首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MicroRNAs have become the spotlight of the biological community for more than a decade, but we are only now beginning to understand their functions. The detection of stably expressed endogenous microRNAs in human blood suggests that these circulating miRNAs can mediate intercellular communication. Our previous study reported the surprising finding that exogenous rice MIR168a could regulate liver low-density lipoprotein receptor adapter protein 1 (LDLRAP1) gene expression in mice. Here, we show that plant MIR156a, which is abundantly expressed in dietary green veggies, also stably presents in healthy human serum. Compared with age-matched individuals, decreased levels of MIR156a are observed both in serum and blood vessel of cardiovascular disease (CVD) patients. In vitro studies demonstrate that MIR156a can directly target the junction adhesion molecule-A (JAM-A), which is up-regulated in atherosclerotic lesions from CVD patients. Functional studies show that ectopic expression of MIR156a in human aortic endothelial cells reduces inflammatory cytokine-induced monocytes adhesion by suppressing JAM-A. These findings offer a novel vasoprotective molecular mechanism of green veggies through plant microRNAs.  相似文献   

2.

Background

Transgenic expression of small RNAs is a prevalent approach in agrobiotechnology for the global enhancement of plant foods. Meanwhile, emerging studies have, on the one hand, emphasized the potential of transgenic microRNAs (miRNAs) as novel dietary therapeutics and, on the other, suggested potential food safety issues if harmful miRNAs are absorbed and bioactive. For these reasons, it is necessary to evaluate the bioavailability of transgenic miRNAs in genetically modified crops.

Results

As a pilot study, two transgenic Arabidopsis lines ectopically expressing unique miRNAs were compared and contrasted with the plant bioavailable small RNA MIR2911 for digestive stability and serum bioavailability. The expression levels of these transgenic miRNAs in Arabidopsis were found to be comparable to that of MIR2911 in fresh tissues. Assays of digestive stability in vitro and in vivo suggested the transgenic miRNAs and MIR2911 had comparable resistance to degradation. Healthy mice consuming diets rich in Arabidopsis lines expressing these miRNAs displayed MIR2911 in the bloodstream but no detectable levels of the transgenic miRNAs.

Conclusions

These preliminary results imply digestive stability and high expression levels of miRNAs in plants do not readily equate to bioavailability. This initial work suggests novel engineering strategies be employed to enhance miRNA bioavailability when attempting to use transgenic foods as a delivery platform.
  相似文献   

3.
MicroRNAs (miRNAs) are a class of endogenous small RNAs that play important regulatory roles in both animals and plants, miRNA genes have been intensively studied in animals, but not in plants. In this study, we adopted a homology search approach to identify homologs of previously validated plant miRNAs in Arabidopsis thaliana and Oryza sativa. We identified 20 potential miRNA genes in Arabidopsis and 40 in O. sativa, providing a relatively complete enumeration of family members for these miRNAs in plants. In addition, a greater number of Arabidopsis miRNAs (MIR168, MIR159 and MIR172) were found to be conserved in rice. With the novel homologs, most of the miRNAs have closely related fellow miRNAs and the number of paralogs varies in the different miRNA families. Moreover, a probable functional segment highly conserved on the elongated stem of pre-miRNA fold-backs of MIR319 and MIR159 family was identified. These results support a model of variegated miRNA regulation in plants, in which miRNAs with different functional elements on their pre-miRNA fold-backs can differ in their function or regulation, and closely related miRNAs can be diverse in their specificity or competence to downregulate target genes. It appears that the sophisticated regulation of miRNAs can achieve complex biological effects through qualitative and quantitative modulation of gene expression profiles in plants.  相似文献   

4.
5.
ABSTRACT: BACKGROUND: Plants contain significant quantities of small RNAs (sRNAs) derived from various sRNA biogenesis pathways. Many of these sRNAs play regulatory roles in plants. Previous analysis revealed that numerous sRNAs in corn, rice and soybean seeds have high sequence similarity to animal genes. However, exogenous RNA is considered to be unstable within the gastrointestinal tract of many animals, thus limiting potential for any adverse effects from consumption of dietary RNA. A recent paper reported that putative plant miRNAs were detected in animal plasma and serum, presumably acquired through ingestion, and may have a functional impact in the consuming organisms. RESULTS: To address the question of how common this phenomenon could be, we searched for plant miRNAs sequences in public sRNA datasets from various tissues of mammals, chicken and insects. Our analyses revealed that plant miRNAs were present in the animal sRNA datasets, and significantly miR168 was extremely over-represented. Furthermore, all or nearly all (>96%) miR168 sequences were monocot derived for most datasets, including datasets for two insects reared on dicot plants in their respective experiments. To investigate if plant-derived miRNAs, including miR168, could accumulate and move systemically in insects, we conducted insect feeding studies for three insects including corn rootworm, which has been shown to be responsive to plant-produced long double-stranded RNAs. CONCLUSIONS: Our analyses suggest that the observed plant miRNAs in animal sRNA datasets can originate in the process of sequencing, and that accumulation of plant miRNAs via dietary exposure is not universal in animals.  相似文献   

6.
7.
Micro RNAs (miRNAs) are processed from precursor RNA molecules with precisely defined secondary stem-loop structures. ARGONAUTE1 (AGO1) is the main executor component of miRNA pathway and its expression is controlled via the auto-regulatory feedback loop activity of miR168 in plants. Previously we have shown that AGO1 loading of miR168 is strongly restricted leading to abundant cytoplasmic accumulation of AGO-unbound miR168. Here, we report, that intrinsic RNA secondary structure of MIR168a precursor not only defines the processing of miR168, but also precisely adjusts AGO1 loading efficiency determining the biologically active subset of miR168 pool. Our results show, that modification of miRNA duplex structure of MIR168a precursor fragment or expression from artificial precursors can alter the finely adjusted loading efficiency of miR168. In dcl1-9 mutant where, except for miR168, production of most miRNAs is severely reduced this mechanism ensures the elimination of unloaded AGO1 proteins via enhanced AGO1 loading of miR168. Based on this data, we propose a new competitive loading mechanism model for miR168 action: the miR168 surplus functions as a molecular buffer for controlled AGO1 loading continuously adjusting the amount of AGO1 protein in accordance with the changing size of the cellular miRNA pool.  相似文献   

8.
9.
MicroRNAs (miRNAs) constitute a class of small non-coding endogenous RNAs that regulate gene expression by targeting mRNAs for degradation or translational repression. MiRNAs are intensively investigated and they have been found to be a pivotal component of developmental regulation processes. Recent studies showed the non-cell autonomous function of several miRNAs. We analyzed the accumulation pattern of selected miRNAs in Arabidopsis thaliana embryonic tissues. The majority of the investigated miRNAs showed uniform accumulation across the embryo suggesting their possible role at this developmental stage. In the case of miR167 however, we detected a gradient-like expression profile which in earlier studies has been considered to be the hallmark of the non-cell autonomous activity of miRNAs. Using reporter assay we analyzed the expression patterns of the four MIR167 precursor genes. We found that two of the precursor genes, MIR167A and MIR167B, also showed an overlapping gradient-like expression patterns in the embryo. These data indicate that in addition to non-cell autonomous activity of some miRNAs, the gradient-like expression patterns can be generated also by the specific expression characteristic of miRNA precursor genes.  相似文献   

10.
11.
12.
13.
Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis   总被引:1,自引:0,他引:1  
Zhao M  Ding H  Zhu JK  Zhang F  Li WX 《The New phytologist》2011,190(4):906-915
Recent studies have revealed that microRNAs (miRNAs) regulate plant adaptive responses to nutrient deprivation. However, the functional significance of miRNAs in adaptive responses to nitrogen (N) limitation remains to be explored. The Arabidopsis miR169 was strongly down-regulated, whereas its targets, NFYA (Nuclear Factor Y, subunit A) family members, were strongly induced by nitrogen N starvation. Analysis of the expression of miR169 precursors showed that MIR169a was substantially down-regulated in both roots and shoots by N starvation. Accumulation of the NFYA family members was suppressed in transgenic Arabidopsis with constitutive expression of MIR169a. Transgenic Arabidopsis plants overexpressing MIR169a accumulated less N and were more sensitive to N stress than the wild type. N sensitivity of 35S::MIR169a might be attributable to impaired uptake systems. These results provide evidence that miRNAs have functional roles in helping plants to cope with fluctuations in N availability in the soil.  相似文献   

14.

Background

Micro (mi)RNAs are important regulators of plant development. Across plant lineages, Dicer-like 1 (DCL1) proteins process long ds-like structures to produce micro (mi) RNA duplexes in a stepwise manner. These miRNAs are incorporated into Argonaute (AGO) proteins and influence expression of RNAs that have sequence complementarity with miRNAs. Expression levels of AGOs are greatly regulated by plants in order to minimize unwarranted perturbations using miRNAs to target mRNAs coding for AGOs. AGOs may also have high promoter specificity-sometimes expression of AGO can be limited to just a few cells in a plant. Viral pathogens utilize various means to counter antiviral roles of AGOs including hijacking the host encoded miRNAs to target AGOs. Two host encoded miRNAs namely miR168 and miR403 that target AGOs have been described in the model plant Arabidopsis and such a mechanism is thought to be well conserved across plants because AGO sequences are well conserved.

Results

We show that the interaction between AGO mRNAs and miRNAs is species-specific due to the diversity in sequences of two miRNAs that target AGOs, sequence diversity among corresponding target regions in AGO mRNAs and variable expression levels of these miRNAs among vascular plants. We used miRNA sequences from 68 plant species representing 31 plant families for this analysis. Sequences of miR168 and miR403 are not conserved among plant lineages, but surprisingly they differ drastically in their sequence diversity and expression levels even among closely related plants. Variation in miR168 expression among plants correlates well with secondary structures/length of loop sequences of their precursors.

Conclusions

Our data indicates a complex AGO targeting interaction among plant lineages due to miRNA sequence diversity and sequences of miRNA targeting regions among AGO mRNAs, thus leading to the assumption that the perturbations by viruses that use host miRNAs to target antiviral AGOs can only be species-specific. We also show that rapid evolution and likely loss of expression of miR168 isoforms in tobacco is related to the insertion of MITE-like transposons between miRNA and miRNA* sequences, a possible mechanism showing how miRNAs are lost in few plant lineages even though other close relatives have abundantly expressing miRNAs.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1049) contains supplementary material, which is available to authorized users.  相似文献   

15.
16.
17.
18.
As an essential regulatory component in plants, microRNAs (miRNAs) have been intensively studied over the past decade. Although hundreds of miRNAs have been identified and analyzed in many important crops and model plants, very little is known about the function of common wheat (Triticum aestivum L.) miRNAs. In this study, we performed computational prediction of novel wheat miRNAs based on BLAST searches of the expressed sequence tag database. The expression profiles of all miRNAs were performed for both vegetative and reproductive tissues to identify developmentally regulated miRNAs. A total of 19 new miRNAs belonging to 12 MIR families were identified using stringent criteria for miRNA annotation. For all of the miRNAs, the secondary structures of their precursor sequences were predicted. Two pairs of distinct miRNAs were found to be located on the same precursor. The predicted miRNAs were experimentally verified by a stem-loop qRT-PCR-based assay. The expression profiles were performed in both vegetative and reproductive tissues to find the potential correlations between the developmental phase and miRNA activity. Thirteen out of 19 miRNAs were upregulated at certain phases of plant development, and three of them (miR319, miR395, and miR171) showed the greatest expression in young spikes during microsporogenesis. Our results provide useful information for future studies of miRNA-mediated regulation of flower and grain development in wheat.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号