首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The CYP2D6 gene codes for a P450 monooxygenase which is involved in the biotransformation of a large number of commonly prescribed drugs. Adverse drug effects and therapeutic failure can be related to abnormal CYP2D6 activity. We investigated the allele and genotype frequencies of cytochrome P4502D6 in a Spanish population to predict the prevalence of ultra-rapid and poor metabolizer phenotypes in our population and to design a feasible CYP2D6 genotyping protocol. The study included 105 healthy unrelated Spanish Caucasian volunteers. CYP2D6 genotyping was performed by a combination of long-PCR, direct sequencing and allele-specific real-time PCR. The frequency of the wild-type CYP2D6*1 allele was 31%. The alleles coding for slightly (CYP2D6*2) or moderately (*9 and *10) reduced activity showed frequencies of 40.47, 2.38 and 1.90%, respectively. Frequencies of defective alleles *3, *4, *5 and *6 were 0.95, 13.8, 3.33 and 0.95%, respectively. The defective CYP2D6 alleles *7, *8, *12, *14, *15 and *21 were not found. Duplicated CYP2D6 alleles were detected at a frequency of 4.27%. Our protocol allows the identification of the four inactive CYP2D6 alleles (*3, *4, *5 and *6) and the detection of alleles with CYP2D6 *1, CYP2D6 *2 and CYP2D6*4 gene duplications. Testing for this reduced CYP2D6 allele set would facilitate its use in clinical practice by assisting in the development of individualized pharmacotherapy.  相似文献   

2.
Four different mutations of the cytochrome P450 CYP2D6 gene associated with the poor metabolizer phenotype (PM) of the debrisoquine/sparteine polymorphism were analyzed by Xba I restriction fragment length polymorphism (RFLP) analysis and a polymerase chain reaction (PCR)-based DNA amplification method in DNA of 394 healthy European subjects; 341 of these were phenotyped by sparteine or debrisoquine administration and urinary metabolic ratios (MR). Our study demonstrates the efficiency of the PCR-test for phenotype prediction; 96.4% of individuals were correctly predicted, i.e., 100% of the extensive metabolizers (EMs) and 86.0% of the poor metabolizers (PMs). In contrast, Xba I RFLP analysis was far less informative, predicting the phenotype in only 26.8% of PMs. By combining both DNA tests, the prediction rate of the PM phenotype increased to 90.6%. A point mutation at a splice-site consensus sequence termed D6-B represented the most common mutant CYP2D6 gene and accounted for more than 75% of mutant alleles. In addition, other known mutations such as D6-D (14%), D6-A (5%), and the rare D6-C mutation bring the identified mutant alleles to greater than 95% of all mutant PM-alleles. Most of Xba I 44-kb alleles were confirmed as mutant alleles carrying the D6-B mutation. However, 9.7% did not have this mutation and may express a functional CYP2D6 gene. Moreover, all Xba I 16 + 9-kb alleles contained the D6-B mutation. Heterozygous EM individuals had a significantly higher MR when compared to homozygous EMs. Genotyping provides an important advantage for investigations of the influence of CYP2D6 activity on drug therapy and its association with certain diseases.  相似文献   

3.
CYP2D6 is a member of cytochrome P450 enzymes that metabolise over 25% of commonly used drugs. Genetic polymorphisms can cause insufficient drug efficacy at usually administered doses or can be the cause of adverse drug reaction. CYP2D6 genotyping can be used to predict CYP2D6 phenotype and thereby explain some abnormalities in drug response and thus optimize pharmacotherapy. The aim of this study was to investigate the frequency of functionally important variant alleles of the CYP2D6 gene throughout the Czech population to predict the prevalence of ultra-rapid and poor metabolizer phenotypes. The DNA of 223 unrelated, healthy volunteers was analysed to detect the presence of CYP2D6*6, *5, *4, *3 and gene duplication. The variant allele frequencies in our population were 0.22%, 3.14%, 22.87%, 1.12% and 3.14% for CYP2D6*6, CYP2D6*5, CYP2D6*4, CYP2D6*3 and CYP2D6*MxN, respectively. Fifteen subjects carried two variant alleles leading to predicted poor type of metabolism, 84 subjects were heterozygous extensive metabolizers (het-EM). The full-text contains detailed comparison with European white populations. The distribution of variant alleles complies with the Hardy-Weinberg equilibrium. The frequencies of functional variant alleles of CYP2D6 in Czech population are in concordance with other Caucasian populations.  相似文献   

4.
Drug metabolizing enzymes participate in the neutralizing of xenobiotics and biotransformation of drugs. Human cytochrome P450, particularly CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5, play an important role in drug metabolism. The genes encoding the CYP enzymes are polymorphic, and extensive data have shown that certain alleles confer reduced enzymatic function. The goal of this study was to determine the frequencies of important allelic variants of CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5 in the Jordanian population and compare them with the frequency in other ethnic groups. Genotyping of CYP1A1(m1 and m2), CYP2C9 (*2 and *3), CYP2C19 (*2 and *3), CYP3A4*5, CYP3A5 (*3 and *6), was carried out on Jordanian subjects. Different variants allele were determined using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). CYP1A1 allele frequencies in 290 subjects were 0.764 for CYP1A1*1, 0.165 for CYP1A1*2A and 0.071 for CYP1A1*2C. CYP2C9 allele frequencies in 263 subjects were 0.797 for CYP2C9*1, 0.135 for CYP2C9*2 and 0.068 for CYP2C9*3. For CYP2C19, the frequencies of the wild type (CYP2C19*1) and the nonfunctional (*2 and *3) alleles were 0.877, 0.123 and 0, respectively. Five subjects (3.16?%) were homozygous for *2/*2. Regarding CYP3A4*1B, only 12 subjects out of 173 subjects (6.9?%) were heterozygote with none were mutant for this polymorphism. With respect to CYP3A5, 229 were analyzed, frequencies of CYP3A5*1,*3 and *6 were 0.071, 0.925 and 0.0022, respectively. Comparing our data with that obtained in several Caucasian, African-American and Asian populations, Jordanians are most similar to Caucasians with regard to allelic frequencies of the tested variants of CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5.  相似文献   

5.
Differences in metabolism of drugs can lead to severe toxicity or therapeutic failure. In addition to cytochrome P450 2D6, which plays a critical role in drug metabolism, ABCB1 encoded P‐glycoprotein (PGP) is also an important determinant in drug bioavailability. The genes encoding these molecules are highly variable among populations and, given their clinical importance in drug therapy, determining CYP2D6 and ABCB1 allele frequencies in specific populations is very important for useful application in clinical settings. In this study the frequency of the pharmacologically relevant CYP2D6*3, *4, *5, *6 allelic variants and gene duplication, and ABCB1 C1236T and C3435T gene polymorphisms and their haplotypes was determined in a population sample of 100 Portuguese healthy subjects. CYP2D6 allele frequencies were 1.4% (*3), 13.3% (*4), 2.8% (*5), 1.8% (*6) and 6.1% (gene duplication), with 5% of the individuals classified as PM and 8.4% as UM. The frequencies obtained for the non‐functional alleles and for the CYP2D6 gene duplication are in agreement with other South European populations, and reinforce the previously suggested south/north gradient of CYP2D6 duplications. Allelic frequencies for the ABCB1 polymorphisms were 52% (3435C) and 54% (1236C) and the most common haplotype (1236C‐3435C) occurred with a frequency of 45.5%. Although allele and haplotype frequency data for ABCB1 in Southern Europe is limited, some discrepancies were found with other European populations, with possible therapeutic implications for PGP substrate drugs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Chau TK  Marakami S  Kawai B  Nasu K  Kubota T  Ohnishi A 《Life sciences》2000,67(14):1719-1724
This study was conducted to assess whether the genotypic frequency of Smephenytoin 4'-hydroxylase CYP2C19 gene differs in Japanese cirrhotic patients who developed hepatocellular carcinoma. Thirty-eight patients with cirrhosis were studied. The wild-type allele CYP2C19*1 and the two mutated alleles, CYP2C19*2 and CYP2C19*3, were identified by PCR-RFLP method. Individuals with homozygous CYP2C19*2 or CYP2C19*3 mutation and those with CYP2C19*2 and CYP2C19*3 heterozygous mutation were predicted to be the poor metabolizer (PM) phenotype. The overall frequency of PM predicted from the genotyping analysis was 29% (11 of the 38 patients), consisting of 5 patients homozygous for CYP2C19*2, two homozygous for CYP2C19*3 and four heterozygous for the two defects. Among 24 HCV-seropositive patients with cirrhosis and hepatocellular carcinoma, the frequency of PM was 41.7% and significantly higher than that observed in 186 healthy controls. We postulate that the PM phenotype caused by the mutation of CYP2C19 gene in cirrhotic patients with HCV infection is associated with a high risk for developing hepatocellular carcinoma.  相似文献   

7.
Polymorphisms of CYP450 metabolizer enzymes and transport proteins play crucial roles in the inter‐individual variability of drug efficiency. The aim of our study was to predict the frequency of functional variants of CYP2D6, CYP2C19 and ABCB1 genes in the Hungarian population. One hundred twelve unrelated healthy subjects donated DNA sample in the study. ABCB1 C3435T and G2677T/A single‐nucleotide polymorphisms (SNPs) were determined by LightCycler polymerase chain reaction. Because only limited amount of data is available on the rare allelic variants of CYP2D6 in the European populations, our study applied an expanded set of CYP2D6 and CYP2C19 alleles by using AmpliChip test. Our results show that the CYP2D6 phenotypes were 1.9% ultra‐rapid metabolizer, 6.5% intermediate metabolizer (IM), 8.3% poor metabolizer (PM) and 83.3% extensive metabolizer (EM), and the CYP2C19 phenotypes were 1.8% PM, 31.2% IM and 67% EM. The prevalence of the commonly observed CYP2D6 and CYP2C19 alleles in our study corresponds with that of other European populations. Nevertheless, our study confirms that extending the CYP2D6 allele set with loss‐of‐function variants such as CYP2D6*7, *9, *41 is worth considering. Frequency of the wild type ABCB1 3435C was 42.8% whereas the prevelance of 2677 G was 50.4%. Although frequency data of G2677T/A SNP in the European area are limited, some discrepancies with other studies were found. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
CYP2D6 belongs to the cytochrome P450 superfamily of enzymes and plays an important role in the metabolism of 20-25% of clinically used drugs including antidepressants. It displays inter-individual and inter-ethnic variability in activity ranging from complete absence to excessive activity which causes adverse drug reactions and toxicity or therapy failure even at normal drug doses. This variability is due to genetic polymorphisms which form poor, intermediate, extensive or ultrarapid metaboliser phenotypes. This study aimed to determine CYP2D6 alleles and their frequencies in the United Arab Emirates (UAE) local population. CYP2D6 alleles and genotypes were determined by direct DNA sequencing in 151 Emiratis with the majority being psychiatric patients on antidepressants. Several new alleles have been identified and in total we identified seventeen alleles and 49 genotypes. CYP2D6*1 (wild type) and CYP2D6*2 alleles (extensive metaboliser phenotype) were found with frequencies of 39.1% and 12.2%, respectively. CYP2D6*41 (intermediate metaboliser) occurred in 15.2%. Homozygous CYP2D6*4 allele (poor metaboliser) was found with a frequency of 2% while homozygous and heterozygous CYP2D6*4 occurred with a frequency of 9%. CYP2D6*2xn, caused by gene duplication (ultrarapid metaboliser) had a frequency of 4.3%. CYP2D6 gene duplication/multiduplication occurred in 16% but only 11.2% who carried more than 2 active functional alleles were considered ultrarapid metabolisers. CYP2D6 gene deletion in one copy occurred in 7.5% of the study group. In conclusion, CYP2D6 gene locus is heterogeneous in the UAE national population and no significant differences have been identified between the psychiatric patients and controls.  相似文献   

9.
The debrisoquine-4-hydroxylase polymorphism is a genetic variation in oxidative drug metabolism characterized by two phenotypes, the extensive metabolizer (EM) and poor metabolizer (PM). Of the Caucasian populations of Europe and North America, 5%-10% are of the PM phenotype and are unable to metabolize debrisoquine and numerous other drugs. The defect is caused by several mutant alleles of the CYP2D6 gene, two of which are detected in about 70% of PMs. We have constructed a genomic library from lymphocyte DNA of an EM positively identified by pedigree analysis to be homozygous for the normal CYP2D6 allele. The normal CYP2D6 gene was isolated; was completely sequenced, including 1,531 and 3,522 bp of 5' and 3' flanking DNA, respectively; and was found to contain nine exons within 4,378 bp. Two other genes, designated CYP2D7 and CYP2D8P, were also cloned and sequenced. CYP2D8P contains several gene-disrupting insertions, deletions, and termination codons within its exons, indicating that this is a pseudogene. CYP2D7, which is just downstream of CYP2D8P, is apparently normal, except for the presence, in the first exon, of an insertion that disrupts the reading frame. A hypothesis is presented that the presence of a pseudogene within the CYP2D subfamily transfers detrimental mutations via gene conversions into the CYP2D6 gene, thus accounting for the high frequency of mutations observed in the CYP2D6 gene in humans.  相似文献   

10.
Cytochrome P450 2D6 (CYP2D6) is an important human drug-metabolizing enzyme that exhibits a marked genetic polymorphism. Numerous CYP2D6 alleles have been characterized at a functional level, although the consequences for expression and/or catalytic activity of a substantial number of rare variants remain to be investigated. One such allele, CYP2D6*31, is characterized by mutations encoding three amino acid substitutions: Arg296Cys, Arg440His and Ser486Thr. The identification of this allele in an individual with an apparent in vivo poor metabolizer phenotype prompted us to analyze the functional consequence of these substitutions on enzyme activity using yeast as a heterologous expression system. We demonstrated that the Arg440His substitution, alone or in combination with Arg296Cys and/or Ser486Thr, altered the respective kinetic parameters [Km (microM) and kcat (min(-1))] of debrisoquine 4-hydroxylation (wild-type, 25; 0.92; variants, 43-68; 0.05-0.11) and dextromethorphan O-demethylation (wild-type, 1; 4.72; variants, 12-23; 0.64-1.43), such that their specificity constants (kcat/Km) were decreased by more than 95% compared to those observed with the wild-type enzyme. The rates of oxidation of rac-metoprolol at single substrate concentrations of 40 and 400 microM were also markedly decreased by approximately 90% with each CYP2D6 variant containing the Arg440His substitution. These in vitro data confirm that the CYP2D6*31 allele encodes an enzyme with a severely impaired but residual catalytic activity and, furthermore, that the Arg440His exchange alone is the inactivating mutation. A homology model of CYP2D6 based on the crystal structure of rabbit CYP2C5 locates Arg440 on the proximal surface of the protein. Docking the structure of the FMN domain of human cytochrome P450 reductase to the CYP2D6 model suggests that Arg440 is a key member of a cluster of basic amino acid residues important for reductase binding.  相似文献   

11.
The paper is focused on a comparison of the distribution of side effects of treatment with paroxetine within a group of 30 patients genotyped and phenotyped for their CYP 2D6 metabolic status. Genotyping procedure showed that the patient group did not include any individual with poor metabolizer (PM) genotype; on the other hand, most patients (24) were classified as PMs by virtue of their phenotype, which suggests that a conversion to the poor metabolic phenotype ("phenocopy") occurred, probably as a consequence of a long-term administration of the strong CYP 2D6 inhibitor paroxetine. As to the occurence of common adverse effects, no marked difference between subjects converted into the PM group and those who had no history of such conversion was found. A significantly higher incidence of sexual dysfunction (p < 0.05) was, nevertheless, recorded in patients with the PM phenotype. The results of the study may provide evidence that it is the metabolic phenotype status, rather than the genetically given enzyme capacity (CYP 2D6 genotype), that is relevant for the actual toleration of treatment with CYP 2D6 inhibitors.  相似文献   

12.
The purpose of our study was to characterise the CYP2C19*2 and CYP2C19*3 alleles in healthy Roma and Hungarian populations. DNA of 500 Roma and 370 Hungarian subjects were genotyped for CYP2C19*2 (G681A, rs4244285) and CYP2C19*3 (G636A, rs4986893) by PCR–RFLP assay and direct sequencing. Significant differences were found comparing the Roma and Hungarian populations in CYP2C19 681 GG (63.6 vs. 75.9 %), GA (31.8 vs. 23.0 %), AA (4.6 vs. 1.1 %), GA+AA (36.4 vs. 24.1 %) and A allele frequencies (0.205 vs. 0.125) (p < 0.004). Striking differences were found between Roma and Hungarian samples in CYP2C19*1 (79.5 vs. 87.4 %) and CYP2C19*2 (20.5 vs. 12.6 %) alleles, respectively (p < 0.001). None of the subjects was found to carry the CYP2C19*3 allele. Frequencies of the intermedier metabolizer phenotype defined by the *1/*2 genotype (0.318 vs. 0.230, p < 0.005) and poor metabolizer predicted by the *2/*2 genotype (0.046 vs. 0.011, p < 0.005) was significantly higher in Roma than in Hungarians, respectively. Genotype distribution of the Roma population was similar to those of the population of North India, however, a major difference was found in the frequency of the CYP2C19*2 allele, which is likely a result of admixture with European lineages. In conclusion, the frequencies of the CYP2C19 alleles, genotypes and corresponding extensive, intermediate and poor metabolizer phenotypes studied here in the Hungarian population are similar to those of other European Caucasian populations, but display clear differences when compared to the Roma population.  相似文献   

13.
Since 2005, increasing numbers of seizures of the designer drug of abuse 1-(3-chlorophenyl)piperazine (mCPP) have been reported. This paper describes the unequivocal proof of a mCPP intake. Differentiation from the intake of its precursor drugs trazodone and nefazodone was performed by a systematic toxicological analysis (STA) procedure using full-scan GC-MS after acid hydrolysis, liquid-liquid extraction and microwave-assisted acetylation. The found mCPP/hydroxy-mCPP ratio indicated altered metabolism of this cytochrome (CYP) 2D6 catalyzed reaction compared to published studies using the same procedure. Although this might be ascribed to a poor metabolizer (PM) phenotype, genotyping revealed no PM genotype but indications for an intermediate metabolizer genotype. However, a PM phenotype could also be caused by drug-drug interactions with CYP2D6 inhibitors or substrates such as the co-consumed cocaine and diltiazem and/or diltiazem metabolites, respectively. In conclusion, the presented data indicate a possible relevance of CYP2D6 polymorphism and/or drug interactions to mCPP toxicokinetics, which is important for risk assessment of this new designer drug of abuse, in particular if it is used as adulterant of CYP2D6 substrates such as cocaine.  相似文献   

14.
Comparing bufuralol 1'-hydroxylase activity among liver microsomes prepared from individuals whose CYP2D6 genotypes had been determined, we found that the activity tended to decrease depending on the number of the CYP2D6*10 allele. Pre-incubation of liver microsomes from individuals homozygous for the CYP2D6*10 allele resulted in a decrease in the enzyme activity more rapidly than those from individuals homozygous for the CYP2D6*1, suggesting that not only the catalytic activity but also the thermal stability of the enzyme appeared to be affected by the genetic polymorphism. To confirm this hypothesis, the kinetic parameters of CYP2D6.1 and CYP2D6.10 were compared for bufuralol 1'-hydroxylation and dextromethorphan O-demethylation using microsomes prepared from yeast transformed with plasmids carrying CYP2D6 cDNAs (*1A and *10B). Kinetic studies of these CYP2D6 forms indicated clear differences in the metabolic activities between the wild (CYP2D6.1) and the mutant enzymes (CYP2D6.10). Bufuralol 1(')-hydroxylase activity in microsomes of yeast expressing CYP2D6.10 was rapidly decreased by heat treatment, supporting the idea that the thermal stability of the enzyme was reduced by amino acid replacement from Pro (CYP2D6.1) to Ser (CYP2D6.10). These data strongly suggest that the thermal instability together with the reduced intrinsic clearance of CYP2D6.10 is one of the causes responsible for the known fact that Orientals show lower metabolic activities than Caucasians for drugs metabolized mainly by CYP2D6, because of a high frequency of CYP2D6*10 in Orientals.  相似文献   

15.
16.
Polymorphisms in the selected genes controlling carcinogen metabolism (CYP1A1, CYP2D6, CYP2E1, NAT2, GSTM1, GSTT1) considered separately or in different combinations, were investigated for an association with tobacco smoke-associated squamous cell carcinoma (SCC) of the larynx. The case-control study was performed in 289 patients with laryngeal SCC and in 316 cancer-free controls; all were Caucasian males from the same region of Poland and current tobacco smokers. The DNA samples were genotyped using PCR-RFLP and multiplex PCR. The variants' frequencies in both groups were compared; odds ratios and their 95% confidence intervals were calculated by logistic regression analyses. The CYP1A1*1/*4, CYP2D6*4/*4, NAT2*4/*6A genotypes, as well as the CYP1A1*4, CYP2D6*4 and NAT2*4 alleles, were found at significantly higher frequencies in cases than in controls indicating their role as "risk-elevating" factors in laryngeal SCC. Combined genotypes, characterized by the presence of the "risk-elevating" variants at more than one locus, often occurred together with the null variant of the GSTM1 gene and homozygous XPD A/A (Lys751Gln, A35931C) genotype. Furthermore, we identified some "protective" variants, found more frequently in controls than in cases, i.e. the NAT2*6A/*6A and NAT2*5B/*6A genotypes. A distribution of "risk" or "protection" genotypes/alleles seems to be connected with age as an occurrence or risk genes was more frequent in the group of "young" cases (< or = 49 years). Accumulation of certain alleles or genotypes of the CYP1A1, NAT2, GSTM1 and XPD seems to be associated with either increased or decreased risk to develop laryngeal SCC. Therefore, polymorphisms in these genes may play a role in the laryngeal cancer etiology.  相似文献   

17.
Drugs and carcinogens are substrates of a group of metabolic enzymes including cytochrome p450 enzymes and gluthatione S-transferases. Many of the genes encoding these enzymes exhibit functional polymorphisms that contribute individual cancer susceptibility and drug response. Molecular studies based on these polymorphic enzymes also explain the aetiology of cancer and therapeutic management in clinics. We analysed the cytochrome p4501A1 (CYP1A1) and 2D6 (CYP2D6) variant genotype and allele frequencies by PCR-RFLP in Turkish individuals (n=140). The frequency of the CYP1A1*2A mutant allele was found to be 15.4%, and the CYP2D6*3 and *4 mutant allele (poor metabolizer) frequencies were 2.5% and 13.9%, respectively. This study presents the first results of CYP1A1 and CYP2D6 mutant allele distributions in the Turkish population and these data provide an understanding of epidemiological studies that correlate therapeutic approaches and aetiology of several types of malignancy in Turkish patients.  相似文献   

18.
Allele-specific long-polymerase chain reaction (PCR), PCR-restriction fragment length polymorphism (RFLP) and haplotype analysis using XbaI and EcoRI were used to determine whether gene duplication of CYP2D6*10 exists in a Japanese population of 162 healthy subjects. Based on the results of PCR and haplotype analysis, the frequencies of CYP2D6*1X2, CYP2D6*2X2 and CYP2D6*10X2 in the Japanese population were estimated to be 0.3, 0.3 and 0.6%, respectively. The results suggest that duplicated alleles of CYP2D6*10 exist in the Japanese population and that it may be one of the factors affecting the capacity of Japanese to metabolize various CYP2D6 substrate drugs.  相似文献   

19.
Dicumarinic oral anticoagulants have a narrow therapeutic range and a great individual variability in response, which makes calculation of the correct dose difficult and critical. Genetic factors involved in this variability include polymorphisms of genes that encode the metabolic enzyme CYP2C9 and the target enzyme vitamin K epoxide reductase complex 1 (VKORC1); these polymorphisms can be associated with reduced enzymatic expression. We examined the frequency of the most relevant variants encoding CYP2C9 (alleles *1, *2 and *3) and VKORC1 (SNP -1639A>G) in the Argentinian population. Molecular typing was performed by PCR-RFLP on a randomly selected sample of 101 healthy volunteers from the Hospital Italiano de Buenos Aires gene bank. Fifty-seven subjects were identified as homozygous for CYP2C9*1 and 14 for *2, while 24 and 5 were heterozygous for *2 and *3 alleles; one individual was a composite heterozygote (*2/*3). When we examined VKORC1, 21 subjects were AA homozygous, 60 were AG heterozygotes and 20 were GG homozygotes. This is the first analysis of genotypic frequencies for CYP2C9 and VKORC1 performed in an Argentinian population. These allele prevalences are similar to what is known for Caucasian population, reflecting the European ancestor of our patient population, coming mostly from Buenos Aires city and surroundings. Knowledge of this prevalence information is instrumental for cost-effective pharmacogenomic testing in patients undergoing oral anticoagulation treatment.  相似文献   

20.
CYP2C9 is the major P450 2C enzyme in human liver and contributes to the metabolism of a number of clinically important substrate drugs. This polymorphically expressed enzyme has been studied in Caucasian, Asian, and to some extent in African American populations, but little is known about the genetic variation in Native American populations. We therefore determined the 2C9*2 (Arg144Cys) and 2C9*3 (Ile359Leu) allele frequencies in 153 Native Canadian Indian (CNI) and 151 Inuit subjects by PCR-RFLP techniques. We also present genotyping data for two reference populations, 325 Caucasian (white North American) and 102 Chinese subjects. Genotyping analysis did not reveal any 2C9*4 alleles in the CNI, Inuit, Caucasian, or Chinese individuals. The 2C9*2 allele appears to be absent in Chinese and Inuit populations, but was present in CNI and Caucasian subjects at frequencies of 0.03 and 0.08-0.15, respectively. The 2C9*3 allele was not detected in the Inuit group, but occured in the CNI group (f = 0.06) at a frequency comparable to that of other ethnic groups. This group of Inuit individuals are the first population in which no 2C9*2 or *3 alleles have been detected so far. Therefore, these alleles may be extremely rare or absent, and unless other novel polymorphisms exist in this Inuit group one would not anticipate any CYP2C9 poor metabolizer subjects among this population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号