首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
White leaves of the mutant line albostrians and green leaves of the wild-type cultivar Salome of barley (Hordeum vulgare L.) were screened for the presence of plastidic and cytosolic isoenzymes of sugar-phosphate metabolism. Isoenzyme separation was achieved by anion-exchange chromatography on Fractogel TSK DEAE-650(S). The mutant tissue had a markedly reduced level of plastidic 3-phosphoglycerate kinase, triosephosphate isomerase, and aldolase activity. In contrast, the activity of plastidic glucosephosphate isomerase, fructose 1,6-bisphosphatase, 6-phosphogluconate dehydrogenase, starch phosphorylase, and ADP-glucose pyrophosphorylase was in the same range as in wild-type leaf tissue. The activity of the corresponding cytosolic isoenzymes (including UDP-glucose pyrophosphorylase) showed essentially no differences in mutant and wild type. The same trend was observed in dark-grown mutant and wild-type leaves. Interestingly, the total activity levels of all isoenzymes were about the same when comparing dark-grown and light-grown mutant or wild-type plants. From these data, it is concluded that mutant leaves exhibit a selective decrease of a subgroup of plastidic isoenzymes associated with the Calvin cycle.  相似文献   

2.
1. Subcellular-compartment-specific decreased-activity mutants of phosphoglucose isomerase in Clarkia xantiana were used to analyse the control of sucrose and starch synthesis during photosynthesis. Mutants were available in which the plastid phosphoglucose isomerase complement is decreased to 75% or 50% of the wild-type level, and the cytosol complement to 64%, 36% or 18% of the wild-type level. 2. The effects on the [product]/[substrate] ratio and on fluxes to sucrose or starch and the rate of photosynthesis were studied with the use of saturating or limiting light intensity to impose a high or low flux through these pathways. 3. Removal of a small fraction of either phosphoglucose isomerase leads to a significant shift of the [product]/[substrate] ratio away, from equilibrium. We conclude that there is no 'excess' of enzyme over that needed to maintain its reactants reasonably close to equilibrium. 4. Decreased phosphoglucose isomerase activity can also alter the fluxes to starch or sucrose. However, the effect on flux does not correlate with the extent of disequilibrium, and also varies depending on the subcellular compartment and on the conditions. 5. The results were used to estimate Flux Control Coefficients for the chloroplast and cytosolic phosphoglucose isomerases. The chloroplast isoenzyme exerts control on the rate of starch synthesis and on photosynthesis in saturating light intensity and CO2, but not at low light intensity. The cytosolic enzyme only exerts significant control when its complement is decreased 3-5-fold, and differs from the plastid isoenzyme in exerting more control in low light intensity. It has a positive Control Coefficient for sucrose synthesis, and a negative Control Coefficient for starch synthesis. 6. The Elasticity Coefficients in vivo of the cytosolic phosphoglucose isomerase were estimated to lie between 5 and 8 in the wild-type. They decrease in mutants with a lowered complement of cytosolic phosphoglucose isomerase. 7. The implications of these results for regulation and for evolution are discussed.  相似文献   

3.
The subcellular distribution of enzymes of the oxidative pentose phosphate pathway was studied in plants. Root and leaf tissues from several species were separated by differential centrifugation into plastidic and cytosolic fractions. In all tissues studied, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were found in both plastidic and cytosolic compartments. In maize and pea root, and spinach and pea leaf, the non-oxidative enzymes of the pentose phosphate pathway (transaldolase, transketolase, ribose 5-phosphate isomerase, ribulose 5-phosphate 3-epimerase) appear to be restricted to the plastid. In tobacco leaf and root, however, the non-oxidative enzymes were found in the cytosolic as well as the plastidic compartments. In the absence of ribose 5-phosphate isomerase and ribulose 5-phosphate 3-epimerase in the cytosol, the product of the oxidative limb of the pathway (ribulose 5-phosphate) must be transported into a compartment capable of utilizing it. Ribulose 5-phosphate was supplied to isolated intact pea root plastids and was shown to be capable of supporting nitrite reduction. The kinetics of ribulose 5-phosphate-driven nitrite reduction in isolated pea root plastids suggested that the metabolite was translocated across the plastid envelope in a carrier-mediated transport process, indicating the presence of a translocator capable of transporting pentose phosphates.Keywords: Pentose phosphate, subcellular, plastid, ribulose 5-phosphate, compartmentation   相似文献   

4.
Ethyl methane sulfonate treatment was used to induce a mutation in the nuclear gene encoding the chloroplast isozyme of phosphoglucose isomerase in Clarkia xantiana. The mutation, which proved allelic to wild type activity, was backcrossed to wild type for five generations so that the two could be compared in a near isogenic background. An immunological analysis showed that the mutant, when homozygous, reduced the activity of the isozyme by about 50%. In contrast to wild type, the mutant showed little change in leaf starch level over a diurnal period or following a 72-hour continuous light treatment. By the end of the diurnal light period, the mutant accumulated only about 60% as much starch as wild type. However, mutant leaves had an increased sucrose level presumably because photosynthate was directly exported from the chloroplasts. The mutant also exhibited reduced leaf weight. These changes in metabolism and growth suggest that the wild type level of plastid phosphoglucose isomerase activity is necessary to achieve wild type carbohydrate status.  相似文献   

5.
In leaves, it is widely assumed that starch is the end-product of a metabolic pathway exclusively taking place in the chloroplast that (a) involves plastidic phosphoglucomutase (pPGM), ADPglucose (ADPG) pyrophosphorylase (AGP) and starch synthase (SS), and (b) is linked to the Calvin-Benson cycle by means of the plastidic phosphoglucose isomerase (pPGI). This view also implies that AGP is the sole enzyme producing the starch precursor molecule, ADPG. However, mounting evidence has been compiled pointing to the occurrence of important sources, other than the pPGI-pPGM-AGP pathway, of ADPG. To further explore this possibility, in this work two independent laboratories have carried out HPLC-MS/MS analyses of ADPG content in leaves of the near-starchless pgm and aps1 mutants impaired in pPGM and AGP, respectively, and in leaves of double aps1/pgm mutants grown under two different culture conditions. We also measured the ADPG content in wild type (WT) and aps1 leaves expressing in the plastid two different ADPG cleaving enzymes, and in aps1 leaves expressing in the plastid GlgC, a bacterial AGP. Furthermore, we measured the ADPG content in ss3/ss4/aps1 mutants impaired in starch granule initiation and chloroplastic ADPG synthesis. We found that, irrespective of their starch contents, pgm and aps1 leaves, WT and aps1 leaves expressing in the plastid ADPG cleaving enzymes, and aps1 leaves expressing in the plastid GlgC accumulate WT ADPG content. In clear contrast, ss3/ss4/aps1 leaves accumulated ca. 300 fold-more ADPG than WT leaves. The overall data showed that, in Arabidopsis leaves, (a) there are important ADPG biosynthetic pathways, other than the pPGI-pPGM-AGP pathway, (b) pPGM and AGP are not major determinants of intracellular ADPG content, and (c) the contribution of the chloroplastic ADPG pool to the total ADPG pool is low.  相似文献   

6.
Yu TS  Lue WL  Wang SM  Chen J 《Plant physiology》2000,123(1):319-326
We isolated pgi1-1, an Arabidopsis mutant with a decreased plastid phospho-glucose (Glc) isomerase activity. While pgi1-1 mutant has a deficiency in leaf starch synthesis, it accumulates starch in root cap cells. It has been shown that a plastid transporter for hexose phosphate transports cytosolic Glc-6-P into plastids and expresses restricted mainly to the heterotrophic tissues. The decreased starch content in leaves of the pgi1-1 mutant indicates that cytosolic Glc-6-P cannot be efficiently transported into chloroplasts to complement the mutant's deficiency in chloroplastic phospho-Glc isomerase activity for starch synthesis. We cloned the Arabidopsis PGI1 gene and showed that it encodes the plastid phospho-Glc isomerase. The pgi1-1 allele was found to have a single nucleotide substitution, causing a Ser to Phe transition. While the flowering times of the Arabidopsis starch-deficient mutants pgi1, pgm1, and adg1 were similar to that of the wild type under long-day conditions, it was significantly delayed under short-day conditions. The pleiotropic phenotype of late flowering conferred by these starch metabolic mutations suggests that carbohydrate metabolism plays an important role in floral initiation.  相似文献   

7.
The plastid and cytosolic isozymes of the dimeric enzyme phosphoglucose isomerase (EC 5.3.1.9) from spinach (Spinacia oleracea) and cauliflower (Brassica oleracea) were purified to apparent homogeneity. The isozymes from sunflower (Helianthus annuus) and Clarkia xantiana were partially purified. When subunits from two electrophoretically distinguishable cytosolic isozymes, either from the same or from different species, were dissociated and allowed to reassociate in each other's presence, an active hybrid enzyme, consisting of one subunit of each type, was formed in addition to the two original homodimers. Active hybrid enzymes were also formed by dissociation and reassociation of plastid isozymes. Hybrid molecules were not produced between the plastid and cytosolic subunits, suggesting that they are not able to bind with each other. Additional differences between the plastid and cytosolic isozymes are described.  相似文献   

8.
9.
Some characteristics of phosphoglucose isomerase (PGI, EC 5.3.1.9) from banana were measured during fruit ripening of three banana cultivars. In banana, PGI was present as two dimeric isoenzymes, named PGI1 and PGI2, which had similar native molecular masses but differed in relation to heat stability and isoelectric point. Total PGI activity showed a distinct two-step change during fruit ripening. Before the climacteric period, PGI activity gradually decreased with the starch content, then its activity began to increase with sucrose accumulation. The ratio of PGI1, and PGI2 was constant, indicating that both enzymes would be involved in starch degradation and sucrose synthesis. PGI activity and changes in carbohydrate composition suggests the existence of some control to fit the requirements of the intense carbon flow from starch to sucrose.  相似文献   

10.
Some characteristics of phosphoglucose isomerase (PGI, EC 5.3.1.9) from banana were measured during fruit ripening of three banana cultivars. In banana, PGI was present as two dimeric isoenzymes, named PGI1 and PGI2, which had similar native molecular masses but differed in relation to heat stability and isoelectric point. Total PGI activity showed a distinct two-step change during fruit ripening. Before the climacteric period, PGI activity gradually decreased with the starch content, then its activity began to increase with sucrose accumulation. The ratio of PGI1, and PGI2 was constant, indicating that both enzymes would be involved in starch degradation and sucrose synthesis. PGI activity and changes in carbohydrate composition suggests the existence of some control to fit the requirements of the intense carbon flow from starch to sucrose.  相似文献   

11.
Several enzymes of non–photosynthetic sugar phosphate and starch metabolism were measured in gradient–purified chloroplasts from normal rye leaves ( Secale cereale L. cv. Halo) grown at 22°C and in the non-photosynthetic plastids isolated from 70S ribosome-deficient rye leaves grown at a non–permissive elevated temperature of 32°C. Activities of the enzymes phosphoglycerate kinase (EC 2.7.2.3), hexokinase (EC 2.7.1.1), phosphoglucose isomerase (EC 5.3.1.9), phosphoglucomutase (EC 2.7.5.1), glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconate de-hydrogenase (EC 1.1.1.46), ADPglucose pyrophosphorylase (EC 2.7.7.27), starch synthase (EC 2.4.1.21), and phosphorylase (EC 2.4.1.1) were present in ribosome-deficient plastids from 32°C-grown leaves indicating a cytoplasmic origin of the plastid-specific forms of these enzymes. While the photosynthetic marker enzyme NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) was considerably diminished, both the specific activities and the total activities per leaf of the plastid-specific forms of hexokinase, phosphoglucose isomerase and phosphoglucomutase were markedly increased in the ribosome–deficient plastids, relative to normal chloroplasts. The results demonstrate that after elimination of functional protein synthesis in the chloroplasts the supply of chloroplast–specific enzymes by the cytoplasm is not generally suppressed as observed for many enzymes and proteins involved in photosynthesis, but may even be increased in accord with changed metabolic demands.  相似文献   

12.
The role of cytokinin in plastid biogenesis was investigated in etiolated rye leaves (Secale cereale L.) and compared with the effect of white light. Cytokinin deficiency of the leaves was induced by early excision of the seedling roots and reversed by the application of kinetin. The cytokinin supply had a much greater influence on plastid biogenesis than on leaf growth in general. The activities of several chloroplastic enzymes were increased 200%–400% after kinetin treatment of cytokinin-depleted leaves. The activity of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) and the amount of fraction-I protein even showed a sevenfold increase. In cytokinin-depleted leaves the development of ribulose-1,5-bisphosphate carboxylase and NADP-glyceraldehydephosphate dehydrogenase was specifically, and markedly inhibited by actinomycin D. The inhibition was partially or even completely overcome after treatment with kinetin. However, under all conditions, RNA synthesis of the leaves, was only partially inhibited by actinomycin D. According to immunologic studies, all dark-grown leaves, in addition to the complete enzyme, contained an excess of free small subunit of ribulose-1,5-bisphosphate carboxylase that was absent in mature light-grown leaves. The most striking accumulation of free small subunit, protein occurred in cytokinin-depleted dark-grown leaves, indicating a deficiency of the plastidic synthesis of the large subunit. The capacity as well as the activity of plastidic protein synthesis was preferentially increased by cytokinin and light. Cytokinin increased, the amount of plastidic ribosomes per leaf and relative to the amount of cytoplasmic ribosomes. While the percentage of cytoplasmic ribosomes bound as polyribosomes was little affected by the cytokinin supply, the proportion of plastidic polyribosomes was increased from 11% to 18% after kinetin treatment of cytokinin-depleted leaves. In the light, the proportion of plastidic polyribosomes reached 39% of the total plastidic ribosomes.Abbreviations RuBP carboxylase ribulose-1,5-bisphosphate carboxylase - NADP-GAP dehydrogenase NADP-dependent glyceraldehyde-3-phosphate dehydrogenase  相似文献   

13.
The relation of starch phosphorylases to starch metabolism in wheat   总被引:7,自引:0,他引:7  
  相似文献   

14.
15.
Starch metabolism in leaves   总被引:1,自引:0,他引:1  
Starch is the most abundant storage carbohydrate produced in plants. The initiation of transitory starch synthesis and degradation in plastids depends mainly on diurnal cycle, post-translational regulation of enzyme activity and starch phosphorylation. For the proper structure of starch granule the activities of all starch synthase isoenzymes, branching enzymes and debranching enzymes are needed. The intensity of starch biosynthesis depends mainly on the activity of AGPase (adenosine 5'-diphosphate glucose pyrophosphorylase). The key enzymes in starch degradation are beta-amylase, isoamylase 3 and disproportionating enzyme. However, it should be underlined that there are some crucial differences in starch metabolism between heterotrophic and autotrophic tissues, e.g. is the ability to build multiprotein complexes responsible for biosynthesis and degradation of starch granules in chloroplasts. The observed huge progress in understanding of starch metabolism was possible mainly due to analyses of the complete Arabidopsis and rice genomes and of numerous mutants with altered starch metabolism in leaves. The aim of this paper is to review current knowledge on transient starch metabolism in higher plants.  相似文献   

16.
Summary The PGI1 gene of Saccharomyces cerevisiae coding for the glycolytic enzyme phosphoglucose isomerase has been cloned by complementation of a mutant strain (pgi1) with a strongly reduced phosphoglucose isomerase activity. A genomic library constructed in the yeast multicopy vector YEp13 (Nasmyth and Tatchell 1980) was used. Four plasmids containing an overlapping region of 4.1 kb were isolated and characterized by restriction endonuclease mapping. Southern analysis of genomic digests prepared with different restriction enzymes confirmed the same pattern for the chromosomal sequences. Transformants with the isolated plasmids had a phosphoglucose isomerase activity increased by a factor of 7. The cloned sequence hybridized to a constitutively synthesized 2.2 kb RNA in Northern analysis. The coding region includes a 2.05 kb EcoRI fragment common to all four inserts. A fragment including part of the PGI1 region was subcloned into vector YRp7 and used to induce integration at the PGI1 locus. Genetical and Southern analysis of stable transformants showed that single as well as tandem integration took place at this locus. This showed that the PGI1 gene had been isolated. Finally, and in contrast to the results of Kempe et al. (1974a, b) who reported three isoenzymes in yeasts, only one copy of the PGI1 gene per genome was found in several laboratory strains tested by Southern analysis.  相似文献   

17.
Summary Avocado (Persea americana) cultivars were assayed for phosphoglucose isomerase (PGI) isozymes using starch gel electrophoresis. Three PGI genes were identified: one monomorphic locus, Pgi-I, coding for the plastid isozyme and two independently assorting loci, Pgi-2 and Pgi-3, coding for the cytosolic isozymes. The genetic analysis was based on comparisons of PGI zymograms from somatic and pollen tissue and on Mendelian analysis of progeny from selfed trees. The isozymic variability for PGI can be used for cultivar identification and for differentiating between hybrid and selfed progeny in avocado breeding.  相似文献   

18.
Two isoenzymes each of phosphoglucomutase, hexose phosphate isomerase, aldolase, fructose diphosphatase, phosphofructokinase, and 6-phosphogluconate dehydrogenase have been separated by DEAE-cellulose column chromatography of extracts from endosperm of germinating castor beans (Ricinus communis cv. Hale). One of each of the enzymes is localized in the cytosol and the other is confined to plastids. Developmental studies of these isoenzymes were carried out to clarify their roles in the endosperm. In extracts from ungerminated seeds the activities of marker enzymes of mitochondria (fumarase), plastids (ribulose bisphosphate carboxylase), and glyoxysomes (catalase) were low, but phosphoglucomutase, hexose phosphate isomerase, aldolase, and 6-phosphogluconate dehydrogenase were present in relatively high activity. The total amounts of these enzymes increased 3- to 4-fold during the first 5 days of growth. The activities of isoenzymes in the plastids rose in parallel with that of ribulose bisphosphate carboxylase to reach a maximum at day 4, and like the carboxylase they declined sharply thereafter. The activities of the cytosolic isoenzymes peaked at day 5. These changes are consistent with the roles previously proposed for the sequences present in plastid and cytosol.  相似文献   

19.
Evidence from a number of plant tissues suggests that phosphoglucomutase (PGM) is present in both the cytosol and the plastid. The cytosolic and plastidic isoforms of PGM have been partially purified from wheat endosperm (Triticum aestivum L. cv. Axona). Both isoforms required glucose 1,6-bisphosphate for their activity with K(a) values of 4.5 micro M and 3.8 micro M for cytosolic and plastidic isoforms, respectively, and followed normal Michaelis-Menten kinetics with glucose 1-phosphate as the substrate with K(m) values of 0.1 mM and 0.12 mM for the cytosolic and plastidic isoforms, respectively. A cDNA clone was isolated from wheat endosperm that encodes the cytosolic isoform of PGM. The deduced amino acid sequence shows significant homology to PGMs from eukaryotic and prokaryotic sources. PGM activity was measured in whole cell extracts and in amyloplasts isolated during the development of wheat endosperm. Results indicate an approximate 80% reduction in measurable activity of plastidial and cytosolic PGM between 8 d and 30 d post-anthesis. Northern analysis showed a reduction in cytosolic PGM mRNA accumulation during the same period of development. The implications of the changes in PGM activity during the synthesis of starch in developing endosperm are discussed.  相似文献   

20.
Summary A technique for the histochemical demonstration of phosphoglucose isomerase, using an indirect tetrazolium method, is described. The enzyme is shown to be widely distributed, thus confirming biochemical findings. The wide distribution is of significance because phosphoglucose isomerase occupies a position of considerable importance in carbohydrate metabolism, particularly in the conversion of fructose to glucose by means of intermediate phosphates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号