首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In Klebsiella aerogenes, the formation of a large number of enzymes responds to the quality and quantity of the nitrogen source provided in the growth medium, and this regulation requires the action of the nitrogen regulatory (NTR) system in every case known. Nitrogen regulation of several operons requires not only the NTR system, but also NAC, the product of the nac gene, raising the question of whether the role of NAC is to activate operons directly or by modifying the specificity of the NTR system. We isolated an insertion of the transposon Tn5tac1 which puts nac gene expression under the control of the IPTG-inducible tac promoter rather than the nitrogen-responsive nac promoter. When IPTG was present, cells carrying the tac-nac fusion activated NAC-dependent operons and repressed NAC-repressible operons independent of the nitrogen supply and even in the absence of an active NTR system. Thus, NAC is sufficient to regulate operons like hut (encoding histidase) and gdh (encoding glutamate dehydrogenase), confirming the model that the NTR system activates nac expression and NAC activates hut and represses gdh. Activation of urease formation occurred at a lower level of NAC than that required for glutamate dehydrogenase repression, and activation of histidase formation required still more NAC.  相似文献   

3.
4.
A positive, genetic selection against the activity of the nitrogen regulatory (NTR) system was used to isolate insertion mutations affecting nitrogen regulation in Klebsiella aerogenes. Two classes of mutation were obtained: those affecting the NTR system itself and leading to the loss of almost all nitrogen regulation, and those affecting the nac locus and leading to a loss of nitrogen regulation of a family of nitrogen-regulated enzymes. The set of these nac-dependent enzymes included histidase, glutamate dehydrogenase, glutamate synthase, proline oxidase, and urease. The enzymes shown to be nac independent included glutamine synthetase, asparaginase, tryptophan permease, nitrate reductase, the product of the nifLA operon, and perhaps nitrite reductase. The expression of the nac gene was itself highly nitrogen regulated, and this regulation was mediated by the NTR system. The loss of nitrogen regulation was found in each of the four insertion mutants studied, showing that loss of nitrogen regulation resulted from the absence of nac function rather than from an altered form of the nac gene product. Thus we propose two classes of nitrogen-regulated operons: in class I, the NTR system directly activates expression of the operon; in class II, the NTR system activates nac expression and the product(s) of the nac locus activates expression of the operon.  相似文献   

5.
In merodiploid strains of Klebsiella aerogenes with chromosomal hut genes of K. aerogenes and episomal hut genes of Salmonella typhimurium, the repressor of either species can regulate the hut operons of the other species. The repression exerted by the homologous repressor on the left-hand hut operon is, in both organisms, stronger than that exerted by the heterologous repressor.  相似文献   

6.
The regulation of glutamate dehydrogenase (EC 1.4.1.4), glutamine synthetase (EC 6.3.1.2), and glutamate synthase (EC 2.6.1.53) was examined for cultures of Salmonella typhimurium grown with various nitrogen and amino acid sources. In contrast to the regulatory pattern observed in Klebsiella aerogenes, the glutamate dehydrogenase levels of S. typhimurium do not decrease when glutamine synthetase is derepressed during growth with limiting ammonia. Thus, it appears that the S. typhimurium glutamine synthetase does not regulate the synthesis of glutamate dehydrogenase as reported for K. aerogenes. The glutamate dehydrogenase activity does increase, however, during growth of a glutamate auxotroph with glutamate as a limiting amino acid source. The regulation of glutamate synthase levels is complex with the enzyme activity decreasing during growth with glutamate as a nitrogen source, and during growth of auxotrophs with either glutamine or glutamate as limiting amino acids.  相似文献   

7.
We studied the physiology of cells of Klebsiella aerogenes containing the structural gene for glutamine synthetase (glnA) of Escherichia coli on an episome. The E. coli glutamine synthetase functioned in cells of K. aerogenes in a manner similar to that of the K. aerogenes enzyme: it allowed the level of histidase to increase and that of glutamate dehydrogenase to decrease during nitrogen-limited growth. The phenotype of mutations in the glnA site was restored to normal by the introduction of the episomal glnA+ gene. These results are consistent with the hypothesis that glutamine synthetase regulates the function of its own structural gene.  相似文献   

8.
Escherichia coli contains two PII-like signal trans-duction proteins, PII and GlnK, involved in nitrogen assimilation. We examined the roles of PII and GlnK in controlling expression of glnALG, glnK and nac during the transition from growth on ammonia to nitrogen starvation and vice versa. The PII protein exclusively controlled glnALG expression in cells adapted to growth on ammonia, but was unable to limit nac and glnK expression under conditions of nitrogen starvation. Conversely, GlnK was unable to limit glnALG expression in cells adapted to growth on ammonia, but was required to limit expression of the glnK and nac promoters during nitrogen starvation. In the absence of GlnK, very high expression of the glnK and nac promoters occurred in nitrogen-starved cells, and the cells did not reduce glnK and nac expression when given ammonia. Thus, one specific role of GlnK is to regulate the expression of Ntr genes during nitrogen starvation. GlnK also had a dramatic effect on the ability of cells to survive nitrogen starvation and resume rapid growth when fed ammonia. After being nitrogen starved for as little as 10 h, cells lacking GlnK were unable to resume rapid growth when given ammonia. In contrast, wild-type cells that were starved immediately resumed rapid growth when fed ammonia. Cells lacking GlnK also showed faster loss of viability during extended nitrogen starvation relative to wild-type cells. This complex phenotype resulted partly from the requirement for GlnK to regulate nac expression; deletion of nac restored wild-type growth rates after ammonia starvation and refeeding to cells lacking GlnK, but did not improve viability during nitrogen starvation. The specific roles of GlnK during nitrogen starvation were not the result of a distinct function of the protein, as expression of PII from the glnK promoter in cells lacking GlnK restored the wild-type phenotypes.  相似文献   

9.
The normal hut (histidine utilization) operons, as well as those with mutations affecting the regulation of their expression, of Salmonella typhimurium were introduced on an F' episome into cells of S. typhimurium and Klebsiella aerogenes whose chromosomal hut genes had been deleted and into cells of Escherichia coli, whose chromosome does not carry hut genes. The episomal hut operons respond in a manner very similar to induction and catabolite repression in all three organisms. The small differences found reflect both different abilities to take up inducers from the medium and different degrees of catabolite repression exerted by glucose.  相似文献   

10.
P1-sensitive mutants of Klebsiella aerogenes were isolated and the gene order of the hut region was then determined using P1-mediated transduction. The genes are located in the Klebsiella chromosome between gal and bio as in Salmonella typhimurium. The gene order, gal, hutI, hutG, hutC, huU, hutH, bio is also the same as that observed in S. typhimurium.  相似文献   

11.
In Pseudomonas aeruginosa, the synthesis of histidase, urocanase and amidase is severly repressed when succinate is added to a culture growing in pyruvate + ammonium salts medium. When growth is nitrogen-limited, catabolite repression by succinate of histidase and urocanase synthesis does not occur but succinate repression of amidase synthesis persists. Amidase synthesis is not regulated in the same way as histidase synthesis by the availability of other nitrogen compounds for growth. Growth of P. aeruginosa strain PACI in succinate + histidine media is nitrogen-limited since this strain is defective in a histidine transport system. When methyl-ammonium chloride is added to succinate + histidine media, growth inhibition occurs. Mutants isolated from succinate + histidine + methylammonium chloride plates were found to be resistant to catabolite repression by succinate even in ammonium salts media. It is suggested that the hut genes of P. aeruginosa may be regulated in the same way as in Klebsiella aerogenes, by induction by urocanate and activation by either the cyclic AMP-dependent activator protein or by glutamine synthetase.  相似文献   

12.
Nitrogen regulation system of Klebsiella aerogenes: the nac gene.   总被引:17,自引:12,他引:5  
In Klebsiella aerogenes, the product of a his-linked gene, nac, appears to play a crucial role in tying the synthesis of enzymes activated or repressed by ammonia deprivation, such as histidase and glutamate dehydrogenase, to the known regulators of nitrogen assimilation, the products of glnG and glnF.  相似文献   

13.
Regulation of the expression of the histidase coded by hutk of Klebsiella aerogenes in Salmonella typhimurium and in Escherichia coli and of the expression of the histidase coded by huts of S. typhimurium in E. coli was investigated. The hutk histidase was found to be sensitive to catabolite repression in K. aerogenes and in E. coli, but insensitive to catabolite repression in S. typhimurium; huts histidase has previously been shown to be catabolite sensitive in all three organisms. The expression of both hutk and huts histidase in E. coli was activated by nitrogen starvation. Apparently, the glutamine synthetase of E. coli may activate the formation of some glutamate- and ammonia-producing enzymes.  相似文献   

14.
Physiological adaptation and genome-wide expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to gradual transitions between nitrogen-limited and light-limited growth conditions were measured in continuous cultures. Transitions induced changes in pigment composition, light absorption coefficient, photosynthetic electron transport, and specific growth rate. Physiological changes were accompanied by reproducible changes in the expression of several hundred open reading frames, genes with functions in photosynthesis and respiration, carbon and nitrogen assimilation, protein synthesis, phosphorus metabolism, and overall regulation of cell function and proliferation. Cluster analysis of the nearly 1,600 regulated open reading frames identified eight clusters, each showing a different temporal response during the transitions. Two large clusters mirrored each other. One cluster included genes involved in photosynthesis, which were up-regulated during light-limited growth but down-regulated during nitrogen-limited growth. Conversely, genes in the other cluster were down-regulated during light-limited growth but up-regulated during nitrogen-limited growth; this cluster included several genes involved in nitrogen uptake and assimilation. These results demonstrate complementary regulation of gene expression for two major metabolic activities of cyanobacteria. Comparison with batch-culture experiments revealed interesting differences in gene expression between batch and continuous culture and illustrates that continuous-culture experiments can pick up subtle changes in cell physiology and gene expression.  相似文献   

15.
The genes for arylsulfatase (atsA) and tyramine oxidase (tynA) have been mapped in Klebsiella aerogenes by P1 transduction. They are linked to gdhD and trp in the order atsA-tynA-gdhD-trp-pyrF. Complementation analysis using F' episomes from Escherichia coli suggested an analogous location of these genes in E. coli, although arylsulfatase activity was not detected in E. coli. P1 phage and F' episomes were used to create intergeneric hybrid strains of enteric bacteria by transfer of the ats and tyn genes between K. aerogenes, E. coli, and Salmonella typhimurium. Intergeneric transduction of the tynK gene from K. aerogenes to an E. coli restrictionless strain was one to two orders less frequent than that of the leuK gene. The tyramine oxidase of E. coli and S. typhimurium in regulatory activity resemble very closely the enzyme of K. aerogenes. The atsE gene from E. coli was expressed, and latent arylsulfatase protein was formed in K. aerogenes and S typhimurium. The results of tyramine oxidase and arylsulfatase synthesis in intergeneric hybrids of enteric bacteria suggest that the system for regulation of enzyme synthesis is conserved more than the structure or function of enzyme protein during evolution.  相似文献   

16.
The recognition sites for several restriction endonucleases were mapped within deoxyribonucleic acid coding for histidine utilization (hut) genes of Salmonella typhimurium and Klebsiella aerogenes. Deoxyribonucleic acid fragments containing the two hut promoters were identified by ribonucleic acid polymerase binding.  相似文献   

17.
18.
We have shown that the low histidase activity found in anaerobic, nitrogen-limited cultures of Klebsiella pneumoniae is due to repression of the right-hand hut operon. In addition, we have examined the effects of NO3- on the aerobic and anaerobic expression of catabolite- and NH4+-repressible enzymes in this organism. NO3- permitted anaerobic growth of K. pneumoniae in minimal medium containing histidine as the sole carbon source, and histidase and succinate dehydrogenase were derepressed during anaerobic growth in histidine/NO3- medium. Use of sucrose rather than histidine as the carbon source reversed the effects of NO3- and repressed histidase and succinate dehydrogenase activities. Anaerobic growth in sucrose/NO3- medium also uncoupled the expression of urease and glutamine synthetase.  相似文献   

19.
Ammonia-nitrogen-limited continuous cultures of Escherichia coli and Klebsiella aerogenes contain induced levels of glutamine synthetase that is deadenylyated (i.e., fully active). In the presence of excess ammonia or glutamate in glucose-limited cultures of E. coli, glutamine synthetase is repressed and adenylylated (inactive). The average state of adenylylation (n) is a linear function of the specific growth rate. At low specific growth rates, glutamine synthetase is adenylylated; as the specific growth rate increases, n decreases, approaching 0 to 2 at rapid growth rates. The average state of adenylylation correlates well with the intracellular concentrations and ratios of alpha-ketoglutarate and glutamine, which are key effectors in the adenylylation-deadenylylation systems. E. coli and K. aerogenes differ markedly in their growth yields, growth rates, and enzymatic composition during nitrogen limitation. The data suggest that, unlike K. aerogenes, E. coli W uses glutamate dehydrogenase to incorporate ammonia during nitrogen limitation. In E. coli, glutamate dehydrogenase is progressively induced during nitrogen limitation when mu (growth rate) approaches mumax. In contrast, in K. aerogenes glutamate dehydrogenase is repressed during nitrogen limitation, whereas glutamate synthase, an alternative supplier of glutamate to the cell, is induced. Data are presented that support the regulatory schemes proposed for the control of glutamine synthetase activity by induction-repression phenomena and adenylylation-deadenylylation reaction. We propose that the intracellular ratio of alpha-ketoglutarate to glutamine may be the most important physiological parameter in determining the activity of glutamine synthetase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号