首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
We investigate the propagation characteristics of the fundamental surface plasmon polariton (SPP) mode of a finite-width metal–dielectric–metal waveguide. By changing the refractive index or the thickness of the dielectric layer of the waveguide, the SPP mode can be transformed from a mode confined in the dielectric layer into a mode confined around the metal corners. There always exists a condition at which the mode field distribution in the dielectric layer becomes almost perfectly uniform along the direction parallel to the metal layers, and this condition is insensitive to the width of the waveguide. It is also possible to obtain an ultra-uniform field distribution by controlling the refractive index of a different dielectric placed on both sides of the waveguide. The waveguide can be used as a basic structure for the realization of nanosized photonic devices and sensors.  相似文献   

2.
Tu  Qing  Liu  Jianxun  Ke  Shaolin  Wang  Bing  Lu  Peixiang 《Plasmonics (Norwell, Mass.)》2020,15(3):727-734

We investigate the excitation of surface plasmon polaritons (SPPs) using a metallic nanoaperture array illuminated by circularly polarized Laguerre-Gaussian (LG) vortex beams. The direction of SPP excitation is tunable by changing the circular polarization and topological charge of LG beams. The left- or right-handed circular polarization determines SPP propagation on either side of the nanoaperture array. Furthermore, varying the topological charge of LG beam will result in beam splitting of SPPs. We also utilize a composite nanoaperture array with different periods to achieve unidirectional excitation of SPPs. The study provides an interesting approach to control the excitation direction of SPPs and may find great applications in SPP generators and optical switches.

  相似文献   

3.
The effects of highly anisotropic dielectric on surface plasmon polaritons (SPPs) are investigated in several three-layer plasmonic nanostructures. Dispersion relations of SPPs in anisotropic-dielectric-metal (ADM), dielectric-anisotropic-metal (DAM), and metal-anisotropic-metal (MAM) structures are analytically derived. The numerical results in the visible indicate that, in ADM, the propagation length of a conductor-gap-dielectric mode is changed from 5.9 to 91 μm and its cutoff thickness from 83 to 7 nm with varying the optical axis, while in DAM, the influences of anisotropic dielectric are reversed on propagation length and cutoff thickness. In MAM, by tuning the optical axis, the light confinement of symmetry SPPs mode varies about 10 %. Further numerical calculations show that the above results induced by the anisotropy of dielectric can be extended to the telecommunication frequency. The improved mode properties may be used in plasmonic-based nanodevices and tunable single surface plasmon sources.  相似文献   

4.
We propose and numerically investigate a dielectric-thickness-adjusting method to manipulate the graphene surface plasmon polariton (SPP). The dispersion relationships of graphene SPP at different dielectric thickness are derived by solving the analytic equations. In addition, the SPP effective index at cutoff dielectric thickness is obtained according to different dielectric permittivity and working frequencies. As a typical application, a plasmonic Bragg reflector is designed by alternately depositing dielectric gratings along the transverse direction of the SPP propagation. The performance of the Bragg reflector is analyzed at different grating thickness, and the effective index at cutoff thickness is verified by numerical simulation. The proposed method will have important potential prospects in designing graphene-based wave trapping and slow wave devices in future.  相似文献   

5.

In this paper, a graphene-based tunable multi-band terahertz absorber is proposed and numerically investigated. The proposed absorber can achieve perfect absorption within both sharp and ultra-broadband absorption spectra. This wide range of absorption is gathered through a unique combination of periodically cross- and square-shaped dielectrics sandwiched between two graphene sheets; the latter enables it to offer more absorption in comparison with the traditional single-layer graphene structures. The aforementioned top layer is mounted on a gold plate separated by a Topas layer with zero volume loss. Furthermore, in our proposed approach, we investigated the possibility of changing the shapes and sizes of the dielectric layers instead of the geometry of the graphene layers to alleviate the edge effects and manufacturing complications. In numerical simulations, parameters, such as graphene Fermi energy and the dimensions of the proposed dielectric layout, have been optimally tuned to reach perfect absorption. We have verified that the performance of our dielectric layout called fishnet, with two widely investigated dielectric layouts in the literature (namely, cross-shaped and frame-and-square). Our results demonstrate two absorption bands with near-unity absorbance at frequencies of 1.6–2.3 and 4.2–4.9 THz, with absorption efficiency of 98% in 1.96 and 4.62 THz, respectively. Moreover, a broadband absorption in the 7.77–9.78 THz is observed with an absorption efficiency of 99.6% that was attained in 8.44–9.11 THz. Finally, the versatility provided by the tunability of three operation bands of the absorber makes it a great candidate for integration into terahertz optoelectronic devices.

  相似文献   

6.
Huang  Yingxue  Zhang  Min  Li  Irene Ling  Yin  Hui  Liang  Huawei 《Plasmonics (Norwell, Mass.)》2017,12(6):1947-1951

A metal nanowire placed in a dielectric hole is proposed to guide THz modified surface plasmon polaritons (MSPPs). In theory, the MSPP waveguide can guide THz wave with nano-scale mode width (570 nm) and simultaneously ultra-long propagation distance (2.4 m). Compared with conventional surface plasmon polaritons (SPPs) on a bare metal nanowire, the MSPPs’ mode nanoconfinement can be maintained by keeping a part of the mode field nearly unchanged. On the other hand, by modifying the rest of the mode field, the THz power inside the metal nanowire can be significantly reduced for MSPPs, which dramatically decreases the propagation loss (3 orders of magnitude).

  相似文献   

7.
Based on the interplay between propagating surface plasmon polaritons (PSPs) in graphene ribbon and double layer sheets structure, we theoretically demonstrate a tunable strong coupling mechanism significantly different from reported conventional noble metal nanostructures. The strong electromagnetic coupling between the low order antisymmetric and high order symmetric PSPs modes occurs due to the intersections of dispersion curves, which leads to a modification of plasmonic dispersion and multiple significant anti-crossing regions. Of particular, this strong coupling is controllable through external gate voltage of graphene sheets or ribbon. The results offer an effective regime to dynamically tune the interaction of graphene PSPs, which may find applications in the field of nanophotonic devices in the mid-infrared range.  相似文献   

8.
Semiconductor surface plasmon polariton (SPP) waveguide has unique optical properties and compatibility with existing integrated circuit manufacturing technology; thus, SPP devices of semiconductor materials have wide application potential. In this study, a new integrated graphene SPP waveguide is designed using the bottom and top roles of graphene. Moreover, a T waveguide structure is designed by InGaAs of semiconductor gain, with rectangular GaAs material on both sides. The structure adopts light to stimulate the SPP, where its local area is enhanced by the interaction between two interface layers and a semiconductor gain and where its frequency can be adjusted by the thickness of the graphene. Characteristic analysis reveals the coupling between the T semiconductor gain and the SPP mode. The propagation distance of the waveguide can reach 75 cm, the effective mode field is approximately 0.0951λ 2, the minimum of gain threshold is approximately 2992.7 cm?1, and the quality factor (FOM) can reach 180. The waveguide structure which provides stronger localization can be compatible with several optical and electronic nanoscale components. That means, it can provide light for surface plasmon circuit and also can provide a great development in the low-threshold nanolaser.  相似文献   

9.

In this paper, a non-structured graphene sheet loaded with a sinusoidal-patterned dielectric is introduced as an ultra-wideband metamaterial absorber in terahertz regime. Regardless of conventional structures with multilayered-graphene, a single layer sheet of non-structured graphene is used whereas the proposed structure benefits from dielectric width modulation and cavity method in order to excite continuous graphene plasmon resonances. The structure comprises four layers that two Fabry-Perot cavity mirrors are constructed by upper sinusoidal-patterned dielectric and a gold film. Full wave simulation results demonstrate that a broadband over 90% absorption with absolute bandwidth of 6.58 THz and central frequency of 3.97 THz is achieved under normal TE/TM incident plane wave. The designed structure yields 166% relative bandwidth. According to the symmetric configuration, the absorption spectra of mentioned polarizations are thoroughly close to each other resulting to a polarization insensitive structure. The stability of bandwidth and absorbance of the structure versus angle of incidence, θ, up to 35°/65° for TM/TE polarizations, respectively, and azimuth angle, φ, shows an interesting capability for utilization as detectors and sensors. The simple geometry of utilized graphene layer results in easy fabrication. The designed structure has wideband absorption in THz regime. Moreover, it is more compact than conventional broadband THz absorbers.

  相似文献   

10.
Long-range surface plasmon polaritons (SPPs), which propagate along metal/dielectric interfaces to submillimeter distances in the range of near-infrared (NIR) excitation wavelength, were examined by two-color two-photon photoelectron emission microscopy (2P-PEEM). Interferences between incident NIR photons and SPPs excited by the NIR photons at surface defects were imaged by detecting photoelectrons emitted from a gold surface, assisted by simultaneously irradiated ultraviolet photons which are to overcome the workfunction of the surface. The wavelength of the interference beat depends sensitively on the NIR wavelength. By analyzing the interference beat, the dispersion curve as well as phase and group velocities of SPP’s were experimentally obtained. The results closely match the theoretical one based on the Drude free electron model, indicating that two-color 2P-PEEM is applicable not only to the visualization of NIR-excited SPPs but also to the quantitative analysis of its physical properties. This method will be widely used to observe SPPs for various artificial plasmonic devices.  相似文献   

11.
Chen  Panpan  Chen  Cong  Xi  Jianxin  Du  Xiang  Liang  Li  Mi  Jiajia  Shi  Jianping 《Plasmonics (Norwell, Mass.)》2022,17(1):43-49

Owing to the unique properties of strongly confined and enhanced electric fields, surface plasmon polaritons (SPPs) provide a new platform for the realization of ultracompact plasmonic circuits. However, there are challenges in coupling light into SPPs efficiently and subsequently routing SPPs. Here, we propose a multi-directional SPP splitter and polarization analyzer based on the catenary metasurface. Based on the abundant electromagnetic modes and geometric phase modulation principle of catenary structure, the device has realized high-efficiency beam splitting for four different polarization states (x-polarization, y-polarization, LCP, and RCP). The central wavelength of the device is 632 nm and the operation bandwidth can reach 70 nm (585–655 nm). Based on the phenomenon of SPP beam splitting, we present a prototype of a polarization analyzer, which can detect the polarization state of incident light by adding photodetector with light intensity logic threshold in four directions. Moreover, by combining this device with dynamic polarization modulation techniques, it is possible to be served as a router or switch in integrated photonic circuits.

  相似文献   

12.

Metal-dielectric-graphene hybrid heterostructures based on oxides Al2O3, HfO2, and ZrO2 as well as on complementary metal–oxide–semiconductor compatible dielectric Si3N4 covering plasmonic metals Cu and Ag have been fabricated and studied. We show that the characteristics of these heterostructures are important for surface plasmon resonance biosensing (such as minimum reflectivity, sharp phase changes, resonance full width at half minimum and resonance sensitivity to refractive index unit (RIU) changes) can be significantly improved by adding dielectric/graphene layers. We demonstrate maximum plasmon resonance spectral sensitivity of more than 30,000 nm/RIU for Cu/Al2O3 (ZrO2, Si3N4), Ag/Si3N4 bilayers and Cu/dielectric/graphene three-layers for near-infrared wavelengths. The sensitivities of the fabricated heterostructures were?~?5–8 times higher than those of bare Cu or Ag thin films. We also found that the width of the plasmon resonance reflectivity curves can be reduced by adding dielectric/graphene layers. An unexpected blueshift of the plasmon resonance spectral position was observed after covering noble metals with high-index dielectric/graphene heterostructures. We suggest that the observed blueshift and a large enhancement of surface plasmon resonance sensitivity in metal-dielectric-graphene hybrid heterostructures are produced by stationary surface dipoles which generate a strong electric field concentrated at the very thin top dielectric/graphene layer.

  相似文献   

13.

The excitation of surface plasmon polaritons (SPPs) through one-dimentional (1D) metallic (Au) grating on higher refractive index -GaP substrate is investigated. Such grating devices find potential applications in real world, only if the coupling efficiency (η) of a free-space transverse-magnetic plane-wave into a SPPs mode is maximum. A simple and robust technique is used to estimate the η, by simply measuring the transmission through the grating while varying slit width (a) but period (Λ) and the thickness (t) remain fixed. When the wave vector (k 0 ) of the incident light is matched to that of SPP, highest η is achieved. It is found that Λ/3 < a < Λ/2 yields a maximum η where the intermediate scattering couples more incident energy to SPPs. These gratings are designed in such a way that they support only the fundamental plasmonic mode yielding higher η. Scanning near-field optical measurements also confirm and corroborate the observations of far-field and near-field modeling (COMSOL multiphysics) results.

  相似文献   

14.
The electrodynamics of a circular waveguide with a dielectric rod surrounded by a magnetized plasma layer is considered. A general dispersion relation for azimuthally asymmetric perturbations is derived, and its solutions describing slow waves—specifically, electromagnetic and plasma modes, as well as (and primarily) hybrid waves that combine the properties of both mode types—are investigated numerically. For the fundamental waveguide mode of the system—the HE11 mode—the parameters of the plasma layer are determined at which the mode cannot be subject to Cherenkov interaction with a relativistic electron beam at a given frequency. For both waveguide and plasma modes, the radial profiles of the longitudinal components of the electric field and Poynting vector, the fractions of RF power carried within the dielectric and plasma regions and vacuum gap, and the coupling impedance are calculated as functions of the parameters of the plasma layer. The evolution of the field structure during the formation of asymmetric hybrid waves is traced. The results of calculating the dispersion and coupling impedance are analyzed as applied to an antenna-amplifier—a relativistic traveling-wave tube operating on the HE11 mode of the dielectric rod: specifically, the implementability of the concept in the presence of a plasma at the rod surface is estimated, and the possible role of azimuthally asymmetric and symmetric plasma modes is examined.  相似文献   

15.
Wang  Jiajian  Jiang  Jin  Meng  Fengkai  Lin  Feng  Fang  Zheyu  Zhu  Xing 《Plasmonics (Norwell, Mass.)》2019,14(3):785-790

Metasurfaces are made of two-dimensional arrays of subwavelength nanostructures that form a spatially varying optical response, to control the wave fronts of optical waves. As the feature size of its constituent materials is nanoscale, investigation of the light-nanostructure interactions in the near field is critical for understanding the novel properties of metasurfaces. Here, we used a scanning near-field optical microscope (SNOM) to observe the near-field distribution of surface plasmon polaritons (SPPs) from a ring-shaped metasurface under illumination of circularly polarized light. It was found that with an additional degree of freedom of the geometric phase provided by the regularly arranged metamolecules, control over the near-field interference of the SPPs can be achieved, which is governed by the metasurface geometric symmetry that can be tuned by its topological charge. Meanwhile, the planar chiral character of the metamolecules exerts a deep influence on the near-field interference patterns. Our results can pave the way for active control of SPP propagation in near fields and have potential applications in highly integrated optical communication systems.

  相似文献   

16.
Here, we describe a metal-insulator-insulator nanofocusing structure formed by a high-permittivity dielectric wedge on a metal substrate. The structure is shown to produce nanofocusing of surface plasmon polaritons (SPPs) in the direction opposite to the taper of the wedge, including a range of nanoplasmonic effects such as nanofocusing of SPPs with negative refraction, formation of plasmonic caustics within a nanoscale distance from the wedge tip, mutual transformation of SPP modes, and significant local field enhancements in the adiabatic and strongly nonadiabatic regimes. A combination of approximate analytical and rigorous numerical approaches is used to analyze the strength and position of caustics in the structure. In particular, it is demonstrated that strong SPP localization within spatial regions as small as a few tens of nanometers near the caustic is achievable in the considered structures. Contrary to other nanofocusing configurations, efficient nanofocusing is shown to occur in the strongly nonadiabatic regime with taper angles of the dielectric wedge as large as ~40° and within uniquely short distances (as small as a few dozens of nanometers) from the tip of the wedge. Physical interpretations of the obtained results are also presented and discussed.  相似文献   

17.
One way to compensate for the surface plasmon polariton (SPP) propagation losses is to use a gain medium. However, simply ensuring high enough gain is not sufficient because it may violate the bounded character of the wave. Therefore, a detailed theoretical analysis is needed for the determination of the conditions for lossless or amplified SPP propagation. Here presented is an exact theoretical analysis of the SPP propagation in the case of an infinite metal/gain medium boundary. It is shown that the conditions for lossless/amplified SPP propagation can be conveniently examined and presented as a simply connected region in the complex plane of the gain medium dielectric function. Effective and minimum gain parameters are introduced, which facilitates the simultaneous analyses of different gain media/metals combinations. The practical application of these results is illustrated for several gain media/metal (silver, gold and aluminium) systems.  相似文献   

18.
In this paper, a novel metal-dielectric waveguide structure is proposed to support hybrid long range surface plasmon polaritons (LRSPPs) with a highly confined mode field. The simulation results showed that our proposed structure has better mode confinement and propagation length compared to that of conventional dielectric-loaded surface plasmon polaritons (DLSPPs) waveguides. This structure offers greater flexibility for the design of surface plasmon polaritons (SPPs) waveguides by altering the trade-off between mode confinement and propagation length. The proposed structure has significant potential for application in highly integrated photonic circuits.  相似文献   

19.
An electro-absorption modulator based on indium tin oxide is proposed by constructing a waveguide consisting of metal-dielectric-ITO-dielectric-Si stack. Applying a negative voltage bias on the ITO layer, carrier accumulation occurs at both dielectric-ITO interfaces, which dramatically changes the guided mode properties due to the epsilon-near-zero effect. By tuning the real part of the permittivity around zero, the guided plasmonic mode concentrates in either ITO or dielectric layers, resulting in a high propagation loss. These dual carrier accumulation layers significantly improve the extinction ratio of the modulator. A further improvement is obtained by using high refractive index dielectric thin layers, which provides a strong optical confinement in the carrier accumulation layers. The dual carrier accumulation layer device shows a 200 % increase of the modulation efficiency compared to a single accumulation layer design. A modulation depth of 9.9 dB/μm can be achieved by numerical simulation.  相似文献   

20.

Surface plasmon polariton (SPP) waves are the most extensively studied waves among various types of surface waves because they are easy to excite and have been used in many optical applications particularly for plasmonic communication, sensing, and harvesting solar energy. In all these applications, especially on-chip plasmonic communication, scattering can be an important issue to deal with. Therefore, this paper aimed to theoretically inspect the scattering pattern of SPP waves from a perfect electric conductor (PEC) cylindrical scatterer. The cylindrical wave approach is used to solve the scattering problem by a cylindrical object placed below a metallic layer. The scattering is investigated thoroughly by changing the size of the scatterer and its distance from the interface along which the SPP wave is excited. As the size of the scatterer increases, the scattering increases significantly. On the other hand, when the distance of the scatterer from the interface is increased, the scattered field becomes small. Two-dimensional field maps are produced for the incident angle at which SPP is excited. Numerical results are also presented for other incident angles to make a comparison. Furthermore, the forward and backward far-fields are significantly enhanced if the SPP wave is scattered in comparison with when the SPP wave is not present.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号