首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
《Epigenetics》2013,8(1):71-82
The de novo DNA methyltransferase DNMT3B functions in establishing DNA methylation patterns during development. DNMT3B missense mutations cause immunodeficiency, centromere instability and facial anomalies (ICF) syndrome. The restriction of Dnmt3b expression to neural progenitor cells, as well as the mild cognitive defects observed in ICF patients, suggests that DNMT3B may play an important role in early neurogenesis. We performed RNAi knockdown of DNMT3B in human embryonic stem cells (hESCs) in order to investigate the mechanistic contribution of DNMT3B to DNA methylation and early neuronal differentiation. While DNMT3B was not required for early neuroepithelium specification, DNMT3B deficient neuroepithelium exhibited accelerated maturation with earlier expression, relative to normal hESCs, of mature neuronal markers (such as NEUROD1) and of early neuronal regional specifiers (such as those for the neural crest). Genome-wide analyses of DNA methylation by MethylC-seq identified novel regions of hypomethylation in the DNMT3B knockdowns along the X chromosome as well as pericentromeric regions, rather than changes to promoters of specific dysregulated genes. We observed a loss of H3K27me3 and the polycomb complex protein EZH2 at the promoters of early neural and neural crest specifier genes during differentiation of DNMT3B knockdown but not normal hESCs. Our results indicate that DNMT3B mediates large-scale methylation patterns in hESCs and that DNMT3B deficiency in the cells alters the timing of their neuronal differentiation and maturation.  相似文献   

2.
3.
4.
5.
DNA methylation plays an important role in development and disease. The primary sites of DNA methylation in vertebrates are cytosines in the CpG dinucleotide context, which account for roughly three quarters of the total DNA methylation content in human and mouse cells. While the genomic distribution, inter-individual stability, and functional role of CpG methylation are reasonably well understood, little is known about DNA methylation targeting CpA, CpT, and CpC (non-CpG) dinucleotides. Here we report a comprehensive analysis of non-CpG methylation in 76 genome-scale DNA methylation maps across pluripotent and differentiated human cell types. We confirm non-CpG methylation to be predominantly present in pluripotent cell types and observe a decrease upon differentiation and near complete absence in various somatic cell types. Although no function has been assigned to it in pluripotency, our data highlight that non-CpG methylation patterns reappear upon iPS cell reprogramming. Intriguingly, the patterns are highly variable and show little conservation between different pluripotent cell lines. We find a strong correlation of non-CpG methylation and DNMT3 expression levels while showing statistical independence of non-CpG methylation from pluripotency associated gene expression. In line with these findings, we show that knockdown of DNMTA and DNMT3B in hESCs results in a global reduction of non-CpG methylation. Finally, non-CpG methylation appears to be spatially correlated with CpG methylation. In summary these results contribute further to our understanding of cytosine methylation patterns in human cells using a large representative sample set.  相似文献   

6.
The DNMT3B de novo DNA methyltransferase (DNMT) plays a major role in establishing DNA methylation patterns in early mammalian development, but its catalytic mechanism remains poorly characterized. Here, we provide a comprehensive biochemical analysis of human DNMT3B function through the characterization of a series of site-directed DNMT3B variants associated with immunodeficiency, centromere instability, and facial anomalies (ICF) syndrome. Our data reveal several novel and important aspects of DNMT3B function. First, DNMT3B, unlike DNMT3A, requires a DNA cofactor in order to stably bind to S-adenosyl-l-methionine (SAM), suggesting that it proceeds according to an ordered catalytic scheme. Second, ICF mutations cause a broad spectrum of biochemical defects in DNMT3B function, including defects in homo-oligomerization, SAM binding, SAM utilization, and DNA binding. Third, all tested ICF mutations, including the A766P and R840Q variants, result in altered catalytic properties without interfering with DNMT3L-mediated stimulation; this indicates that DNMT3L is not involved in the pathogenesis of ICF syndrome. Finally, our study reveals a novel level of coupling between substrate binding, oligomerization, and catalysis that is likely conserved within the DNMT3 family of enzymes.  相似文献   

7.
M Okano  D W Bell  D A Haber  E Li 《Cell》1999,99(3):247-257
The establishment of DNA methylation patterns requires de novo methylation that occurs predominantly during early development and gametogenesis in mice. Here we demonstrate that two recently identified DNA methyltransferases, Dnmt3a and Dnmt3b, are essential for de novo methylation and for mouse development. Inactivation of both genes by gene targeting blocks de novo methylation in ES cells and early embryos, but it has no effect on maintenance of imprinted methylation patterns. Dnmt3a and Dnmt3b also exhibit nonoverlapping functions in development, with Dnmt3b specifically required for methylation of centromeric minor satellite repeats. Mutations of human DNMT3B are found in ICF syndrome, a developmental defect characterized by hypomethylation of pericentromeric repeats. Our results indicate that both Dnmt3a and Dnmt3b function as de novo methyltransferases that play important roles in normal development and disease.  相似文献   

8.
Rengaraj D  Lee BR  Lee SI  Seo HW  Han JY 《PloS one》2011,6(5):e19524
DNA methylation is widespread in most species, from bacteria to mammals, and is crucial for genomic imprinting, gene expression, and embryogenesis. DNA methylation occurs via two major classes of enzymatic reactions: maintenance-type methylation catalyzed by DNA (cytosine-5-)-methyltransferase (DNMT) 1, and de novo methylation catalyzed by DNMT 3 alpha (DNMT3A) and -beta (DNMT3B). The expression pattern and regulation of DNMT genes in primordial germ cells (PGCs) and germ line cells has not been sufficiently established in birds. Therefore, we employed bioinformatics, RT-PCR, real-time PCR, and in situ hybridization analyses to examine the structural conservation and conserved expression patterns of chicken DNMT family genes. We further examined the regulation of a candidate de novo DNA methyltransferase gene, cDNMT3B by cotransfection of cDNMT3B 3'UTR- and cDNMT3B 3'UTR-specific miRNAs through a dual fluorescence reporter assay. All cDNMT family members were differentially detected during early embryonic development. Of interest, cDNMT3B expression was highly detected in early embryos and in PGCs. During germ line development and sexual maturation, cDNMT3B expression was reestablished in a female germ cell-specific manner. In the dual fluorescence reporter assay, cDNMT3B expression was significantly downregulated by four miRNAs: gga-miR-15c (25.82%), gga-miR-29b (30.01%), gga-miR-383 (30.0%), and gga-miR-222 (31.28%). Our data highlight the structural conservation and conserved expression patterns of chicken DNMTs. The miRNAs investigated in this study may induce downregulation of gene expression in chicken PGCs and germ cells.  相似文献   

9.
10.
Proper patterns of genome-wide DNA methylation, mediated by DNA methyltransferases DNMT1, -3A and -3B, are essential for embryonic development and genomic stability in mammalian cells. The de novo DNA methyltransferase DNMT3B is of particular interest because it is frequently overexpressed in tumor cells and is mutated in immunodeficiency, centromere instability and facial anomalies (ICF) syndrome. In order to gain a better understanding of DNMT3B, in terms of the targeting of its methylation activity and its role in genome stability, we biochemically purified endogenous DNMT3B from HeLa cells. DNMT3B co-purifies and interacts, both in vivo and in vitro, with several components of the condensin complex (hCAP-C, hCAP-E and hCAP-G) and KIF4A. Condensin mediates genome-wide chromosome condensation at the onset of mitosis and is critical for proper segregation of sister chromatids. KIF4A is proposed to be a motor protein carrying DNA as cargo. DNMT3B also interacts with histone deacetylase 1 (HDAC1), the co-repressor SIN3A and the ATP-dependent chromatin remodeling enzyme hSNF2H. Further more, DNMT3B co-localizes with condensin and KIF4A on condensed chromosomes throughout mitosis. These studies therefore reveal the first direct link between the machineries regulating DNA methylation and mitotic chromosome condensation in mammalian cells.  相似文献   

11.
12.
《Epigenetics》2013,8(5):427-443
Immunodeficiency, Centromeric region instability, Facial anomalies (ICF; OMIM #242860) syndrome, due to mutations in the DNMT3B gene, is characterized by inheritance of aberrant patterns of DNA methylation and heterochromatin defects. Patients show variable agammaglobulinemia and a reduced number of T cells, making them prone to infections and death before adulthood. Other variable symptoms include facial dysmorphism, growth and mental retardation. Despite the recent advances in identifying the dysregulated genes, the molecular mechanisms, which underlie the altered gene expression causing ICF phenotype complexity, are not well understood. Held the recently-shown tight correlation between epigenetics and microRNAs (miRNAs), we searched for miRNAs regulated by DNMT3B activity, comparing cell lines from ICF patients with those from healthy individuals. We observe that eighty-nine miRNAs, some of which involved in immune function, development and neurogenesis, are dysregulated in ICF (LCLs) compared to wild-type cells. Significant DNA hypomethylation of miRNA CpG islands was not observed in cases of miRNA up-regulation in ICF cells, suggesting a more subtle effect of DNMT3B deficiency on their regulation; however, a modification of histone marks, especially H3K27 and H3K4 trimethylation, and H4 acetylation, was observed concomitantly with changes in microRNA expression. Functional correlation between miRNA and mRNA expression of their targets allow us to suppose a regulation either at mRNA level or at protein level. These results provide a better understanding of how DNA methylation and histone code interact to regulate the class of microRNA genes and enable us to predict molecular events possibly contributing to ICF condition.  相似文献   

13.
Mutation in the DNMT3B DNA methyltransferase gene is a common cause of ICF (immunodeficiency, centromeric heterochromatin, facial anomalies) immunodeficiency syndrome and leads to hypomethylation of satellites 2 and 3 in pericentric heterochromatin. This hypomethylation is associated with centromeric decondensation and chromosomal rearrangements, suggesting that these satellite repeats have an important structural role. In addition, the satellite regions may have functional roles in modifying gene expression. The extent of satellite hypomethylation in ICF cells is unknown because methylation status has only been determined with restriction enzymes that cut infrequently at these loci. We have therefore developed a bisulfite conversion-based method to determine the detailed cytosine methylation patterns at satellite 2 sequences in a quantitative manner for normal and ICF samples. From our sequence analysis of unmodified DNA, the internal repeat region analyzed for methylation contains an average of 17 CpG sites. The average level of methylation in normal lymphoblasts and fibroblasts is 69% compared with 20% in such cells from ICF patients with DNMT3B mutations and 29% in normal sperm. Although the mean satellite 2 methylation values for these groups do not overlap, there is considerable overlap at the level of individual DNA strands. Our analysis has also revealed a pattern of methylation specificity, suggesting that some CpGs in the repeat are more prone to methylation than other sites. Variation in satellite 2 methylation among lymphoblasts from different ICF patients has prompted us to determine the frequency of cytogenetic abnormalities in these cells. Although our data suggest that some degree of hypomethylation is necessary for pericentromeric decondensation, factors other than DNA methylation appear to play a major role in this phenomenon. Another such factor may be altered replication timing because we have discovered that the hypomethylation of satellite 2 in ICF cultures is associated with advanced replication.  相似文献   

14.
In vitro neural differentiation of human embryonic stem cells (hESCs) is an advantageous system for studying early neural development. The process of early neural differentiation in hESCs begins by initiation of primitive neuroectoderm, which is manifested by rosette formation, with consecutive differentiation into neural progenitors and early glial-like cells. In this study, we examined the involvement of early neural markers – OTX2, PAX6, Sox1, Nestin, NR2F1, NR2F2, and IRX2 – in the onset of rosette formation, during spontaneous neural differentiation of hESC and human induced pluripotent stem cell (hiPSC) colonies. This is in contrast to the conventional way of studying rosette formation, which involves induction of neuronal differentiation and the utilization of embryoid bodies. Here we show that OTX2 is highly expressed at the onset of rosette formation, when rosettes comprise no more than 3–5 cells, and that its expression precedes that of established markers of early neuronal differentiation. Importantly, the rise of OTX2 expression in these cells coincides with the down-regulation of the pluripotency marker OCT4. Lastly, we show that cells derived from rosettes that emerge during spontaneous differentiation of hESCs or hiPSCs are capable of differentiating into dopaminergic neurons in vitro, and into mature-appearing pyramidal and serotonergic neurons weeks after being injected into the motor cortex of NOD-SCID mice.  相似文献   

15.
High levels of DNA methyltransferase 1 (DNMT1), hypermethylation, and downregulation of GAD(67) and reelin have been described in GABAergic interneurons of patients with schizophrenia (SZ) and bipolar (BP) disorders. However, overexpression of DNMT1 is lethal, making it difficult to assess the direct effect of high levels of DNMT1 on neuronal development in vivo. We therefore used Dnmt1(tet/tet) mouse ES cells that overexpress DNMT1 as an in vitro model to investigate the impact of high levels of DNMT1 on neuronal differentiation. Although there is down-regulation of DNMT1 during early stages of differentiation in wild type and Dnmt1(tet/tet) ES cell lines, neurons derived from Dnmt1(tet/tet) cells showed abnormal dendritic arborization and branching. The Dnmt1(tet/tet) neuronal cells also showed elevated levels of functional N-methyl d-aspartate receptor (NMDAR), a feature also reported in some neurological and neurodegenerative disorders. Considering the roles of reelin and GAD(67) in neuronal networking and excitatory/inhibitory balance, respectively, we studied methylation of these genes' promoters in Dnmt1(tet/tet) ES cells and neurons. Both reelin and GAD(67) promoters were not hypermethylated in the Dnmt1(tet/tet) ES cells and neurons, suggesting that overexpression of DNMT1 may not directly result in methylation-mediated repression of these two genes. Taken together, our results suggest that overexpression of DNMT1 in ES cells results in an epigenetic change prior to the onset of differentiation. This epigenetic change in turn results in abnormal neuronal differentiation and upregulation of functional NMDA receptor.  相似文献   

16.
17.
The neural crest-derived precursors of the sympathoadrenal lineage depend on environmental cues to differentiate as sympathetic neurons and pheochromocytes. We have used the monoclonal antibody A2B5 as a marker for neuronal differentiation and antisera against catecholamine synthesis enzymes to investigate the differentiation of catecholaminergic cells in cultures of quail neural crest cells. Cells corresponding phenotypically to sympathetic neurons and pheochromocytes can be identified in neural crest cell cultures after 5-6 days in vitro. Expression of the A2B5 antigen precedes expression of immunocytochemically detectable levels of tyrosine hydroxylase in cultured neural crest cells. Glucocorticoid treatment decreases the proportion of TH+ neural crest cells that express neuronal traits. We conclude that environmental cues normally encountered by sympathoadrenal precursors in vivo can influence the differentiation of a subpopulation of cultured neural crest cells in the sympathoadrenal lineage.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号