首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The structure of aggregates formed due to DNA interaction with dioleoylphosphatidylcholine (DOPC) vesicles in presence of Ca2+ and Mg2+ cations was investigated using synchrotron small-angle X-ray diffraction. For DOPC/DNA = 1:1 mol/base and in the range of concentration of the cation2+ 0-76.5 mM, the diffractograms show the coexistence of two lamellar phases: Lx phase with repeat distance dLx ∼ 8.26-7.39 nm identified as a phase where the DNA strands are intercalated in water layers between adjacent lipid bilayers, and LDOPC phase with repeat distance dDOPC ∼ 6.45-5.65 nm identified as a phase of partially dehydrated DOPC bilayers without any divalent cations and DNA strands. The coexistence of these phases was investigated as a function of DOPC/DNA molar ratio, length of DNA fragments and temperature. If the amount of lipid increases, the fraction of partially dehydrated LDOPC phase is limited, depends on the portion of DNA in the sample and also on the length of DNA fragments. Thermal behaviour of DOPC + DNA + Ca2+ aggregates was investigated in the range 20-80 °C. The transversal thermal expansivities of both phases were evaluated.  相似文献   

2.
We investigate the structure of aggregates formed due to DNA interaction with saturated neutral phosphatidylcholines [dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine] in presence of Ca2+ and Mg2+ cations using simultaneous synchrotron small- and wide-angle X-ray diffractions. For DPPC:DNA = 3:1 mol/base and in the range of 1–50 mM Ca2+, the diffractograms show structural heterogeneity of aggregates. We observe the coexistence of two lamellar phases in aggregates prepared at 1 mM Ca2+: Lx phase with the DNA strands (of unknown organization) intercalated in water layers between adjacent lipid bilayers and LDPPC phase of DPPC bilayers without any divalent cations and DNA strands. Aggregates prepared in the range 2–50 mM Ca2+ show a condensed gel lamellar phase Lgc with the lipid bilayer periodicity d ≈ 8.0 nm, and the DNA–DNA interhelical distance d DNA ≈ 5.1 nm. The increase of temperature induces the decrease in the intensity and the increase in the width of the DNA related peak. In the fluid state, the condensed lamellar phase Lαc gradually converts into Lx phase. The aggregates do not exhibit rippled Pβ phase. The thermal behaviour of aggregates was investigated in the range 20–80°C. Applying heating–cooling cycles, the aggregates converted into energetically more favourable structure: a condensed lamellar phase Lc (or Lx) is preserved or we observe lateral segregation of the DNA strands and metal cations (Lx phase) in coexistence with LPC phase of pure phospholipids. Dedicated to Prof. Dr Klaus Arnold on the occasion of his 65th birthday.  相似文献   

3.
The thermotropic phase behavior of hydrated bilayers derived from binary mixtures of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG) was investigated by differential scanning calorimetry, Fourier-transform infrared spectroscopy and 31P-nuclear magnetic resonance spectroscopy. Binary mixtures of DMPC and DMPG that have not been annealed at low temperatures exhibit broad, weakly energetic pretransitions (∼11-15 °C) and highly cooperative, strongly energetic gel/liquid-crystalline phase transitions (∼23-25 °C). After low temperature incubation, these mixtures also exhibit a thermotropic transition form a lamellar-crystalline to a lamellar gel phase at temperatures below the onset of the gel/liquid-crystalline phase transition. The midpoint temperatures of the pretransitions and gel/liquid-crystalline phase transitions of these lipid mixtures are both maximal in mixtures containing ∼30 mol% DMPG but the widths and enthalpies of the same thermotropic events exhibit no discernable composition dependence. In contrast, thermotropic transitions involving the Lc phase exhibit a very strong composition dependence, and the midpoint temperatures and transition enthalpies are both maximal with mixtures containing equimolar amounts of the two lipids. Our spectroscopic studies indicate that the Lc phases formed are structurally similar as regards their modes of hydrocarbon chain packing, interfacial hydration and hydrogen-bonding interactions, as well as the range and amplitudes of the reorientational motions of their phosphate headgroups. Our results indicate that although DMPC and DMPG are highly miscible, their mixtures do not exhibit ideal mixing. We attribute the non-ideality in their mixing behavior to the formation of preferential PC/PG contacts in the Lc phase due to the combined effects of steric crowding of the DMPC headgroups and charge repulsion between the negatively charged DMPG molecules.  相似文献   

4.
The physiological transient complex between cytochrome f (Cf) and cytochrome c6 (Cc6) from the cyanobacterium Nostoc sp. PCC 7119 has been analysed by NMR spectroscopy. The binding constant at low ionic strength is 8 ± 2 mM−1, and the binding site of Cc6 for Cf is localized around its exposed haem edge. On the basis of the experimental data, the resulting docking simulations suggest that Cc6 binds to Cf in a fashion that is analogous to that of plastocyanin but differs between prokaryotes and eukaryotes.  相似文献   

5.
A new synthetic route to the known tripodal tetradentate N3O ligand L1 (HL1 = [N-(3,5-di-tert-butyl-2-hydroxybenzyl)-N,N-di-(2-pyridylmethyl)]amine) is reported. The related compounds HLn (n = 2, 3) were prepared by a similar procedure. Treatment of HLn (n = 1-3) with FeCl3·6H2O in hot methanol led to the mononuclear iron(III) complexes [Fe(Ln)Cl2] (1: n = 1, 2: n = 2, 3: n = 3). The solid-state structures of complexes 1 and 2 were determined by X-ray crystallography. [Fe(L1)Cl2] (1) showed effective nuclease activity in the presence of hydrogen peroxide, converting supercoiled plasmid DNA to its linear form.  相似文献   

6.
It is well known that efficient functioning of photosynthetic (PET) and respiratory electron transport (RET) in cyanobacteria requires the presence of either cytochrome c6 (Cytc6) or plastocyanin (PC). By contrast, the interaction of an additional redox carrier, cytochrome cM (CytcM), with either PET or RET is still under discussion. Here, we focus on the (putative) role of CytcM in cyanobacterial respiration. It is demonstrated that genes encoding the main terminal oxidase (cytochrome c oxidase, COX) and cytochrome cM are found in all 44 totally or partially sequenced cyanobacteria (except one strain). In order to check whether CytcM can act as electron donor to COX, we investigated the intermolecular electron transfer kinetics between CytcM and the soluble CuA domain (i.e. the donor binding and electron entry site) of subunit II of COX. Both proteins from Synechocystis PCC6803 were expressed heterologously in E. coli. The forward and the reverse electron transfer reactions were studied yielding apparent bimolecular rate constants of (2.4 ± 0.1) × 105 M− 1 s− 1 and (9.6 ± 0.4) × 103 M− 1 s− 1 (5 mM phosphate buffer, pH 7, 50 mM KCl). A comparative analysis with Cytc6 and PC demonstrates that CytcM functions as electron donor to CuA as efficiently as Cytc6 but more efficient than PC. Furthermore, we demonstrate the association of CytcM with the cytoplasmic and thylakoid membrane fractions by immunobloting and discuss the potential role of CytcM as electron donor for COX under stress conditions.  相似文献   

7.
The transient electron transfer (ET) interactions between cytochrome c1 of the bc1-complex from Paracoccus denitrificans and its physiological redox partners cytochrome c552 and cytochrome c550 have been characterized functionally by stopped-flow spectroscopy. Two different soluble fragments of cytochrome c1 were generated and used together with a soluble cytochrome c552 module as a model system for interprotein ET reactions. Both c1 fragments lack the membrane anchor; the c1 core fragment (c1CF) consists of only the hydrophilic heme-carrying domain, whereas the c1 acidic fragment (c1AF) additionally contains the acidic domain unique to P. denitrificans. In order to determine the ionic strength dependencies of the ET rate constants, an optimized stopped-flow protocol was developed to overcome problems of spectral overlap, heme autoxidation and the prevalent non-pseudo first order conditions. Cytochrome c1 reveals fast bimolecular rate constants (107 to 108 M− 1 s− 1) for the ET reaction with its physiological substrates c552 and c550, thus approaching the limit of a diffusion-controlled process, with 2 to 3 effective charges of opposite sign contributing to these interactions. No direct involvement of the N-terminal acidic c1-domain in electrostatically attracting its substrates could be detected. However, a slight preference for cytochrome c550 over c552 reacting with cyochrome c1 was found and attributed to the different functions of both cytochromes in the respiratory chain of P. denitrificans.  相似文献   

8.
The present study shows that small admixtures of one chlorophyll a (Chla) molecule per several hundred lipid molecules have strong destabilizing effect on lipid bilayers. This effect is clearly displayed in the properties of the Lα-HII transformations and results from a Chla preference for the HII relative to the Lα phase. Chla disfavors the lamellar liquid crystalline phase Lα and induces its replacement with inverted hexagonal phase HII, as is consistently demonstrated by DSC and X-ray diffraction measurements on phosphatidylethanolamine (PE) dispersions. Chla lowers the Lα-HII transition temperature (42 °C) of the fully hydrated dipalmitoleoyl PE (DPoPE) by ∼ 8 °C and ∼ 17 °C at Chla/DPoPE molar ratios of 1:500 and 1:100, respectively. Similar Chla effect was recorded also for dielaidoyl PE dispersions. The lowering of the transition temperature and the accompanying significant loss of transition cooperativity reflect the Chla repartitioning and preference for the HII phase. The reduction of the HII phase lattice constant in the presence of Chla is an indication that Chla favors HII phase formation by decreasing the radius of spontaneous monolayer curvature, and not by filling up the interstitial spaces between the HII phase cylinders. The observed Chla preference for HII phase and the substantial bilayer destabilization in the vicinity of a bilayer-to-nonbilayer phase transformation caused by low Chla concentrations can be of interest as a potential regulatory or membrane-damaging factor.  相似文献   

9.
Recently, DHSM, a minor constituent in naturally occurring SMs, was indicated to form a raft-like ordered phase more effectively than a naturally occurring form of SM because DHSM has greater potential to induce the intermolecular hydrogen bond. In order to examine the influence of the DHSM-induced hydrogen bond on the phase segregation, the thermal phase behavior of stearoyl-DHSM/DOPC binary bilayers was examined using calorimetry and fluorescence observation and compared with that of SSM/DOPC binary bilayers. Results revealed that the DHSM/DOPC bilayers undergo phase segregation between two Lα phases within a limited compositional range. On the other hand, apparent phase separation was not observed above main transition temperature in SSM/DOPC mixtures. Our monolayer measurements showed that the lipid packing of DHSM is less perturbed than that of SSM by the addition of small amount of DOPC, indicating a stronger hydrogen bond between DHSM molecules. Therefore, in DHSM/DOPC binary bilayers, DHSM molecules may locally accumulate to form a DHSM-rich domain due to a DHSM-induced hydrogen bond. On the other hand, excess accumulation of DHSM should be prevented because the difference in the curvature between DHSM and DOPC assemblies causes elastic constraint at the domain boundary between the DHSM-rich and DOPC-rich domains. Competition between the energetic advantages provided by formation of the hydrogen bond and the energetic disadvantage conferred by elastic constraints likely results in Lα/Lα phase separation within a limited compositional range.  相似文献   

10.
The present study aims at a better understanding of the mechanism of transfection mediated by two sugar-based gemini surfactants GS1 and GS2. Previously, these gemini surfactants have been shown to be efficient gene vectors for transfection both in vitro and in vivo. Here, using Nile Red, a solvatochromic fluorescent probe, we investigated the phase behavior of these gemini surfactants in complexes with plasmid DNA, so-called lipoplexes. We found that these lipoplexes undergo a lamellar-to-non-inverted micellar phase transition upon decreasing the pH from neutral to mildly acidic. This normal (non-inverted) phase at acidic pH is confirmed by the colloidal stability of the lipoplexes as shown by turbidity measurements. We therefore propose a normal hexagonal phase, HI, for the gemini surfactant lipoplexes at acidic endosomal pH. Thus, we suggest that besides an inverted hexagonal (HII) phase as reported for several transfection-potent cationic lipid systems, another type of non-inverted non-bilayer structure, different from HII, may destabilize the endosomal membrane, necessary for cytosolic DNA delivery and ultimately, cellular transfection.  相似文献   

11.
In the search for new therapeutic tools against tuberculosis two novel iron complexes, [Fe(L-H)3], with 3-aminoquinoxaline-2-carbonitrile N1,N4-dioxide derivatives (L) as ligands, were synthesized, characterized by a combination of techniques, and in vitro evaluated. Results were compared with those previously reported for two analogous iron complexes of other ligands of the same family of quinoxaline derivatives. In addition, the complexes were studied by cyclic voltammetry and EPR spectroscopy. Cyclic voltammograms of the iron compounds showed several cathodic processes which were attributed to the reduction of the metal center (Fe(III)/Fe(II)) and the coordinated ligand. EPR signals were characteristic of magnetically isolated high-spin Fe(III) in a rhombic environment and arise from transitions between mS = ± 1/2 (geff ~ 9) or mS = ± 3/2 (geff ~ 4.3) states. Mössbauer experiments showed hyperfine parameters that are typical of high-spin Fe(III) ions in a not too distorted environment. The novel complexes showed in vitro growth inhibitory activity on Mycobacterium tuberculosis H37Rv (ATCC 27294), together with very low unspecific cytotoxicity on eukaryotic cells (cultured murine cell line J774). Both complexes showed higher inhibitory effects on M. tuberculosis than the “second-line” therapeutic drugs.  相似文献   

12.
The reaction center-light harvesting complex 1 (RC-LH1) purified from the photosynthetic bacterium Rhodobacter sphaeroides has been studied with respect to the kinetics of charge recombination and to the phospholipid and ubiquinone (UQ) complements tightly associated with it. In the antenna-RC complexes, at 6.5 < pH < 9.0, P+QB recombines with a pH independent average rate constant <k> more than three times smaller than that measured in LH1-deprived RCs. At increasing pH values, for which <k> increases, the deceleration observed in RC-LH1 complexes is reduced, vanishing at pH > 11.0. In both systems kinetics are described by a continuous rate distribution, which broadens at pH > 9.5, revealing a strong kinetic heterogeneity, more pronounced in the RC-LH1 complex. In the presence of the antenna the QAQB state is stabilized by about 40 meV at 6.5 < pH < 9.0, while it is destabilized at pH > 11. The phospholipid/RC and UQ/RC ratios have been compared in chromatophore membranes, in RC-LH1 complexes and in the isolated peripheral antenna (LH2). The UQ concentration in the lipid phase of the RC-LH1 complexes is about one order of magnitude larger than the average concentration in chromatophores and in LH2 complexes. Following detergent washing RC-LH1 complexes retain 80-90 phospholipid and 10-15 ubiquinone molecules per monomer. The fractional composition of the lipid domain tightly bound to the RC-LH1 (determined by TLC and 31P-NMR) differs markedly from that of chromatophores and of the peripheral antenna. The content of cardiolipin, close to 10% weight in chromatophores and LH2 complexes, becomes dominant in the RC-LH1 complexes. We propose that the quinone and cardiolipin confinement observed in core complexes reflects the in vivo heterogeneous distributions of these components. Stabilization of the charge separated state in the RC-LH1 complexes is tentatively ascribed to local electrostatic perturbations due to cardiolipin.  相似文献   

13.
The kinetics of the cytochrome (cyt) components of the bc1 complex (ubiquinol: cytochrome c oxidoreductase, Complex III) are traditionally followed by using the difference of absorbance changes at two or more different wavelengths. However, this difference-wavelength (DW) approach is of limited accuracy in the separation of absorbance changes of components with overlapping spectral bands. To resolve the kinetics of individual components in Rhodobacter sphaeroides chromatophores, we have tested a simplified version of a least squares (LS) analysis, based on measurement at a minimal number of different wavelengths. The success of the simplified LS analysis depended significantly on the wavelengths used in the set. The “traditional” set of 6 wavelengths (542, 551, 561, 566, 569 and 575 nm), normally used in the DW approach to characterize kinetics of cyt ctot (cyt c1 + cyt c2), cyt bL, cyt bH, and P870 in chromatophores, could also be used to determine these components via the simplified LS analysis, with improved resolution of the individual components. However, this set is not sufficient when information about cyts c1 and c2 is needed. We identified multiple alternative sets of 5 and 6 wavelengths that could be used to determine the kinetics of all 5 components (P870 and cyts c1, c2, bL, and bH) simultaneously, with an accuracy comparable to that of the LS analysis based on a full set of wavelengths (1 nm intervals). We conclude that a simplified version of LS deconvolution based on a small number of carefully selected wavelengths provides a robust and significant improvement over the traditional DW approach, since it accounts for spectral interference of the different components, and uses fewer measurements when information about all five individual components is needed. Using the simplified and complete LS analyses, we measured the simultaneous kinetics of all cytochrome components of bc1 complex in the absence and presence of specific inhibitors and found that they correspond well to those expected from the modified Q-cycle. This is the first study in which the kinetics of all cytochrome and reaction center components of the bc1 complex functioning in situ have been measured simultaneously, with full deconvolution over an extended time range.  相似文献   

14.
The orthorhombically crystallizing salts Rb2[B12(OH)12]·2H2O (= 1576.81(9), b = 813.08(5), c = 1245.32(7) pm) and Rb2[B12(OH)12]·2H2O2 (= 1616.54(9), b = 814.29(5), c = 1260.12(7) pm) could be prepared from Rb2[B12H12] and hydrogen peroxide. Both crystal structures were determined by X-ray single crystal diffraction and refined in the space group Cmce. They are not isostructural to the other compounds containing icosahedral dodecahydroxo-closo-dodecaborate dianions [B12(OH)12]2− and potassium, rubidium or cesium cations already known to literature, but both title compounds crystallize quasi-isotypically exhibiting Rb+ cations in 10-fold oxygen coordination. The hydrogen peroxide adduct (Rb2[B12(OH)12]·2H2O2) is explosive on shock and heat, while the hydrate (Rb2[B12(OH)12]·2H2O) is not.  相似文献   

15.
This study clarifies the membrane disruption mechanisms of two bacterial RTX toxins: αhemolysin (HlyA) from Escherichia coli and a highly homologous adenylate cyclase toxin (CyaA) from Bordetella pertussis. For this purpose, we employed a fluorescence requenching method using liposomes (extruded through filters of different pore size — 1000 nm, 400 nm or 100 nm) with encapsulated fluorescent dye/quencher pair ANTS/DPX. We showed that both toxins induced a graded leakage of liposome content with different selectivities α for DPX and ANTS. In contrast to HlyA, CyaA exhibited a higher selectivity for cationic quencher DPX, which increased with vesicle diameter. Large unilamellar vesicles (LUV1000) were found to be more suitable for distinguishing between high α values whereas smaller ones (LUV100) were more appropriate for discriminating an all-or-none leakage (α = 0) from the graded leakage with low values of α. While disrupting LUV1000, CyaA caused a highly cation-selective leakage (α ~ 15) whereas its mutated form with decreased channel K+/Cl selectivity due to two substitutions in a predicted transmembrane segment (CyaA-E509K + E516K) exhibited much lower selectivity (α ∼ 6). We concluded that the fluorescence requenching method in combination with different size of liposomes is a valuable tool for characterization of pore-forming toxins and their variants.  相似文献   

16.
In an unusual reaction of [RuIII(acac)2(CH3CN)2](ClO4) ([1], acac = acetylacetonate) and aniline (Ph-NH2), resulted in the formation of ortho-semidine due to dimerisation of aniline via oxidative ortho-Carom-N bond formation reaction. This oxidation reaction is associated with stepwise chlorination of coordinated acac ligands at the γ-carbon atom resulting in the formation of [RuIII(acac)2L] [2a], [RuIII(Cl-acac)(acac)L] [2b], [RuIII(acac)(Cl-acac)L] [2c] and [RuIII(Cl-acac)2L] [2d] (L = N-phenyl-ortho-semiquinonediimine) complexes, respectively. These have been characterized by 1H NMR, UV-Vis-NIR, ESI-MS and cyclic voltammetry studies. Single crystal X-ray structures of 2c and 2d are reported. Crystallographic structural bond parameters of 2c and 2d revealed bond length equalization of C-C, C-O and M-O bonds. It has been shown that perchlorate () counter anion, present in the starting ruthenium complex, acts as the oxidizing agent in bringing about oxidation of Ph-NH2 to ortho-semidine. The chloronium ions, produced in situ, chlorinate the coordinated acac ligands at the γ-carbon atom. Such electrophilic substitution of coordinated acac ligands indicates that the Ru-acac metallacycles in the reference compounds are aromatic. The complexes showed an intense and featureless band centered near 520 nm, and a structured band near 275 nm. These displayed one reversible cathodic response in the range, −1.1 to −0.8 V and one reversible anodic response between 0.4 and 0.6 V versus the Saturated Calomel reference Electrode, SCE. The response at the anodic potential is due to oxidation of the coordinated ligand L, while the reversible response at cathodic potential is due to reduction of the metal center.  相似文献   

17.
In this work the presence of inverted hexagonal phases HII of 1-palmitoy-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and cardiolipin (CL) (0.8:0.2, mol/mol) in the presence of Ca2+ were observed via 31P-NMR spectroscopy. When suspensions of the same composition were extended onto mica, HII phases transformed into structures which features are those of supported planar bilayers (SPBs). When characterized by atomic force microscopy (AFM), the SPBs revealed the existence of two laterally segregated domains (the interdomain height being ∼ 1 nm). Cytochrome c (cyt c), which binds preferentially to acidic phospholipids like CL, was used to demonstrate the nature of the domains. We used 1-anilinonaphtalen-8-sulfonate (ANS) to demonstrate that in the presence of cyt c, the fluorescence of ANS decreased significantly in lamellar phases. Conversely, the ANS binding to HII phases was negligible. When cyt c was injected into AFM fluid imaging cells, where SPBs of POPE:CL had previously formed poorly defined structures, protein aggregates (∼ 100 nm diameter) were ostensibly observed only on the upper domains, which suggests not only that they are mainly formed by CL, but also provides evidence of bilayer formation from HII phases. Furthermore, a model for the nanostructure of the SPBs is herein proposed.  相似文献   

18.
Absorbance difference spectroscopy and redox titrations have been applied to investigate the properties of photosystem I from the chlorophyll d containing cyanobacterium Acaryochloris marina. At room temperature, the (P740+ − P740) and (FA/B − FA/B) absorbance difference spectra were recorded in the range between 300 and 1000 nm while at cryogenic temperatures, (P740+A1 − P740A1) and (3P740 − P740) absorbance difference spectra have been measured. Spectroscopic and kinetic evidence is presented that the cofactors involved in the electron transfer from the reduced secondary electron acceptor, phylloquinone (A1), to the terminal electron acceptor and their structural arrangement are virtually identical to those of chlorophyll a containing photosystem I. The oxidation potential of the primary electron donor P740 of photosystem I has been reinvestigated. We find a midpoint potential of 450 ± 10 mV in photosystem I-enriched membrane fractions as well as in thylakoids which is very similar to that found for P700 in chlorophyll a dominated organisms. In addition, the extinction difference coefficient for the oxidation of the primary donor has been determined and a value of 45,000 ± 4000 M− 1 cm− 1 at 740 nm was obtained. Based on this value the ratio of P740 to chlorophyll is calculated to be 1:~ 200 chlorophyll d in thylakoid membranes. The consequences of our findings for the energetics in photosystem I of A. marina are discussed as well as the pigment stoichiometry and spectral characteristics of P740.  相似文献   

19.
The binding affinity of the two substrate–water molecules to the water-oxidizing Mn4CaO5 catalyst in photosystem II core complexes of the extremophilic red alga Cyanidioschyzon merolae was studied in the S2 and S3 states by the exchange of bound 16O-substrate against 18O-labeled water. The rate of this exchange was detected via the membrane-inlet mass spectrometric analysis of flash-induced oxygen evolution. For both redox states a fast and slow phase of water-exchange was resolved at the mixed labeled m/z 34 mass peak: kf = 52 ± 8 s− 1 and ks = 1.9 ± 0.3 s− 1 in the S2 state, and kf = 42 ± 2 s− 1 and kslow = 1.2 ± 0.3 s− 1 in S3, respectively. Overall these exchange rates are similar to those observed previously with preparations of other organisms. The most remarkable finding is a significantly slower exchange at the fast substrate–water site in the S2 state, which confirms beyond doubt that both substrate–water molecules are already bound in the S2 state. This leads to a very small change of the affinity for both the fast and the slowly exchanging substrates during the S2 → S3 transition. Implications for recent models for water-oxidation are briefly discussed.  相似文献   

20.
Several complexes of TPPMn-L, where TPP is the dianion of tetraphenylporphyrin and L is monoanion of 4-methylphenylcyanamide (4-Mepcyd) (1), 2,4-dimethylphenylcyanamide (2,4-Me2pcyd) (2), 3,5-dimethylphenylcyanamide (3,5-Me2pcyd) (3), 4-methoxyphenylcyanamide (4-MeOpcyd) (4), phenylcyanamide (pcyd) (5), 2-chlorophenylcyanamide (2-Clpcyd) (6), 2,5-dichlorophenylcyanamide (2,5-Cl2pcyd) (7), 2,6-dichlorophenylcyanamide (2,6-Cl2pcyd) (8), 4-bromophenylcyanamide (4-Brpcyd) (9), and 2,3,4,5-tetrachlorophenylcyanamide (2,3,4,5-Cl4pcyd) (10), have been prepared from the reaction of TPPMnCl and thallium salt of related phenylcyanamide. Each of the complexes has been characterized by IR, UV-Vis and 1H NMR spectroscopies.4-Methylphenylcyanamidotetraphenylporphyrin manganese(III) crystallized with one molecule of solvent CHCl3 in the triclinic crystal system and space group with the following unit cell parameters of: a = 11.596(6) Å; b = 11.768(9) Å; c = 17.81(2) Å; and α, β, γ are 88.91(9)°, 88.16(7)°, 67.90(5)°, respectively; V = 2251(3) Å3; Z = 2. A total of 4234 reflections with I > 2σ(I) were used to refine the structure to R = 0.0680 and Rw = 0.2297. The Mn(III) shows slightly distorted square pyramidal coordination with the 4-methylphenylcyanamide in the axial position, coordinated from nitrile nitrogen. The reduction of each of the TPPMn-L complexes was also examined in dichloromethane and spectroelectrochemical behavior of (1) was investigated and compared to TPPMnCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号