首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the present study was to study the effect of an acute dose of the serotonin (5-HT) - noradrenaline (NA) reuptake inhibitor venlafaxine on extracellular concentrations of 5-HT, NA and dopamine (DA) in the hippocampus and on the peripheral hormone concentrations in freely moving rats. Blood obtained from a catheter placed in the vena femoralis was analyzed for adrenocorticotropin (ACTH), beta-endorphins, prolactin (PRL), growth hormone (GH) and cortisol. Collections are referred to pre and post injection of 20 mg/kg of venlafaxine. Extracellular hippocampal NA and 5-HT as determined with in vivo microdialysis increased significantly after drug injection. PRL and ACTH were significantly affected by the drug. At the selected dose venlafaxine is able to increase the release of 5-HT but also of NA in rat hippocampus. Due to the dual reuptake properties of the drug and the functional interconnection of the NA and the 5-HT systems, the observed effects on peripheral hormones are possibly mediated by a combined action of these 2 systems.  相似文献   

2.
The purpose of the present study was to examine the effects of an acute dose of the dual dopamine (DA) and norepinephrine (NE) reuptake inhibitor bupropion (Bup) on brain (T(brain)), body core (T(core)), and tail skin (T(tail)) temperature in freely moving rats and to simultaneously monitor the extracellular neurotransmitter concentrations in the preoptic area and anterior hypothalamus (PO/AH). A microdialysis probe was inserted in the PO/AH, and samples for NE, DA, and serotonin (5-HT) were collected every 20 min before and after the injection of 17 mg/kg of Bup, for a total sampling time of 180 min. T(core) was monitored using a biotelemetry system. T(brain) and T(tail), an index of heat loss response, were also measured. Both NE and DA levels in the PO/AH significantly increased after Bup injection compared with the baseline levels, reaching approximately 450 and 230%, respectively, 40 min after injection. There was no effect on 5-HT release. The neurotransmitter changes were accompanied by a significant decrease in T(tail) and an increase in both T(brain) and T(core) compared with the baseline levels. The present results demonstrate that inhibition of NE and DA reuptake suppresses heat loss mechanisms and elevates T(brain) and T(core) in freely moving rats.  相似文献   

3.
Hippocampal brain-derived neurotrophic factor (BDNF) protein is increased with exercise in rats. Monoamines seem to play a role in the regulation of BDNF, and monoamine neurotransmission is known to increase with exercise. The purpose of this study was to examine the influence of acute exercise on monoaminergic neurotransmission and BDNF protein concentrations. Hippocampal microdialysis was performed in rats that were subjected to 60 min of treadmill running at 20 m/min or rest. Two hours postexercise, the rats were killed, and the hippocampus was dissected. In experiments without microdialysis, hippocampus and serum samples were collected immediately after exercise. Exercise induced a twofold increase in hippocampal dopamine release. Noradrenaline and serotonin release were not affected. Hippocampal BDNF levels were not influenced, whether they were measured immediately or 2 h after the exercise protocol. Serum BDNF levels did not change either, but serum BDNF was negatively correlated to peripheral corticosterone concentrations, indicating a possible inhibitory reaction to the stress of running. Sixty minutes of exercise enhances dopamine release in the hippocampus of the rat in vivo. However, this increase is not associated with changes in BDNF protein levels immediately nor 2 h after the acute exercise bout. An increased corticosterone level might be the contributing factor for the absence of changes in BDNF.  相似文献   

4.
In the search for potent dual norepinephrine and dopamine reuptake inhibitors, several substituted arylpiperazine–tetrazoles were designed, synthesized and evaluated for their neurotransmitter reuptake inhibitory activities. Various derivatives exhibited selective and strong neurotransmitter reuptake inhibitory activity. In particular, compounds with a three-carbon linker displayed selective and stronger potency than those with two-carbon and four-carbon linkers. Interestingly, six compounds, 9b, 9c, 9d, 9o, 9q and 9u displayed more effective activity than the standard drug, bupropion. The provided SAR data and potent biological activity can offer useful guidelines for designing dual norepinephrine and dopamine reuptake inhibitors as effective therapeutic agents for treatment of several central nervous system diseases.  相似文献   

5.
In a continuing study of nicotine-induced mechanisms in brain areas associated with cognitive processes, the effects of cholinergic and dopaminergic antagonists on nicotine-induced changes in dopamine, norepinephrine, and serotonin were examined. These effects were measured via in vivo microdialysis in the dorsal and ventral hippocampus and in the prefrontal and medial temporal cortex of conscious, freely moving, adult male rats. Nicotine (0.3 mg/kg, free base) was administered subcutaneously and the antagonists were infused locally via the microdialysis probe. Nicotine alone induced an increase of dopamine and its metabolites in all areas, an increase of norepinephrine in the cortex, and an increase of the norepinephrine metabolite 4–hydroxy-3-methoxy-phenylglycol in all areas. Serotonin was decreased in the hippocampus and increased in the cortex. Nicotine-induced dopamine increases were inhibited by nicotinic (mecamylamine 100 μM, methyllycaconitine 500 μM), muscarinic (atropine 100 μM), and dopaminergic D1 (SCH23390 100 μM) and D2 (eticlopride 100 μM) antagonists, in the hippocampal and cortical areas. In the hippocampal areas, these antagonists had less significant effect on norepinephrine and serotonin. However, in the cortical areas, all antagonists inhibited the nicotine-induced increase of serotonin to varying degrees; and some, primarily nicotinic and dopamine D1 antagonists, inhibited the induced increase of norepinephrine. In the hippocampal and cortical areas, the mechanisms of nicotine-induced dopamine increase seem to be similar, but the mechanisms seem to be different for noradrenergic and serotonergic systems, as shown by the fact that nicotine induces no change in norepinephrine and a decrease in serotonin in the hippocampus, while it induces an increase in both in the cortex. Nicotine-induced dopamine release seems to be mediated, in part locally, by nicotinic and muscarinic receptors on dopaminergic cells. In contrast, nicotine’s effect on norepinephrine and serotonin is at least partially mediated by initial changes at other than local sites, and through different receptors. Thus, the effects of nicotine and the mechanisms involved differ for different neurotransmitters and in different brain areas.  相似文献   

6.
Since a substantial proportion of smokers have comorbid mood disorders, the smoking cessation aid varenicline might occasionally be prescribed to patients who are simultaneously treated with antidepressants. Given that varenicline is a selective nicotinic acetylcholine receptor partial agonist and not a substrate or inhibitor of drug metabolizing enzymes, pharmacokinetic interactions with various classes of antidepressants are highly unlikely. It is, however, conceivable that varenicline may have a pharmacodynamic effect on antidepressant-evoked increases in central monoamine release. Interactions resulting in excessive transmitter release could cause adverse events such as serotonin syndrome, while attenuation of monoamine release could impact the clinical efficacy of antidepressants. To investigate this we examined whether varenicline administration modulates the effects of the selective serotonin reuptake inhibitor sertraline and the monoamine oxidase inhibitor clorgyline, given alone and combined, on extracellular concentrations of the monoamines serotonin, dopamine, and norepinephrine in rat brain by microdialysis. Given the important role attributed to cortical monoamine release in serotonin syndrome as well as antidepressant activity, the effects on extracellular monoamine concentrations were measured in the medial prefrontal cortex. Responses to maximally effective doses of sertraline or clorgyline and of sertraline plus clorgyline were the same in the absence as in the presence of a relatively high dose of varenicline, which by itself had no significant effect on cortical monoamine release. This is consistent with the binding profile of varenicline that has insufficient affinity for receptors, enzymes, or transporters to inhibit or potentiate the pharmacologic effects of antidepressants. Since varenicline neither diminished nor potentiated sertraline- or clorgyline-induced increases in neurotransmitter levels, combining varenicline with serotonergic antidepressants is unlikely to cause excessive serotonin release or to attenuate antidepressant efficacy via effects on cortical serotonin, dopamine or norepinephrine release.  相似文献   

7.
Typological behavioral features of Wistar rats were tested in the open field and in Porsolt test. Rats were assigned to groups with high (HAct), medium (MAct), and low (LAct) behavioral activities. The same rats were assigned to high (HDep), medium (MDep) and low depressive (LDep) groups. The release of norepinephrine, dopamine, serotonin and their metabolites in homogenates obtained from the hypothalamus, hippocampus, frontal cortex and amygdala was assessed by microdialysis and HPLC. In these groups, the monoamine concentrations were different: the level of serotonin was higher in the hypothalamus and norepinephrine and 5-HIAA levels were lower in the hippocampus of MAct - MDep rats as compared to LAct - HDep. Chronic neurotization caused changes in monoamine concentrations in the hypothalamus and amygdala in rats of all groups, whereas in the hippocampus and frontal cortex monoamine changes were observed in HAct - LDep and LAct -HDep rats. The most prominent changes in monoamines levels in neurotized rats with different types of behavior were found in the frontal cortex, amygdala and hippocampus. The results show a correlation between the typological of behavioral characteristics and the reaction to stress of monoaminergic systems of the hypothalamus, hippocampus, frontal cortex and amygdala.  相似文献   

8.
The acute effect of estradiol and progesterone on dopamine and serotonin metabolism in rat striatum was studied. One subcutaneous injection of 17 beta-estradiol (300 ng) and progesterone (150 micrograms) into intact male rats increased plasma levels of these steroids, while testosterone, corticosterone, and estrone remained unchanged. Dehydroepiandrosterone, androstane-3 beta, 17 beta-diol and dihydrotestosterone remained undetectably low. Prolactin decreased and androstane-3 alpha, 17 beta-diol, and 17-OH progesterone increased, but less than estradiol and progesterone. Peak levels of striatal dopamine, dihydroxyphenylacetic acid, and homovanillic acid were observed 15-45 min after steroid injection with a return to control values after 45-60 min, while serotonin and 5-hydroxyindoleacetic acid levels were slightly decreased. An injection of estradiol (70 ng) with progesterone (70 micrograms) to ovariectomized female rats left plasma prolactin levels unchanged, while striatum dopamine and serotonin as well as their metabolite concentrations peaked 15-60 min after steroid injection and returned to control values after 45-75 min. To allow for a better comparison of the action of these steroids, the effect of estradiol or progesterone alone and in combination on the brain of ovariectomized rats was compared in the same experiment. A similar increase in metabolites of dopamine levels was observed after these steroids alone or in combination, while dopamine levels were increased only after progesterone alone or in combination with estradiol. An injection of estradiol or progesterone to ovariectomized rats led to peak steroid concentrations at approximately the same time in the brain and plasma. In addition, plasma and brain steroid levels were significantly correlated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
The injection of neostigmine into the hippocampus of anesthetized rats increased the mean arterial blood pressure (17% of baseline after 60 min injection) and decreased the heart rate (24% of baseline after 60 min injection). These changes were blocked by the co-administration of methylatropine into the hippocampus. Intrahippocampal injection of neostigmine stimulated the secretion of epinephrine and norepinephrine. Adrenodemedullation did not suppress the increase in blood pressure and the decrease in heart rate. It is concluded that the stimulation of muscarinic cholinoceptive neurons in the hippocampus evokes a hypertensive response via an increase in sympathetic drive to the heart and peripheral vasculature, with bradycardia possibly mediated via the parasympathetic system.  相似文献   

11.
Venlafaxine is recognised as an effective treatment for depression and is known to inhibit the reuptake of serotonin (5-HT) and noradrenaline (NA). Another antidepressant, bupropion, acts to inhibit dopamine (DA) and NA reuptake and is commonly co-administered with other antidepressants to improve the efficacy of the antidepressant effect. The present study was designed to investigate the acute effect of combining the 2 drugs on extracellular levels of 5-HT, DA, and NA in rat frontal cortex using brain microdialysis, with the drugs being administered by intraperitoneal injection (i.p). Bupropion (10 mg/kg body mass, i.p.) alone had no effect on extracellular 5-HT levels, whereas venlafaxine (10 mg/kg, i.p.) alone significantly elevated extracellular 5-HT over basal values. As expected, bupropion alone elevated extracellular dopamine above basal values at 40 min post-drug administration, and this effect lasted for a further 2 h. Venlafaxine alone did not statistically elevate extracellular dopamine. The co-administration of venlafaxine with bupropion resulted in a dramatic increase in extracellular dopamine, and this effect was significantly greater than that seen with bupropion alone. In the frontal cortex, NA was elevated by bupropion alone and venlafaxine alone, relative to the control animals. The combination of bupropion and venlafaxine resulted in a marked elevation of NA.  相似文献   

12.
G E Richards  J Z Kendal 《Life sciences》1987,40(20):2001-2005
To investigate the neurochemical mechanism of the response of growth hormone to 5-hydroxytryptophan (5-HTP), we administered 5-HTP (20 mg/kg) to 10 ovine fetuses (110 or 130 days old; term gestation 147 days). Ninety minutes after 5-HTP administration, and following increases in plasma growth hormone concentrations, the fetus was delivered by hysterotomy. After local anesthesia of the fetus and sacrifice by cervical spinal cord transection the hypothalamus rapidly dissected, and stored at -80 degrees C for later analysis of norepinephrine, dopamine, serotonin and hydroxyindole acetic acid. Compared to the administration of saline, 5-HTP caused a significant increase in the hypothalamic content of serotonin, and norepinephrine, at both gestational ages. 5-hydroxyindole acetic acid increased significantly only in the older fetuses. These results indicate that serotonin may not be the only neurotransmitter active in the growth hormone response to 5-HTP.  相似文献   

13.
Skolnick P  Popik P  Janowsky A  Beer B  Lippa AS 《Life sciences》2003,73(25):3175-3179
The majority of antidepressants in current use selectively inhibit the reuptake of serotonin and/or norepinephrine. "Broad spectrum" antidepressants are compounds that inhibit the reuptake of norepinephrine, serotonin and dopamine, the three biogenic amines most closely linked to depression. The pharmacological profile of one such compound has recently been described (European Journal of Pharmacology, 461 (2003) 99). DOV 21,947, an azabicyclo[3.1.0]hexane, potently inhibits norepinephrine, serotonin and dopamine reuptake by the corresponding human transporter proteins. DOV 21,947 is orally active in the forced swim and tail suspension tests, preclinical procedures that are highly predictive of antidepressant action in patients. A closely related compound, DOV 216,303 is safe and well-tolerated in Phase I studies. The plasma concentrations of DOV 216,303 following both single and multiple doses appear sufficient to inhibit norepinephrine, serotonin, and dopamine reuptake. Based on the pivotal role proposed for dopamine in depression, it has been hypothesized that a broad spectrum antidepressant will produce a more rapid onset and/or higher efficacy than agents inhibiting the reuptake of serotonin and/or norepinephrine.  相似文献   

14.
Experiments were conducted in trained, conscious dogs fitted with an indwelling portal catheter. Radioenzymatic methods were employed for the quantitative measurement of plasma-free serotonin and catecholamines. An injection of ovine growth hormone (GH, 100 micrograms/kg) or an equimolar amount of somatostatin (somatotropin release inhibitory factor, SRIF, 7.5 micrograms/kg) into a saphenous vein led, within the first 15 min, to a transient but significant increase in plasma serotonin and a decrease in the concentrations of dopamine, norepinephrine, and epinephrine. The changes were frequently in excess of 40% of baseline values, and were found only in the portal and not in the peripheral circulation. When the animals were pretreated with an antiserum specifically directed against SRIF, GH surges no longer caused alterations in the portal levels of biogenic amines. Thus, the effects of spike concentrations of GH on plasma serotonin and catecholamines are apparently mediated by SRIF, a novel and unexpected function for a hormone that is known as an inhibitor of GH secretion.  相似文献   

15.
We studied the effect of local administration of nicotine on the release of monoamines in striatum, substantia nigra, cerebellum, hippocampus, cortex (frontal, cingulate), and pontine nucleus and on the release of glutamic acid in striatum of rats in vivo, using microdialysis for nicotine administration and for measuring extracellular amine and glutamic acid levels. Following nicotine administration the extracellular concentration of dopamine, increased in all regions except cerebellum; serotonin increased in cingulate and frontal cortex; and norepinephrine increased in substantia nigra, cingulate cortex, and pontine nucleus. Cotinine, the major nicotine metabolite, had no effect at similar concentrations. The cholinergic antagonists mecamylamine and atropine, the dopaminergic antagonists haloperidol and sulpiride, and the excitatory amino acid antagonist kynurenic acid all inhibited the nicotine-induced increase of extracellular dopamine in the striatum. The fact that kynurenic acid almost completely prevented the effects of nicotine, and nicotine at this concentration produced a 6-fold increase of glutamic acid release, suggests that the effect of nicotine is mainly mediated via glutamic acid release.  相似文献   

16.
Recent clinical studies suggest that 5-HT(1A) receptor agonists, including buspirone, may have an antidepressant effect and potentiate the efficacy of selective serotonin reuptake inhibitors (SSRI) in major depressive disorders. In the present study, we investigated the effect of tandospirone, a highly potent and selective 5-HT(1A) receptor agonist, on dopamine release and potentiation of fluoxetine-induced dopamine outflow in the medial frontal cortex using microdialysis in freely moving rats. Intraperitoneal injection of tandospirone (5 mg/kg) increased dopamine release to about 190% of basal levels. Pretreatment with the selective 5-HT(1A) receptor antagonist, WAY 100635 (1mg/kg), blocked the effect of tandospirone. Local application of WAY 100635 (10 microM) via microdialysis probe antagonized the increase in dopamine release in the medial frontal cortex induced by systemic injection of tandospirone. Fluoxetine (10 mg/kg) also increased dopamine release in the medial frontal cortex, to 200% of basal levels, and the simultaneous administration of tandospirone and fluoxetine increased the release to 380%. These results indicate that tandospirone potentiates the fluoxetine-induced increase in dopamine release via 5-HT(1A) receptors in the rat medial frontal cortex, and suggest that tandospirone may have therapeutic potential for the treatment of depression.  相似文献   

17.
Involvement of nitric oxide (NO) in the episodic secretion of prolactin was studied in conscious freely moving adult rats. Prolactin secretion was pulsatile in all animals of either group during the bleeding period (from 10:30 h to 13:30 h). Administration of N(omega)-nitro-L-arginine methyl ester (L-NAME), a NO synthase inhibitor, increased mean plasma levels of prolactin, and the absolute amplitude of prolactin peaks during the whole bleeding period as compared to values found in the control group. L-NAME increased norepinephrine (170%), dopamine (58.27%) and serotonin contents (30%) in the anterior hypothalamus. In the median eminence, dopamine and serotonin contents decreased (19.79% and 33.9% respectively) after L-NAME as compared to the values found in controls. In addition, norepinephrine content increased in mediobasal hypothalamus (79.6%) of rats treated with L-NAME. The results indicate that changes in NO production may modify the episodic secretion of prolactin. These effects were associated with changes in hypothalamic and median eminence biogenic amines.  相似文献   

18.
A series of 3-(arylamino)-3-phenylpropan-2-olamines was prepared and screened for their ability to inhibit monoamine reuptake. A number of analogues displayed significant dual norepinephrine and serotonin reuptake inhibition. Compounds in this class exhibited minimal affinity for the dopamine transporter.  相似文献   

19.
1. The molecular and behavioral pharmacology of DOV 102,677 is characterized. 2. This characterization was performed using radioligand binding and neurotransmitter uptake assays targeting the monoamine neurotransmitter receptors. In addition, the effects of DOV 102,677 on extracellular neurotransmitter levels were investigated using in vivo microdialysis. Finally, the effects of DOV 102,677 in the forced swim test, locomotor function, and response to prepulse inhibition was investigated.3. DOV 102,677 is a novel, "triple" uptake inhibitor that suppresses [(3)H]dopamine (DA), [(3)H]norepinephrine (NE) and [(3)H]serotonin (5-HT) uptake by recombinant human transporters with IC(50) values of 129, 103 and 133 nM, respectively. Radioligand binding to the dopamine (DAT), norepinephrine (NET), and serotonin (SERT) transporters is inhibited with k (i) values of 222, 1030, and 740 nM, respectively. DOV 102,677 (20 mg/kg IP) increased extracellular levels of DA and 5-HT in the prefrontal cortex to 320 and 280% above baseline 100 min after administration. DA levels were stably increased for the duration (240 min) of the study, but serotonin levels declined to baseline by 200 min after administration. NE levels increased linearly to a maximum of 348% at 240 min post-dosing. Consistent with these increases in NE levels, the density of beta-adrenoceptors was selectively decreased in the cortex of rats treated with DOV 102,677 (20 mg/kg per day, PO, 35 days). 4. DOV 102,677 dose-dependently reduced the amount of time spent immobile by rats in the forced swim test, a model predictive of antidepressant activity, with a minimum effective dose (MED) of 20 mg/kg and a maximal efficacy comparable to imipramine. This decrease in immobility time did not appear to result from increased motor activity. Further, DOV 102,677 was as effective as methylphenidate in reducing the amplitude of the startle response in juvenile mice, without notably altering motor activity. 5. In summary, DOV 102,677 is an orally active, "balanced" inhibitor of DAT, NET and SERT with therapeutic versatility in treating neuropsychiatric disorders beyond depression.  相似文献   

20.
1. The aim of the present work is to demonstrate the interaction between the glutamatergic/NMDA and dopaminergic systems in the medial zona incerta on the control of luteinizing hormone and prolactin secretion and the influence of reproductive hormones. 2. Proestrus and ovariectomized rats were primed with estrogen and progesterone to induce high or low levels of luteinizing hormone and prolactin. 2-Amino-7-phosphonoheptanoic acid, an NMDA receptor antagonist, and dopamine were injected in the medial zona incerta. Blood samples were withdrawn every hour between 1,600 and 2,000 hours or 2,200 hours via intracardiac catheter from conscious rats. Additional groups of animals injected with the NMDA receptor antagonist were killed 1 or 4 h after injection. Dopamine and its metabolite 3,4-dihydroxyphenylacetic acid were measured in different hypothalamic regions. 3. 2-Amino-7-phosphonoheptanoic acid blocked the ovulatory luteinizing hormone surge in proestrus rats. 2-Amino-7-phosphonoheptanoic acid also blocked the increase in luteinizing hormone induced by ovarian hormones in ovariectomized rats, an effect that was partially reversed by dopamine injection. Conversely, the increased release of luteinizing hormone and prolactin induced by dopamine was prevented by 2-amino-7-phosphonoheptanoic acid. We found that the NMDA antagonist injection decreased the dopaminergic activity--as evaluated by the 3,4-dihydroxyphenylacetic acid/dopamine ratio--in the medio basal hypothalamus and increased in the preoptic area. 4. Our results show an stimulatory role of NMDA receptors on the ovulatory luteinizing hormone release and on luteinizing hormone release induced by sexual hormones and demonstrate that the stimulatory effect of dopamine on luteinizing hormone and prolactin is mediated by the NMDA receptors. These results suggest a close interaction between the glutamatergic and dopaminergic incertohypothalamic systems on the control of luteinizing hormone and prolactin release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号