首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photodynamic therapy (PDT) treatment can exhibit high intersubject variability due to the inherent differences in drug delivery within the tissue to be treated. In this study, the increased perfusion of the lipid-associated photosensitizer verteporfin was studied using substance P, a peptide known to increase vascular permeability. The transvascular permeability coefficient was quantified before and after administration of substance P, and the mean value increased from 0.026 to 0.043 microm/s with the induced inflammation. Correspondingly, there was a 40-50% increase in uptake of verteporfin in the tumor parenchyma in tumors injected with substance P compared to those without. This increased drug uptake resulted in a modest increase in tumor doubling time from 4 days with regular PDT to 6.2 days with substance P and PDT. There was also a significant reduction in the interindividual variability in with substance P plus PDT from 64% to 13%. The resulting treatment was therefore more effective and there was less variability in dose between subjects.  相似文献   

2.
In this study, the vascular and tissue oxygen changes induced by photodynamic therapy in the RIF-1 tumor were examined, using electron paramagnetic resonance (EPR) oximetry. Two photosensitizers, including verteporfin (BPD-MA in a lipid-based formulation) and aminolevulinic acid-induced protoporphyrin IX (ALA-PPIX), were investigated with optical irradiation, sufficient to induce sub-curative damage in the tumor tissue, and the transient changes in PO(2) and vascular perfusion were examined. A large increase in tissue oxygenation (from 3 up to 9.5 mmHg) was observed when treated with ALA-PPIX based photodynamic therapy, which lasted during the treatment and a small residual increase that returned back to baseline levels by 48 h after treatment. With verteporfin-based photodynamic therapy, one group of animals was irradiated 15 min after injection and exhibited a small decrease in oxygenation relative to pre-irradiation levels. The second group was irradiated at 3 h after injection and exhibited a large increase in the average PO(2), (from 3 to 15 mmHg) by the end of the treatment. These observations indicate that photodynamic therapy significantly increases tissue PO(2) under certain treatment conditions, with the potential cause being either increased local blood flow or decreased local oxygen metabolic consumption due to cellular damage.  相似文献   

3.
Using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to monitor vascular changes induced by sunitinib within a murine xenograft kidney tumor, we previously determined a dose that caused only partial destruction of blood vessels leading to "normalization" of tumor vasculature and improved blood flow. In the current study, kidney tumors were treated with this dose of sunitinib to modify the tumor microenvironment and enhance the effect of kidney tumor irradiation. The addition of soy isoflavones to this combined antiangiogenic and radiotherapy approach was investigated based on our studies demonstrating that soy isoflavones can potentiate the radiation effect on the tumors and act as antioxidants to protect normal tissues from treatment-induced toxicity. DCE-MRI was used to monitor vascular changes induced by sunitinib and schedule radiation when the uptake and washout of the contrast agent indicated regularization of blood flow. The combination of sunitinib with tumor irradiation and soy isoflavones significantly inhibited the growth and invasion of established kidney tumors and caused marked aberrations in the morphology of residual tumor cells. DCE-MRI studies demonstrated that the three modalities, sunitinib, radiation, and soy isoflavones, also exerted antiangiogenic effects resulting in increased uptake and clearance of the contrast agent. Interestingly, DCE-MRI and histologic observations of the normal contralateral kidneys suggest that soy could protect the vasculature of normal tissue from the adverse effects of sunitinib. An antiangiogenic approach that only partially destroys inefficient vessels could potentially increase the efficacy and delivery of cytotoxic therapies and radiotherapy for unresectable primary renal cell carcinoma tumors and metastatic disease.  相似文献   

4.

Background

Broader clinical acceptance of photodynamic therapy is currently hindered by (a) poor depth efficacy, and (b) predisposition towards establishment of an angiogenic environment during the treatment. Improved depth efficacy is being sought by exploiting the NIR tissue transparency window and by photo-activation using two-photon absorption (2PA). Here, we use two-photon activation of PDT sensitizers, untargeted and targeted to SST2 receptors or EGF receptors, to achieve deep tissue treatment.

Methods

Human tumor lines, positive or negative for SST2r expression were used, as well as murine 3LL cells and bovine aortic endothelial cells. Expression of SST2 receptors on cancer cells and tumor vasculature was evaluated in vitro and frozen xenograft sections. PDT effects on tumor blood flow were followed using in vivo scanning after intravenous injection of FITC conjugated dextran 150 K. Dependence of the PDT efficacy on the laser pulse duration was evaluated. Effectiveness of targeting to vascular SST2 receptors was compared to that of EGF receptors, or no targeting.

Results

Tumor vasculature stained for SST2 receptors even in tumors from SST2 receptor negative cell lines, and SST2r targeted PDT led to tumor vascular shutdown. Stretching the pulse from ~ 120 fs to ~ 3 ps led to loss of the PDT efficacy especially at greater depth. PDT targeted to SST2 receptors was much more effective than untargeted PDT or PDT targeted to EGF receptors.

General significance

The use of octreotate to target SST2 receptors expressed on tumor vessels is an excellent approach to PDT with few recurrences and some long term cures.  相似文献   

5.
Blood flow and pO2 changes after vascular-targeted photodynamic therapy (V-PDT) or cellular-targeted PDT (C-PDT) using 5,10,15,20-tetrakis(2,6-difluoro-3-N-methylsulfamoylphenyl) bacteriochlorin (F2BMet) as photosensitizer were investigated in DBA/2 mice with S91 Cloudman mouse melanoma, and correlated with long-term tumor responses. F2BMet generates both singlet oxygen and hydroxyl radicals under near-infrared radiation, which consume oxygen. Partial oxygen pressure was lowered in PDT-treated tumors and this was ascribed both to oxygen consumption during PDT and to fluctuations in oxygen transport after PDT. Similarly, microcirculatory blood flow changed as a result of the disruption of blood vessels by the treatment. A novel noninvasive approach combining electron paramagnetic resonance oximetry and laser Doppler blood perfusion measurements allowed longitudinal monitoring of hypoxia and vascular function changes in the same animals, after PDT. C-PDT induced parallel changes in tumor pO2 and blood flow, i.e., an initial decrease immediately after treatment, followed by a slow increase. In contrast, V-PDT led to a strong and persistent depletion of pO2, although the microcirculatory blood flow increased. Strong hypoxia after V-PDT led to a slight increase in VEGF level 24 h after treatment. C-PDT caused a ca. 5-day delay in tumor growth, whereas V-PDT was much more efficient and led to tumor growth inhibition in 90% of animals. The tumors of 44% of mice treated with V-PDT regressed completely and did not reappear for over 1 year. In conclusion, mild and transient hypoxia after C-PDT led to intense pO2 compensatory effects and modest tumor inhibition, but strong and persistent local hypoxia after V-PDT caused tumor growth inhibition.  相似文献   

6.
Photodynamic therapy (PDT) is a therapeutic modality in which a photosensitizer is locally or systemically administered followed by light irradiation of suitable wavelength to achieve selective tissue damage. In addition, PDT is an oxygen-consuming reaction, that causes hypoxia mediated destruction of tumor vasculature that results in effective treatment. However, the hypoxic condition within tumors can cause stress-related release of angiogenic growth factors and cytokines and this inflammatory response could possibly diminish the efficacy of PDT by promoting tumor regrowth. In such circumstances, PDT effectiveness can be enhanced by combining angiogenesis inhibitors into the treatment regimen. Avastin (bevacizumab), a vascular endothelial growth factor (VEGF) specific monoclonal antibody in combination with chemotherapy is offering hope to patients with metastatic colorectal cancer. In this study we evaluated the combination of hypericin-mediated PDT and Avastin on VEGF levels as well as its effect on overall tumor response. Experiments were conducted on bladder carcinoma xenografts established subcutaneously in Balb/c nude mice. Antibody array, enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) were performed to assess VEGF concentrations in the various treatment groups. Our results demonstrated that the targeted therapy by Avastin along with PDT can improve tumor responsiveness in bladder tumor xenografts. Immunostaining showed minimal expression of VEGF in tumors treated with combination therapy of PDT and Avastin. Angiogenic proteins e.g., angiogenin, basic fibroblast growth factor (bFGF), epidermal growth factor (EGF) and interleukins (IL-6 and IL-8) were also found to be downregulated in groups treated with combination therapy.  相似文献   

7.

Background

Epidermal growth factor receptor (EGFR) inhibitors have shown only modest clinical activity when used as single agents to treat cancers. They decrease tumor cell expression of hypoxia-inducible factor 1-α (HIF-1α) and vascular endothelial growth factor (VEGF). Hypothesizing that this might normalize tumor vasculature, we examined the effects of the EGFR inhibitor erlotinib on tumor vascular function, tumor microenvironment (TME) and chemotherapy and radiotherapy sensitivity.

Methodology/Principal Findings

Erlotinib treatment of human tumor cells in vitro and mice bearing xenografts in vivo led to decreased HIF-1α and VEGF expression. Treatment altered xenograft vessel morphology assessed by confocal microscopy (following tomato lectin injection) and decreased vessel permeability (measured by Evan''s blue extravasation), suggesting vascular normalization. Erlotinib increased tumor blood flow measured by Power Doppler ultrasound and decreased hypoxia measured by EF5 immunohistochemistry and tumor O2 saturation measured by optical spectroscopy. Predicting that these changes would improve drug delivery and increase response to chemotherapy and radiation, we performed tumor regrowth studies in nude mice with xenografts treated with erlotinib and either radiotherapy or the chemotherapeutic agent cisplatin. Erlotinib therapy followed by cisplatin led to synergistic inhibition of tumor growth compared with either treatment by itself (p<0.001). Treatment with erlotinib before cisplatin led to greater tumor growth inhibition than did treatment with cisplatin before erlotinib (p = 0.006). Erlotinib followed by radiation inhibited tumor regrowth to a greater degree than did radiation alone, although the interaction between erlotinib and radiation was not synergistic.

Conclusions/Significance

EGFR inhibitors have shown clinical benefit when used in combination with conventional cytotoxic therapy. Our studies show that targeting tumor cells with EGFR inhibitors may modulate the TME via vascular normalization to increase response to chemotherapy and radiotherapy. These studies suggest ways to assess the response of tumors to EGFR inhibition using non-invasive imaging of the TME.  相似文献   

8.
Fluctuations in tumor blood flow are common and attributed to factors such as vasomotion or local vascular structure, yet, because vessel structure and physiology are host-derived, animal strain of tumor propagation may further determine blood flow characteristics. In the present report, baseline and stress-altered tumor hemodynamics as a function of murine strain were studied using radiation-induced fibrosacomas (RIF) grown in C3H or nude mice. Fluctuations in tumor blood flow during one hour of baseline monitoring or during vascular stress induced by photodynamic therapy (PDT) were measured by diffuse correlation spectroscopy. Baseline monitoring revealed fluctuating tumor blood flow highly correlated with heart rate and with similar median periods (i.e., ~9 and 14 min in C3H and nudes, respectively). However, tumor blood flow in C3H animals was more sensitive to physiologic or stress-induced perturbations. Specifically, PDT-induced vascular insults produced greater decreases in blood flow in the tumors of C3H versus nude mice; similarly, during baseline monitoring, fluctuations in blood flow were more regular and more prevalent within the tumors of C3H mice versus nude mice; finally, the vasoconstrictor L-NNA reduced tumor blood flow in C3H mice but did not affect tumor blood flow in nudes. Underlying differences in vascular structure, such as smaller tumor blood vessels in C3H versus nude animals, may contribute to strain-dependent variation in vascular function. These data thus identify clear effects of mouse strain on tumor hemodynamics with consequences to PDT and potentially other vascular-mediated therapies.  相似文献   

9.
The relative roles of hematogenous mediators and direct bacterial toxicity due to phagocytosis by pulmonary intravascular macrophages were determined by selective bacterial infusion into the left pulmonary artery and comparison of right and left lungs at 24 h. Chronically instrumented sheep received 15-min pulmonary arterial infusions of live Pseudomonas aeruginosa (0.35-2.9 x 10(9), n = 6) or saline (n = 5). The saline group demonstrated stable cardiopulmonary function over time. Left lung blood flow, measured by Doppler flow probe, decreased 15 min into the bacterial infusion, with a concomitant sevenfold increase in left lung pulmonary vascular resistance index. The right lung pulmonary vascular resistance index doubled at 1 h, in association with increased plasma thromboxane B2 levels. An increase in cardiac index and decrease in systemic vascular resistance occurred at 12 h. The wet-to-dry weight ratio of the Pseudomonas-infused left lung was increased compared with that of the sham-infused lung. The tissue count of neutrophils in the lungs was doubled in both sides, but neutrophils on the left were more degranulated. The left lung tissue damage was caused by direct bacterial toxicity, including activation of phagocytic cells. Hematogenous mediators induced pulmonary and systemic hemodynamic changes and right lung neutrophil sequestration, but they did not damage the noninfused lung.  相似文献   

10.
We present direct experimental evidence of the fluence-rate-dependent, radiation-induced variations in intratumor oxygen partial pressure (pO(2)) in HT29 human colon adenocarcinoma xenografts subjected to meta-tetra(hydroxyphenyl)chlorin (mTHPC)-based photodynamic therapy (PDT). The data establish a correlation between tumor oxygenation and treatment outcome. Tumor-bearing mice were injected with 0.3 mg/kg photosensitizer and subjected 72 h later to a 12 J/cm(2) red light dose administered at fluence rates of 5, 30, 90 and 160 mW/cm(2). A significant decrease in mean and median pO(2) was registered at approximately half of the total radiation fluence was delivered in tumors treated at rates of 160 and 90 mW/cm(2). Conversely, with the two lower fluence rates, intratumor pO(2) was maintained at levels comparable to those measured before illumination. Tumor oxygenation values registered shortly after every treatment protocol were at least equal to baseline levels, thus excluding the possibility of significant acute vessel damage during illumination. The tumor regrowth profile correlated with the pO(2) values monitored during irradiation. Tumors treated with fluence rates of 5 and 30 mW/cm(2) exhibited significantly longer tumor quadrupling times than those treated at 160 and 90 mW/cm(2). Improved tumor destruction could be expected by reducing the rate and the extent of oxygen depletion during meta-tetra(hydroxyphenyl)chlorin photodynamic therapy using low fluence rates.  相似文献   

11.
In this study, the blood volume and oxygen saturation of tumors were measured after photoacoustic imaging (PAI) under conditions of pre-photodynamic therapy (PDT), post-PDT, and 4 hrs, and 24 hrs post-PDT. PDTs with aminolevulinic acid (ALA) and low and high doses of benzoporphyrin derivative (BPD) were conducted to observe oxygen saturation changes, and the rapid oxygen consumption in the blood detected due to the action of BPD at the vascular level resulted in the recovery of PDT completion. Likewise, blood volume changes followed by ALA-PDT and BPD-PDT at low and high doses depicted a fast expansion of the blood volume after treatment. The tumor subjected to a high dose of ALA-PDT showed a partial alteration of Hb-pO2 in the first 24 hrs, as did the tumors treated with two ALA- and BPD-mediated PDTs. The Hb-pO2 started reducing immediately post-PDT and was less than 30% after 4 hrs until 24 hrs post-PDT. Reduced vascular demand was possibly due to tumor necrosis, as shown by the permanent damage in the cancer cells' bioluminescence signal. The ALA-mediated PDT-subjected tumor showed a 50% drop in BV at 24 hrs post-PDT, which is suggestive of vascular pruning. The studied data of blood volume against BLI showed the blood volume and oxygenation variations validating the cells' metabolic activity, including cell death.  相似文献   

12.
We have reviewed the studies on radiation-induced vascular changes in human and experimental tumors reported in the last several decades. Although the reported results are inconsistent, they can be generalized as follows. In the human tumors treated with conventional fractionated radiotherapy, the morphological and functional status of the vasculature is preserved, if not improved, during the early part of a treatment course and then decreases toward the end of treatment. Irradiation of human tumor xenografts or rodent tumors with 5-10 Gy in a single dose causes relatively mild vascular damages, but increasing the radiation dose to higher than 10 Gy/fraction induces severe vascular damage resulting in reduced blood perfusion. Little is known about the vascular changes in human tumors treated with high-dose hypofractionated radiation such as stereotactic body radiotherapy (SBRT) or stereotactic radiosurgery (SRS). However, the results for experimental tumors strongly indicate that SBRT or SRS of human tumors with doses higher than about 10 Gy/fraction is likely to induce considerable vascular damages and thereby damages the intratumor microenvironment, leading to indirect tumor cell death. Vascular damage may play an important role in the response of human tumors to high-dose hypofractionated SBRT or SRS.  相似文献   

13.

Purpose

Solid tumor vasculature is highly heterogeneous, which presents challenges to antiangiogenic intervention as well as the evaluation of its therapeutic efficacy. The aim of this study is to evaluate the spatial tumor vascular changes due to bevacizumab/paclitaxel therapy using a combination approach of MR angiography and DCE-MRI method.

Experimental Design

Tumor vasculature of MCF-7 breast tumor mouse xenografts was studied by a combination of MR angiography and DCE-MRI with albumin-Gd-DTPA. Tumor macroscopic vasculature was extracted from the early enhanced images. Tumor microvascular parameters were obtained from the pharmacokinetic modeling of the DCE-MRI data. A spatial analysis of the microvascular parameters based on the macroscopic vasculature was used to evaluate the changes of the heterogeneous vasculature induced by a 12 day bevacizumab/paclitaxel treatment in mice bearing MCF-7 breast tumor.

Results

Macroscopic vessels that feed the tumors were not affected by the bevacizumab/paclitaxel combination therapy. A higher portion of the tumors was within close proximity of these macroscopic vessels after the treatment, concomitant with tumor growth retardation. There was a significant decrease in microvascular permeability and vascular volume in the tumor regions near these vessels.

Conclusion

Bevacizumab/paclitaxel combination therapy did not block the blood supply to the MCF-7 breast tumor. Such finding is consistent with the modest survival benefits of adding bevacizumab to current treatment regimens for some types of cancers.  相似文献   

14.
Tumor growth depends upon an adequate supply of oxygen and nutrients achieved through angiogenesis and maintenance of an intact tumor vasculature. Therapy with individual agents that target new vessel formation or existing vessels has suppressed experimental tumor growth, but rarely resulted in the eradication of tumors. We therefore tested the combined anti-tumor activity of vasostatin and interferon-inducible protein-10 (IP-10), agents that differently target the tumor vasculature. Vasostatin, a selective and direct inhibitor of endothelial cell proliferation, significantly reduced Burkitt tumor growth and tumor vessel density. IP-10, an "angiotoxic" chemokine, caused vascular damage and focal necrosis in Burkitt tumors. When combined, vasostatin plus IP-10 reduced tumor growth more effectively than each agent alone, but complete tumor regression was not observed. Microscopically, these tumors displayed focal necrosis and reduction in vessel density. Combination therapy with the inhibitors of angiogenesis vasostatin and IP-10 is effective in reducing the rate of tumor growth but fails to induce tumor regression, suggesting that curative treatment may require supplemental drugs targeting directly the tumor cells.  相似文献   

15.
Antivascular photodynamic therapy (PDT) of tumors with palladium-bacteriopheophorbide (TOOKAD) relies on in situ photosensitization of the circulating drug by local generation of cytotoxic reactive oxygen species, which leads to rapid vascular occlusion, stasis, necrosis and tumor eradication. Intravascular production of reactive oxygen species is associated with photoconsumption of O(2) and consequent evolution of paramagnetic deoxyhemoglobin. In this study we evaluate the use of blood oxygenation level-dependent (BOLD) contrast magnetic resonance imaging (MRI) for real-time monitoring of PDT efficacy. Using a solid tumor model, we show that TOOKAD-PDT generates appreciable attenuation (25-40%) of the magnetic resonance signal, solely at the illuminated tumor site. This phenomenon is independent of, though augmented by, ensuing changes in blood flow. These results were validated by immunohistochemistry and intravital microscopy. The concept of photosensitized BOLD-contrast MRI may have intraoperative applications in interactive guidance and monitoring of antivascular cancer therapy, PDT treatment of macular degeneration, interventional cardiology and possibly other biomedical disciplines.  相似文献   

16.
The vascular disrupting agent combretastatin A-4 disodium phosphate (CA4P) induces fluctuations in peripheral blood neutrophil concentration. Because neutrophils have the potential to induce both vascular damage and angiogenesis we analyzed neutrophil involvement in the anti-tumoral effects of CA4P in C3H mammary carcinomas in CDF1 mice and in SCCVII squamous cell carcinomas in C3H/HeN mice. Flow cytometry analyses of peripheral blood before and up to 144 h after CA4P administration (25 and 250 mg/kg) revealed a decrease 1 h after treatment, followed by an early (3–6 h) and a late (>72 h) increase in the granulocyte concentration. We suggest that the early increase (3–6 h) in granulocyte concentration was caused by the initial decrease at 1 h and found that the late increase was associated with tumor size, and hence independent of CA4P. No alterations in neutrophil infiltration into the C3H tumor after CA4P treatment (25 and 250 mg/kg) were found. Correspondingly, neutrophil depletion in vivo, using an anti-neutrophil antibody, followed by CA4P treatment (25 mg/kg) did not increase the necrotic fraction in C3H tumors significantly. However, by increasing the CA4P dose to 250 mg/kg we found a significant increase of 359% in necrotic fraction when compared to neutrophil-depleted mice; in mice with no neutrophil depletion CA4P induced an 89% change indicating that the presence of neutrophils reduced the effect of CA4P. In contrast, neither CA4P nor 1A8 affected the necrotic fraction in the SCCVII tumors significantly. Hence, we suggest that the initial decrease in granulocyte concentration was caused by non-tumor-specific recruitment of neutrophils and that neutrophils may attenuate CA4P-mediated anti-tumor effect in some tumor models.  相似文献   

17.
Mroz P  Szokalska A  Wu MX  Hamblin MR 《PloS one》2010,5(12):e15194

Background

The mechanism by which the immune system can effectively recognize and destroy tumors is dependent on recognition of tumor antigens. The molecular identity of a number of these antigens has recently been identified and several immunotherapies have explored them as targets. Photodynamic therapy (PDT) is an anti-cancer modality that uses a non-toxic photosensitizer and visible light to produce cytotoxic reactive oxygen species that destroy tumors. PDT has been shown to lead to local destruction of tumors as well as to induction of anti-tumor immune response.

Methodology/Principal Findings

We used a pair of equally lethal BALB/c colon adenocarcinomas, CT26 wild-type (CT26WT) and CT26.CL25 that expressed a tumor antigen, β-galactosidase (β-gal), and we treated them with vascular PDT. All mice bearing antigen-positive, but not antigen-negative tumors were cured and resistant to rechallenge. T lymphocytes isolated from cured mice were able to specifically lyse antigen positive cells and recognize the epitope derived from beta-galactosidase antigen. PDT was capable of destroying distant, untreated, established, antigen-expressing tumors in 70% of the mice. The remaining 30% escaped destruction due to loss of expression of tumor antigen. The PDT anti-tumor effects were completely abrogated in the absence of the adaptive immune response.

Conclusion

Understanding the role of antigen-expression in PDT immune response may allow application of PDT in metastatic as well as localized disease. To the best of our knowledge, this is the first time that PDT has been shown to lead to systemic, antigen- specific anti-tumor immunity.  相似文献   

18.
Blood flow governs transport of oxygen and nutrients into tissues. Hypoxic tissues secrete VEGFs to promote angiogenesis during development and in tissue homeostasis. In contrast, tumors enhance pathologic angiogenesis during growth and metastasis, suggesting suppression of tumor angiogenesis could limit tumor growth. In line with these observations, various factors have been identified to control vessel formation in the last decades. However, their impacts on the vascular transport properties of oxygen remain elusive. Here, we take a computational approach to examine the effects of vascular branching on blood flow in the growing vasculature. First of all, we reconstruct a 3D vascular model from the 2D confocal images of the growing vasculature at postnatal day 5 (P5) mouse retina, then simulate blood flow in the vasculatures, which are obtained from the gene targeting mouse models causing hypo- or hyper-branching vascular formation. Interestingly, hyper-branching morphology attenuates effective blood flow at the angiogenic front, likely promoting tissue hypoxia. In contrast, vascular hypo-branching enhances blood supply at the angiogenic front of the growing vasculature. Oxygen supply by newly formed blood vessels improves local hypoxia and decreases VEGF expression at the angiogenic front during angiogenesis. Consistent with the simulation results indicating improved blood flow in the hypo-branching vasculature, VEGF expression around the angiogenic front is reduced in those mouse retinas. Conversely, VEGF expression is enhanced in the angiogenic front of hyper-branching vasculature. Our results indicate the importance of detailed flow analysis in evaluating the vascular transport properties of branching morphology of the blood vessels.  相似文献   

19.
IFNs have pleiotropic antitumor mechanisms of action. The purpose of this study was to further investigate the effects of IFN-beta on the vasculature of human xenografts in immunodeficient mice. We found that continuous, systemic IFN-beta delivery, established with liver-targeted adeno-associated virus vectors, led to sustained morphologic and functional changes of the tumor vasculature that were consistent with vessel maturation. These changes included increased smooth muscle cell coverage of tumor vessels, improved intratumoral blood flow, and decreased vessel permeability, tumor interstitial pressure, and intratumoral hypoxia. Although these changes in the tumor vasculature resulted in more efficient tumor perfusion, further tumor growth was restricted, as the mature vasculature seemed to be unable to expand to support further tumor growth. In addition, maturation of the intratumoral vasculature resulted in increased intratumoral penetration of systemically administered chemotherapy. Finally, molecular analysis revealed increased expression by treated tumors of angiopoietin-1, a cytokine known to promote vessel stabilization. Induction of angiopoietin-1 expression in response to IFN-beta was broadly observed in different tumor lines but not in those with defects in IFN signaling. In addition, IFN-beta-mediated vascular changes were prevented when angiopoietin signaling was blocked with a decoy receptor. Thus, we have identified an alternative approach for achieving sustained vascular remodeling-continuous delivery of IFN-beta. In addition to restricting tumor growth by inhibiting further angiogenesis, maturation of the tumor vasculature also improved the efficiency of delivery of adjuvant therapy. These results have significant implications for the planning of combination anticancer therapy.  相似文献   

20.
Electropermeabilization/electroporation (EP) provides a tool for the introduction of molecules into cells and tissues. In electrochemotherapy (ECT), cytotoxic drugs are introduced into cells in tumors, and nucleic acids are introduced into cells in gene electrotransfer. The normal and tumor tissue blood flow modifying effects of EP and the vascular disrupting effect of ECT in tumors have already been determined. However, differential effects between normal vs. tumor vessels, to ensure safety in the clinical application of ECT, have not been determined yet. Therefore, the aim of our study was to determine the effects of EP and ECT with bleomycin on the HT-29 human colon carcinoma tumor model and its surrounding blood vessels. The response of blood vessels to EP and ECT was monitored in real time, directly at the single blood vessel level, by in vivo optical imaging in a dorsal window chamber in SCID mice with 70 kDa fluorescently labeled dextrans. The response of tumor blood vessels to EP and ECT started to differ within the first hour. Both therapies induced a vascular lock, decreased functional vascular density (FVD) and increased the diameter of functional blood vessels within the tumor. The effects were more pronounced for ECT, which destroyed the tumor blood vessels within 24 h. Although the vasculature surrounding the tumor was affected by EP and ECT, it remained functional. The study confirms the current model of tumor blood flow modifying effects of EP and provides conclusive evidence that ECT is a vascular disrupting therapy with a specific effect on the tumor blood vessels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号