首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
北朱雀、燕雀和白腰朱顶雀的能量代谢特征和体温调节   总被引:7,自引:2,他引:5  
本实验采用封闭式流体压力呼吸计 ,测定了环境温度在 5 - 34℃范围内北朱雀 (Carpodacusroseus)、燕雀 (Fringillamontifringilla)和白腰朱顶雀 (Acanthisflammea)的耗氧量、热传导、体温等指标 ,探讨了其代谢产热特征。结果表明 :在环境温度 (Ta)为 5 - 30℃的范围内 ,北朱雀的体温基本维持恒定 ,平均体温为4 0 4 6± 0 1 0℃ ,热中性区为 2 2 5 - 2 7 5℃ ,基础代谢率为 4 30± 0 0 8mlO2 /(g·h) ;环境温度在 5 - 2 0℃范围内 ,代谢率 (MR)与Ta 呈负相关 ,回归方程为MR [mlO2 /(g·h) ]=9 34- 0 2 1Ta (℃ ) ;在此范围内 ,北朱雀的热传导率最低且基本保持恒定 ,平均为 0 2 4± 0 0 0mlO2 /(g·h·℃ )。在环境温度为 5 - 34℃的范围内 ,燕雀的体温基本保持稳定 ,为 4 0 4 0± 0 1 1℃ ,热中性区为 2 5 - 30℃ ,基础代谢率为 4 1 9± 0 0 5mlO2 /(g·h) ;环境温度在 5 - 2 5℃范围内 ,MR与Ta 的回归方程为 :MR [mlO2 / (g·h) ]=1 1 6 4 - 0 2 9Ta (℃ ) ;在 5- 30℃内 ,燕雀的热传导最低 ,平均为 0 2 9± 0 0 1mlO2 / (g·h·℃ )。白腰朱顶雀的热中性区为 2 5 - 2 8℃ ,平均体温为 4 0 4 8± 0 1 1℃ (5 - 34℃ ) ,最低代谢率为 4 4 5± 0 1 4mlO2 / (g·h) ,最低热传导为 0 3  相似文献   

2.
采用封闭式流体压力呼吸计,分别在5-35℃和5-40℃的环境温度范围内测定了白头鹎(Pycnonotussinensis)和丝光椋鸟(Sturnussericeus)的代谢率、热传导和体温等指标,探讨其代谢产热特征。结果显示:在环境温度(Ta)为5-35℃时,白头鹎的体温基本维持恒定,平均温度为40.3±0.1℃,热中性区为26.6-32.8℃,基础代谢率为73.10±4.11mlO2/h,是体重预期值的79%;Ta在5-26℃范围内,代谢率(MR)与Ta呈负相关,回归方程为:MR[mlO2/h]=265.37-7.24Ta(℃);Ta在5-30℃范围内,热传导值最低且基本保持恒定,平均为0.24±0.01mlO2/g·h·℃,是体重预期值的126%。丝光椋鸟的热中性区为27.6-34.5℃,平均体温为40.5±0.1℃(5-40℃),基础代谢率为160.64±9.20mlO2/h,是体重预期值的90%;最低热传导为0.16±0.05mlO2/g·h·℃,是体重预期值的129%。在5-25℃范围内,MR与Ta的回归方程为:MR[mlO2/h]=377.96-7.88Ta(℃)。白头鹎和丝光椋鸟的基本生物学特征为:较高的体温,热传导和上临界温度,较宽的热中性区和较低的代谢率,符合南方小型鸟类的代谢特征.  相似文献   

3.
采用封闭式氧气流体压力呼吸仪和数字式温度计,测定在环境温度(Ta)为0℃、6.5℃、10.5℃、16.5℃、20℃、22.5℃、25℃、27.5℃和30℃时珠颈斑鸠(Streptopelia chinesis)的代谢率(MR)和体温(Tb),由此计算出每个温度点的热传导(C)以及MR和C的体质量预期值等指标,探讨其代谢产热特征。结果表明:在Ta为0℃~30℃时,珠颈斑鸠的体温基本维持恒定,平均体温为(40.7±0.1)℃,热中性区(TNZ)为22.5~27.5℃,基础代谢率为(160.48±6.05)mlO2.h-1,是体质量预期值的65%;Ta在0℃~25℃范围内,热传导值最低且基本保持恒定,平均为(0.07±0.01)mlO2.g-1.h-1.℃-1,是体质量预期值的122%。珠颈斑鸠具有较低的MR,较高的C和Tb,能较好地适应南方较热的气候环境。  相似文献   

4.
内蒙古浑善达克沙地小毛足鼠的能量代谢和体温调节   总被引:7,自引:5,他引:2  
战新梅  王德华 《兽类学报》2004,24(2):152-159
为了解小毛足鼠对沙漠生境的适应特征,对其能量代谢和体温调节特征进行了测定。代谢率采用封闭式流体压力呼吸计测定,非颤抖性产热用皮下注射去甲肾上腺素诱导,能量摄入采用食物平衡法测定。结果显示:小毛足鼠的热中性区为25~33℃,平均体温为35 7±0 1℃,最小热传导率为0 21±0 01mlO2/g·h·℃,基础代谢率为2 61±0 04mlO2/g·h,最大非颤抖性产热为8 53±0 28mlO2/g·h,非颤抖性产热范围(最大非颤抖性产热与基础代谢率的比率)为3 3。基础代谢率和非颤抖性产热都高于以体重为基础的期望值,最小热传导接近期望值。小毛足鼠的摄入能为2 26±0 12kJ/g·d;消化能为2 18±0 13kJ/g·d;消化率为97±0 2%;可代谢能为2 13±0 12kJ/g·d;可代谢能效率为94±1 2%。这些结果表明小毛足鼠对沙地生境的适应特征是:基础代谢率较高,体温相对较低,最小热传导率与期望值相当,热中性区较宽,下临界温度较低;较高的最大非颤抖性产热和非颤抖性产热范围以及较高的食物消化效率。  相似文献   

5.
澳洲塔斯马尼亚霍巴特冬季驯化黄翅澳蜜鸟的代谢率   总被引:2,自引:2,他引:0  
在5-40°C温度范围内, 测定了澳大利亚塔斯马尼亚黄翅澳蜜鸟(Phylidonyris novaehollandiae) (平均体重24 .1 ±0. 27 g) 冬季的耗氧量。结果表明, 热中性区是25-35°C。基础代谢率是4. 92 ±0 .14 ml/g. h,分别比Lasiewski and Dawson (1967) 和Aschoff and Pohl (1970) 基于体重的关于雀型鸟类的期望值高57%和77%。本研究结果同样也比已经报道的分布在澳洲大陆的该物种的代谢率高。  相似文献   

6.
东北地区黑线仓鼠的代谢产热特征及其体温调节   总被引:14,自引:0,他引:14  
为探讨寒冷地区黑线仓鼠 (Cricetulusbarabensis)的代谢产热特征及体温调节 ,本文采用封闭式流体压力呼吸仪对其代谢率、热传导和体温等热生物学指标进行了测定。结果显示 :在环境温度为 5~ 35℃的范围内 ,黑线仓鼠的体温基本维持恒定 ,平均体温为 36 33± 0 2 3℃ ;热中性区为 2 5~ 32 5℃ ;基础代谢率为 3 4 9±0 36mlO2 / (g·h) ;环境温度 (Ta)在 5~ 2 5℃范围内 ,代谢率 (MR)与Ta 呈负相关 ,回归方程为 :MR [mlO2 / (g·h) ]=9 6 0 - 0 2 2Ta (℃ ) ,在此范围内 ,黑线仓鼠的热传导率 (C)最低 ,平均为 0 2 8± 0 0 1mlO2 /(g·h·℃ ) ;代谢预期比和热传导预期比 (F值 )为 1 6 8。黑线仓鼠的基本热生物学特征为 :较高的BMR和热传导率 ,相对较低的体温和较宽的热中性区。这些特征可能限制了其在极端寒冷和干旱环境中的分布和生存.  相似文献   

7.
台湾中部暗绿绣眼鸟的繁殖生物学   总被引:2,自引:0,他引:2  
颜重威  孙清松 《动物学报》2003,49(2):185-190
本研究将暗绿绣眼鸟 (Zosteropsjaponicasimplex)捕捉、套彩色环后释放 ,分别于 1999年和 2 0 0 1年 3~ 8月追踪监测 7对和 13对暗绿绣眼鸟的繁殖行为。总结此二年对 2 0对暗绿绣眼鸟的监测 ,其繁殖期始于 3月中旬 ,终止于 8月下旬。 1对最多可年产 5窝 ,但以 3~ 4窝为常见。初次筑巢所需时间平均为 10 4d ,筑第 2、3巢的时间依次减少 ;窝与窝之间的繁殖间隔视情况而定 ,如孵化或喂养失败 ,通常都在 1~ 2d内再筑巢 ,如繁殖育雏成功 ,平均相隔 7d再筑巢。 2年 6 3窝的窝卵数平均为 2 6 8± 0 71(n =6 3)枚 ;孵化期平均为 11±0 6 4 (n =4 7)d ;6 3窝孵化成功 4 7窝 ,孵化成功率为 74 6 % ;雏鸟离巢日龄平均为 10 5± 0 88(n =35 )d ;4 7窝雏鸟喂养成功 35窝 ,育雏成功率为 74 5 % ;6 3窝繁殖成功 35窝 ,繁殖成功率为 5 5 5 %。失败因素包括气候、动物掠食、人为破坏和其它不明原因  相似文献   

8.
东、黄海春秋季小型底栖生物丰度和生物量研究   总被引:37,自引:6,他引:31  
《北斗号》调查船分别于 2 0 0 0年 10月和 2 0 0 1年 4月在 2 6°N至 36°N,12 0°E至 12 6°30′E东、黄海陆架浅水区调查中进行了小型底栖生物的取样。研究表明 ,两个航次 (秋季、春季 )小型底栖生物的平均丰度分别为 6 5 4 .2 5± 4 4 1.72 ind/10 cm2 和342 .0 0± 2 5 2 .0 0 ind/10 cm- 2 ,平均生物量分别为 80 7.0 6± 5 17.89μg dwt/10 cm2 和 2 85 .2 5± 173.72μg dwt/10 cm2 ;平均生产量分别为 72 6 3.5 8± 4 6 6 4 .18μg dwt/(10 cm2· a)和 2 5 6 7.2 8± 15 6 3.5 0 μg dwt/(10 m2· a)。两个航次小型生物的平面分布类似 ,即高密度和高生物量区分布在水深等深浅 5 0 m左右的站位上 ,特别是在长江口以南的浙江沿海。共鉴定出 14个小型生物类群 ,按丰度自由生活海洋线虫是最优势的类群 ,秋、春季两个航次的优势度分别为 87.2 %和 91.2 %。其他优势类群依次为底栖桡足类、多毛类和动吻类 ;按生物量优势依次为多毛类 38.1%~ 5 4 .0 % ,线虫 2 8.3%~ 38.1%和桡足类 9.0 %~ 9.4 %。垂直分布的研究表明 ,91%的小型生物分布在 0~ 5 cm的表层内 ,线虫和桡足类分布在 0~ 2 cm的比例分别为 6 3%和 86 %。相关分析表明 ,小型底栖生物的数量分布与粘土含量 (% )、粉砂粘土含量 (% )和中值粒  相似文献   

9.
普通朱雀标准代谢率的初步研究   总被引:5,自引:2,他引:3  
以普通朱雀的耗氧量为指标 ,探讨了普通朱雀的能量代谢特征。普通朱雀的热中性区为 2 6.7~3 7.5℃ ,最低标准代谢率为 4 .2 1mlO2 g·h ,最低热传导为 0 .2 4mlO2 g·h·℃。环境温度 (Ta)在 5~ 2 5℃范围内 ,其代谢率与Ta呈负相关 ,回归方程为SMR =8.74 -0 .1 7Ta ,体温稍有降低。Ta超过 3 7.5℃ ,SMR升高。  相似文献   

10.
为了探讨不同日龄幼龄红嘴相思鸟(Leiothrix lutea)小脑皮质的组织学结构变化,分别以1、5、9日龄红嘴相思鸟为研究对象,通过H.E和甲苯胺蓝法进行染色,光镜下观察红嘴相思鸟小脑冠状切面的显微结构。结果显示,1日龄时,小脑皮层由外颗粒层(EGL)、浦肯野细胞层(PCL)和内颗粒层(IGL)3层构成,外颗粒层较厚且清晰,而浦肯野细胞层和内颗粒层界限不清楚;5日龄和9日龄时,小脑皮质均可见外颗粒层、分子层(ML)、浦肯野细胞层和内颗粒层4层结构。对3个日龄红嘴相思鸟小脑皮质各层厚度进行单因素方差分析,随日龄增长,小脑皮质、分子层和内颗粒层厚度极显著增厚(P0.01),浦肯野细胞体积也极显著增加(P0.01);外颗粒层厚度变化不明显(P0.05),呈现先增厚后变薄的趋势,与皮质厚度的比例逐渐减小。研究表明,幼龄红嘴相思鸟在出生后,随日龄增长,小脑皮质层逐渐发育成熟。内颗粒层与外颗粒层的相对变化规律表明,内颗粒层细胞是由外颗粒层迁移而来的。  相似文献   

11.
Luo Y  Yu TL  Huang CM  Zhao T  Li HH  Li CJ 《动物学研究》2011,32(4):396-402
采用封闭式流体压力呼吸仪,在5~35℃的环境温度范围内测定了黑颈长尾雉(Syrmaticushumiae)和白颈长尾雉(Syrmaticusellioti)的代谢率(MR)、热传导(C)和体温(Tb)等指标,探讨了其代谢产热特征。结果显示:黑颈长尾雉和白颈长尾雉的热中性区(TNZ)分别为24.5~31.6℃和23.0~29.2℃。在5~35℃的温度范围内,黑颈长尾雉和白颈长尾雉能保持稳定的体温,分别为(40.47±0.64)和(40.36±0.10)℃;在热中性区内,黑颈长尾雉和白颈长尾雉的平均基础代谢率(BMR)分别为(1.36±0.84)和(2.03±0.12)mLO2/(g.h),分别是体重预期值的77%和86%。在下临界温度以下,黑颈长尾雉和白颈长尾雉的最小热传导分别是(0.12±0.01)和(0.17±0.01)mLO2/(g.h.℃),分别是体重预期值的119%和124%。这两种鸟的生理生态学特征是:黑颈长尾雉和白颈长尾雉都具有较低的代谢率,较高的体温和热传导,能较好地适应南方湿热的气候特征。  相似文献   

12.
高原地区动物面临一系列严峻的生存考验,随着海拔的变化,动物栖息地的食物资源等差异大,温度、氧分压等环境因子都将发生变化.环境差异可能会影响动物种群的生活史对策.在生理功能适应中,动物的能量代谢适应扮演着重要的角色.为探究高原鼠兔(Ochotona curzoniae)在不同海拔地区的能量代谢适应与热中性区范围,分别选取...  相似文献   

13.
Physiological studies often involve the repeated measurement of individuals over a range of ordered categorical conditions, for example, varying ambient temperature. We illustrate here the use of a priori contrasts for multivariate repeated-measures ANOVA by analyzing the thermal responses of various physiological variables for a small marsupial, the dibbler (Parantechinus apicalis). Our analyses showed that dibblers conform closely to the Scholander-Irving model of endothermy. Body temperature was constant at low air temperatures, was 36.3 ± 0.24°C at thermoneutrality (30°C), and increased at 35°C. Metabolic rate decreased with increasing ambient temperature to a basal rate of 0.619 ± 0.036 mL O(2) g(-1) h(-1) at 30°C; it extrapolated closely to thermoneutral body temperature. Increased oxygen demand at lower ambient temperature was met by increased respiratory minute volume, achieved by increased respiratory frequency and tidal volume; oxygen extraction was constant at about 19%. Evaporative water loss and wet and dry thermal conductance increased markedly at high ambient temperatures but not sufficiently to maintain constant body temperature. Relative water economy was similar to that of other small marsupials, increasing linearly at lower air temperatures with a point of relative water economy of 20.3°C. We conclude that a priori contrasts provide a statistically appropriate and powerful analysis that can be used routinely to statistically describe the pattern of response of physiological variables to a categorical factor and are especially useful for repeated-measures ANOVA designs common to many physiological studies.  相似文献   

14.
为探讨北方迁徙性鸟类北红尾鸲(Phoenicurus auroreus)在越冬环境的代谢特征及体温调节,本文采用开放式氧气分析仪和数字式温度测量仪测定了在环境温度(Ta) 5、10、15、20、25、27.5、30、32.5、35、37.5、40℃条件下的代谢率(MR)和体温(Tb),并计算不同温度的热传导(C)。结果表明:在Ta为5~35℃范围内,北红尾鸲的Tb基本维持恒定,平均为40.3±0.1℃;热中性区(TNZ)为25~35℃;基础代谢率(BMR)为50.25±1.35 mL O2·h-1,是Londo1o等(2015)体重预期值的151%;在Ta为5~25℃范围内,MR随Ta的降低而显著增加,回归方程为:MR (m L O2·h-1)=99.65-1.93Ta(r=-0.707,P<0.001);高于35℃时,MR随Ta升高增加;当Ta为40℃时,MR达到59.78±1.31 mL O2·h-1;在Ta为5~25℃范围内,北红尾鸲的C最低且基本保持恒定,为0.17±0.01 mL O2·g-1·h-1·℃-1,是Aschoff(1981)体重预测值的111%;北红尾鸲的基本热生物学特征为较高的Tb、BMR和C以及较宽的TNZ,具有北方地区小型鸟类的代谢特点。  相似文献   

15.
The numbat (Myrmecobius fasciatus) is unique amongst marsupials as it is exclusively diurnal, feeds only on termites and is semi-fossorial. This study examines the thermal and metabolic physiology of the numbat to determine if its physiology reflects its phylogeny, diet and semi-fossorial habit. Numbats (mean adult body mass 552 g) were able to regulate body temperature at ambient temperatures of 15-30 degrees C, with a body temperature at thermoneutrality (30 degrees C) of 34.1 degrees C. The thermoneutral body temperature was not significantly different from that predicted for an equivalent-sized marsupial. Basal metabolic rate, measured at 30 degrees C, was 0.389 +/- 0.025 ml O(2) g(-1) h(-1), and was slightly but not significantly lower at 82.5% of that predicted for a typical marsupial of equivalent body mass. Metabolic rate increased with decreasing ambient temperatures below 30 degrees C. Patterns of metabolic cycling observed for completely inactive numbats at ambient temperatures below 30 degrees C are likely to be related to sleep phase. Wet thermal conductance of 1.94 J g(-1) h(-1) degrees C(-1) (at 30 degrees C) was 131% of that predicted for a marsupial. Evaporative water loss of the numbat remained constant below the thermoneutral zone (<30 degrees C) at approximately 0.6 ml g(-1) h(-1), only 47.4% of that predicted for a marsupial. It increased to 1.01 +/- 0.16 ml g(-1) h(-1) at an ambient temperature of 32.5 degrees C. The thermal and metabolic physiology of the numbat is generally similar to that expected for other marsupials, and is also comparable to that of termitivorous placental mammals. Thus the reduction in body temperature and basal metabolic rate of placental termitivores is a "marsupial-like" low energy turnover physiology, and the numbat being a marsupial already has an appropriate physiology to survive exclusively on a low energy diet of termites.  相似文献   

16.
Although many tropical and subtropical areas experience pronounced seasonal changes in weather and food availability, few studies have examined and none have compared the thermal physiology and energetics of a hibernating mammal that is restricted to these regions. We quantified thermal energetics of northern long-eared bats (Nyctophilus bifax; body mass ~10 g) during summer, winter, and spring from a subtropical habitat, and also during winter from a tropical habitat, to determine how N. bifax cope with climate and seasonal changes in weather. We captured bats in the wild and measured metabolic rates via open-flow respirometry. The basal metabolic rate of subtropical bats at an ambient temperature (T(a)) of 32.6 ± 0.7°C was 1.28 ± 0.06 ml O(2)·g(-1)·h(-1) during both summer and winter, similar to other species of Nyctophilus. Resting metabolic rates below the thermoneutral zone increased similarly with decreasing T(a) during all seasons and in both regions. All individuals showed a high proclivity to enter torpor at T(a) values below the thermoneutral zone. Metabolic rates in torpid thermoconforming bats fell with T(a) and body temperature, and mean minimum metabolic rates during torpor were similar during all seasons and in both regions and as predicted from body mass in temperate zone hibernators. At very low T(a), torpid N. bifax thermoregulated, and this threshold T(a) differed significantly between subtropical (T(a) = 3.5 ± 0.3°C) and tropical (T(a) = 6.7 ± 0.7°C) individuals, but not between seasons. Our data show that thermal energetics of N. bifax do not vary seasonally and in many aspects are similar in tropical and subtropical bats; however, torpid individuals from the subtropics allow body temperature to fall to significantly lower values than those from the tropics.  相似文献   

17.
To quantify the tolerance of summer flounder Paralichthys dentatus to episodic hypoxia, resting metabolic rate, oxygen extraction, gill ventilation and heart rate were measured during acute progressive hypoxia at the fish's acclimation temperature (22° C) and after an acute temperature increase (to 30° C). Mean ±s.e. critical oxygen levels (i.e. the oxygen levels below which fish could not maintain aerobic metabolism) increased significantly from 27 ± 2% saturation (2·0 ± 0·1 mg O(2) l(-1) ) at 22° C to 39 ± 2% saturation (2·4 ± 0·1 mg O(2) l(-1) ) at 30° C. Gill ventilation and oxygen extraction changed immediately with the onset of hypoxia at both temperatures. The fractional increase in gill ventilation (from normoxia to the lowest oxygen level tested) was much larger at 22° C (6·4-fold) than at 30° C (2·7-fold). In contrast, the fractional decrease in oxygen extraction (from normoxia to the lowest oxygen levels tested) was similar at 22° C (1·7-fold) and 30° C (1·5-fold), and clearly smaller than the fractional changes in gill ventilation. In contrast to the almost immediate effects of hypoxia on respiration, bradycardia was not observed until 20 and 30% oxygen saturation at 22 and 30° C, respectively. Bradycardia was, therefore, not observed until below critical oxygen levels. The critical oxygen levels at both temperatures were near or immediately below the accepted 2·3 mg O(2) l(-1) hypoxia threshold for survival, but the increase in the critical oxygen level at 30° C suggests a lower tolerance to hypoxia after an acute increase in temperature.  相似文献   

18.
Rate of metabolism and body temperature were studied between -6°C and 38°C in the common pipistrelle bat Pipistrellus pipistrellus (Vespertilionidae), a European species lying close to the lower end of the mammalian size range (body mass 4.9±0.8g, N=28). Individuals maintained only occasionally a normothermic body temperature averaging 35.4±1.1°C (N=4) and often showed torpor during metabolic runs. The thermoneutral zone was found above 33°C, and basal rate of metabolism averaged 7.6±0.8mL O(2)h(-1) (N=28), which is 69% of the value predicted on the basis of body mass. Minimal wet thermal conductance was 161% of the expected value. During torpor, the rate of metabolism was related exponentially to body temperature with a Q(10) value of 2.57. Torpid bats showed intermittent ventilation, with the frequency of ventilatory cycles increasing exponentially with body temperature. Basal rate of metabolism (BMR) varied significantly with season and body temperature, but not with body mass. It was lower before the hibernation period than during the summer. The patterns observed are generally consistent with those exhibited by other vespertilionids of temperate regions. However, divergences occur with previous measurements on European pipistrelles, and the causes of the seasonal variation in BMR, which has only rarely been searched for among vespertilionids, remain to be examined.  相似文献   

19.
为研究中缅树鼩(Tupaia belangeri)体温、代谢率和蒸发失水的日节律变化,采用植入式体温计测定了中缅树鼩24 h的体温,以及24 h中4个时间段(05:00~07:00时、11:00~13:00时、17:00~19:00时和23:00~01:00时)热中性区(30℃)的静止代谢率(RMR)、非颤抖性产热(NST)和蒸发失水(EWL)。结果显示,中缅树鼩的体温具有日节律变化,最高值和最低值分别出现在11:00时和03:00时,各为(39.45±0.26)℃和(36.34±0.24)℃;静止代谢率、非颤抖性产热和蒸发失水在4个时间段都有显著差异,表现出显著的日节律变化,代谢率在23:00~01:00时最大,O2含量为(2.58±0.04)ml/(g.h),在11:00~13:00时最小,O2含量为(2.28±0.09)ml/(g.h);非颤抖性产热在05:00~07:00时最大,O2含量为(3.08±0.14)ml/(g.h),在11:00~13:00最小,O2含量为(2.69±0.63)ml/(g.h);蒸发失水在17:00~19:00时最大,失水量为(3.60±0.31)mg/(g.h)。结果表明,体温的日节律变化主要与环境温度的日节律变化和下午出窝取食活动性增强有关;当夜晚环境温度相对较低的时候,通过增强静止代谢率和非颤抖性产热来增加产热,而白天环境温度相对较高的时候,通过增强蒸发失水散热来调节体温。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号