detailed kinetics suggest, but do not prove, that cytochrome oxidase can be a target for NO even under circumstances when guanylate cyclase, its primary high affinity target, is not fully activated. In vivo organ and whole body measures of NO synthase inhibition suggest a possible role for NO inhibition of cytochrome oxidase. However, a detailed mapping of NO and oxygen levels, combined with direct measures of cytochrome oxidase/NO binding, in physiology is still awaited. mitochondria; cytochrome oxidase  相似文献   

10.
Distribution of iron-containing oxidases in aging nodal rootsof rice and wheat was studied. Activities of cytochrome c oxidase(1.9.3.1 [EC] , cytochrome c : O2 oxidoreductase), catalase (1.11.1.6 [EC] ,H2O2: H2O2 oxidoreductase) and peroxidase (1.11.1.7 [EC] , donor:H2O2 oxidoreductase) in wheat roots were comparatively higherthan were those in rice roots at corresponding stages. Cytochromec oxidase in roots remained active throughout the lives of therice and wheat crops. In rice roots, catalase seemed to playa distinct role around the panicle formation stage. Decay ofcatalase activity took place earlier than did that of peroxidaseand cytochrome c oxidase activities. In wheat roots similarenzyme activity changes were not observed. Data may suggestthat the high activity of iron containing oxidases at the panicleformation stage (I) may be chiefly due to catalase activityin rice roots. 1Paper presented at the 14th Annual Meeting of the Society ofthe Science of Soil and Manure, Japan (1968). (Received November 21, 1968; )  相似文献   

11.
Relationships between nitrate (NO-3) supply, uptake and assimilation,water uptake and the rate of mobilization of seed reserves wereexamined for the five main temperate cereals prior to emergencefrom the substrate. For all species, 21 d after sowing (DAS),residual seed dry weight (d.wt) decreased while shoot plus rootd.wt increased (15–30%) with increased applied NO-3concentrationfrom 0 to 5–20 mM . Nitrogen (N) uptake and assimilationwere as great with addition of 5 mM ammonium (NH+4) or 5 mMNO-3but NH+4did not affect the rate of mobilization of seedreserves. Chloride (Cl-) was similar to NO-3in its effect onmobilization of seed reserves of barley (Hordeum vulgare L.).Increased rate of mobilization of seed reserves with additionalNO-3or Cl-was associated with increases in shoot, root and residualseed anion content, total seedling water and residual seed watercontent (% water) 21 DAS. Addition of NH+4did not affect totalseedling water or residual seed water content. For barley suppliedwith different concentrations of NO-3or mannitol, the rate ofmobilization of seed reserves was positively correlated (r >0.95)with total seedling water and residual seed water content. Therate of mobilization of seed reserves of barley was greaterfor high N content seed than for low N content seed. Seed watercontent was greater for high N seed than for low N seed, 2 DAS.Additional NO-3did not affect total seedling water or residualseed water content until 10–14 DAS. The effects of seedN and NO-3on mobilization of seed reserves were detected 10and 14 DAS, respectively. It is proposed that the increasedrate of mobilization of seed reserves of temperate cereals withadditional NO-3is due to increased water uptake by the seedlingwhile the seed N effect is due to increased water uptake bythe seed directly. Avena sativa L.; oat; Hordeum vulgare L.; barley; Secale cereale L.; rye; xTriticosecale Wittm.; triticale; Triticum aestivum L.; wheat; nitrate; seed; germination; seed reserve mobilization  相似文献   

12.
Cytochrome c-554 was purified from Spirulina platensis and someof its properties were studied. The cytochrome shows absorptionpeaks at 354, 410 and 529 nm in the oxidized form and at 318,416, 523 and 553.6 nm in the reduced form. The a peak at 553.6nm is slightly asymmetric with a shoulder around 550 nm. Theisoelectric point, midpoint redox potential and molecular weightof the cytochrome are 4.9, +0.35 V and 10,000, respectively.The cytochrome reacts fairly rapidly with Pseudomonas aeruginosanitrite reductase but does not react with cow cytochrome oxidase.The reactivities with the two enzymes of the S. platensis cytochromehave been compared with those of other algal c-type cytochromes. (Received August 22, 1977; )  相似文献   

13.
Quantitative study of the cytochrome c acting in the photosyntheticsystem of the blue-green alga Anabaena variabilis (M-2) wasdone with membrane fragments and intact cells. Membrane fragments highly active in the NADP+-Hill reaction(above 200 µmoles/mg chl.a;-hr) retained photoresponsivecytochrome c equal only one-tenth that of P700, while the plastocyanincontent was almost equal to that of P700. The cytochrome contentin intact cells was a little larger than that in membrane fragmentson the chlorophyll a basis. However, the values relative toP700 (1/9) and plastocyanin (1/10) were identical with thosein membrane fragments. The content was also far smaller thanthat of reaction center II's (1/6). If the cytochrome mediatesall electrons from reaction center II, the cytochrome oxidation-reductionshould have a rate constant of 2.4?102 sec–1 which isone order above of the rate constant of the cytochrome reduction(2.3 to 3.5?101sec–1). These quantitative relationshipsindicate that in Anabaena variabilis (M-2), c-type cytochrome,either cytochrome f or algal cytochrome c, cannot function inthe main electron flow between two reaction centers. (Received September 8, 1978; )  相似文献   

14.
The optimal conditions were established for extraction of paralytic shellfish toxins from a Danish clone of Alexandrium tamarense using extraction with acetic acid and HCl in the concentration range 0.01–1.0 N. Physical destruction of the cells was investigated microscopically to select the most efficient extraction procedure.The toxin content was quantitated by an automized isocratic reversed-phase high-performance liquid chromatography (HPLC) method. The best results as judged from the total amount of toxins and the toxin profile were obtained using 0.05–1.0 N acetic acid and 0.01–0.02 N HCl. Hydrochloric acid in the concentration range 0.03–1.0 N caused the amount of C1 and C2 toxins to decrease sharply and concomitant increase of gonyautoxins 2 and 3.The phytoplankton extracts with 0.1 to 0.5 N acetic acid or 0.01 N HCl were stable during 6 months at –20 °C, but the extracts with HCl 0.02 N underwent a change in toxin profile, although the total amount of toxins was constant.  相似文献   

15.
-Methyleneglutamic acid, an acidic amino-acid isolated fromgroundnut plants, was decarboxylated by enzymes present in extractsof Capsicum fruits, barley roots, and tulip leaves, and alsoby intact cells of Clostridium welchii S.R. I2. The amino-acidwas attacked in a similar manner to, but in all cases at a slowerrate than, l-glutamic acid. The nature of the enzyme responsiblefor the decarboxylation of -methyleneglutamic acid was furtherinvestigated using preparations from barley roots (which donot contain the amino-acid) and from tulip leaves (in whichthe amino-acid is normally present, together with larger amountsof its amide form, -methyleneglutamine). The effects of pH,inhibitors, and partial heat denaturation upon the enzyme systemspresent in the barley and tulip extracts indicated that a singleenzyme was responsible for the decarboxylation of both l-glutamicacid and -methyleneglutamic acid. Although the Cl. welchii rapidlydeamidated and then decarboxylated l-glutamine, -methyleneglutaminewas not attacked by the organism.  相似文献   

16.
The cytochrome oxidase activity (oxygen uptake in the dark) of a membrane preparation from Anabaena variabilis was found to be stimulated by cytochrome c-553 and plastocyanin obtained from this alga. Cytochrome c from horse heart was as active as cytochrome c-553, whereas little or no stimulation of oxygen uptake was obtained with cytochromes c 2 from two Rhodospirillaceae, the plastidic cytochrome c-552 from Euglena, and plastocyanin from spinach. Cytochrome c-553 (A. variabilis) stimulated photosystem 1 activity in the same preparation much more than cytochrome c (horse heart). The results indicate that cytochrome c-553 and plastocyanin, besides their established function as electron donors of photosystem 1, participate in respiratory electron transport as reductants of a terminal oxidase. Photooxidation and dark oxidation show a different donor specificity.Abbreviations Chl chlorophyll a - TMPD N,N,N,N-tetramethyl-p-phenylenediamine  相似文献   

17.
15N labelling was used to investigate the pathway of nitrogenassimilation in photorespiratory mutants of barley (Hordeumvulgare cv. Maris Mink), in which the leaves have low levelsof glutamine synthetase (GS) or glutamate synthase, key enzymesof ammonia assimilation. These plants grew normally when maintainedin high CO2, but the deletions were lethal when photorespirationwas initiated by transfer to air. Enzyme levels in roots weremuch less affected, compared to leaves, and assimilation oflabelled nitrate into amino acids of the root showed very littledifference between wild type and mutants. Organic nitrogen wasexported from roots in the xylem sap mainly as glutamine, levelsof which were somewhat reduced in the GS-deficient mutant andenhanced in the glutamate synthase deficient mutant. In theleaf, the major effect was seen in the glutamatesynthase mutant,which had an extremely limited capacity to utilize the importedglutamine and amino acid synthesis was greatlyrestricted. Thiswas confirmed by the supply of [15N]-glutamine directly to leaves.Leaves of the GS-deficient mutant assimilatedammonia at about75% the rate found for the wild type, and this was almost completelyeliminated by addition of the inhibitormethionine sulphoximine.Root enzymes, together with residual levels of the deleted enzymesin the leaves, have sufficient capacityfor ammonia assimilation,through the glutamate synthase cycle, to provide adequate inputof nitrogen for normal growth of themutants, if photorespiratoryammonia production is suppressed. Key words: Hordeum vulgare, 15N, glutamine synthetase, glutamate synthase, ammonia assimilation  相似文献   

18.
The molten globule state (MG) of cytochrome c is the major intermediate of protein folding. The formation of MG state of cytochrome c is induced by n-alkyl sulfates such as sodium octyl sulfate (SOS), sodium dodecyl sulfate (SDS), and sodium tetradecyl sulfate (STS). The folding state of cytochrome c was monitored using circular dichroism (CD), isothermal titration calorimetry (ITC) and partial specific volumes. To explore a new approach for characterizing the MG conformation, cyclic voltametric studies of n-alkyl sulfates induced transition at acidic pH of cytochrome c (unfolded state, U) was carried out. Here, we have used a cystein-modified gold electrode, which is effective for direct rapid electron transfer to cytochrome c even in acid solutions, to directly observe electrochemistry in native (N) cytochrome c. Our results show that the extent of electron transfer is increased for UMG, and also the easiness of electron transferring occurred from MGN transition. Thus we demonstrate that the MG state of cytochrome c, induced by n-alkyl sulfates as salts with hydrophobic chains (hydrophobic salts), with different compactness reaches to near identical amount of electron transferring as N state.  相似文献   

19.
  1. Two lactate dehydrogenases, L(+)- and D(–)- lactate cytochromec reductase, were extracted from the baker's yeast after disintegrationof the cells by a FRENCH press. They are separated by electrophoresison polyacrylamide gel and their activities were compared bycolor density of formazan, the reduction product of nitrobluetetrazolium.
  2. The ratio of L-lactate cytochrome c reductaseactivity to D-lactatecytochrome c reductase activity variedto a great extent, dependingon culture conditions. L-Lactatecytochrome c reductase waspredominant in resting cells; thereverse was the case withcells in early exponential stage ofthe growth.
  3. When the cells in exponential stage of growthwere aerated withoutnitrogen source, there occurred an intensiveincrease of L-lactatecytochrome c reductase, accompanied bythe decrease of D-lactatecytochrome c reductase.
  4. Effectsof inhibitors on the activity ratio of these two enzymeswereinvestigated. o-Phenanthroline, dinitrophenol, sodium azide,chloramphenicol, British antilewisite and antimycin A favored,in this order, the formation of L-lactate cytochrome c reductase.
(Received August 18, 1966; )  相似文献   

20.
Rice seeds were germinated for up to 5 days under water (submerged)and some for another day in air (air-adapted). Control seedswere germinated for 6 days throughout in air. Low-temperaturedifference spectra of shoot mitochondria were compared amongthese three types of seedlings. All cytochromes found in theaerobic seedlings were present in the submerged seedlings. However,there were some differences in the cytochromes b553 and c ofthese two types of seedlings. The cytochrome aa3 peak heightand cytochrome oxidase activity per mitochondrial protein increased1.6- and 2.8-fold, respectively, during air adaptation. Slightlyhigher concentrations of the b-type cytochromes than found inair-adapted mitochondria were already present in submerged mitochondria.The computed difference between the dithionite-reduced differencespectra of mitochondria from submerged seedlings before andafter air adaptation, showed that cytochromes aa3 and c hadincreased more than cytochrome b557 during air adaptation. (Received November 16, 1987; Accepted March 16, 1988)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号