首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The virus Rhabdionvirus oryctes, originally discovered in larvae of the coconut palm dynastid Oryctes rhinoceros in Malaysia, is also pathogenic to second- and early thirdinstar larvae of Scapanes australis grossepunctatus, a dynastid pest of palms in New Guinea. Mortality of Scapanes larvae occurs within 13 to 15 days of infection. Some older third-instar larvae may be resistant. The possibility of using the virus against Scapanes in the field is discussed.  相似文献   

2.
The Rhinoceros Beetle Project in Western Samoa has developed and successfully applied biological methods to control the rhinoceros beetle, a serious pest of coconut palms, by using two specific pathogens, a baculovirus (Family Baculoviridae), and an entomopathogenic fungus, Metarhizium anisopliae. The application of virus particularly has markedly suppressed the beetle population and helped revive the copra industry. The virus disease had established itself in the wild beetle population several years after its introduction at a level between 30 and 50%. At the same time an increase in beetle numbers and damage to palm trees was experienced. Therefore, a continuous release of virus into beetle-infested areas was proposed. It was argued that, considering the relatively high level of “natural” virus incidence, further releases of virus into the population would be futile. In a combined research and control program, virus was again re-released into the wild beetle population which was already virus infected. The results show that through re-release the virus level can be raised and the number of beetles and consequently the damage can be reduced. The techniques of the control methods are described. The virus release is very easy and cheap; it requires no chemicals, no special equipment, and it is particularly recommended in situations where breeding places are inaccessible or other methods such as plantation sanitation are either impossible or economically impractical. Above all, the methods are absolutely safe from the standpoint of environmental protection.  相似文献   

3.
Rhynchophorus palm weevils are large insects belonging to the family Dryophthoridae. All Rhynchophorus species are polyphagous and have a similar life history but some are major pests because of the serious economic damage they cause, in particular to several species of the family Arecaceae. Here we review the natural enemies of Rhynchophorus species in both their native and introduced regions of the world, to assess the possibility of biological control of this taxon. Moreover, particular attention is paid to the well-studied and harmful species Rhynchophorus ferrugineus, about which more information is available, and to its natural enemies in the Mediterranean region, because the impact of this pest in this recently colonized area is particularly remarkable and also the recent trend in species management is looking for indigenous natural enemies.More than 50 natural enemies have been reported to attack Rhynchophorus species, even if most of them are associated to R. ferrugineus (Olivier), highlighting the lack of information on the other species of the genus. Pros and cons of all the biological control agents are then discussed: among the considered organisms, fungi are noteworthy to be considered for inclusion in integrated pest management programs.Overall, our overview underlines the need to increase knowledge on natural enemies of all the species of the genus Rhynchophorus, to isolate more virulent strains and to determine the optimum conditions for the actions of the biocontrol agents.  相似文献   

4.
Larvae of the elm bark beetle, Scolytus scolytus, were inoculated with conidia of the entomogenous fungi Beauveria bassiana (two strains), Metarhizium anisopliae (two strains), and Paecilomyces farinosus (two strains) and incubated over a range of temperatures (2°, 6°, 10°, 15°, and 20°C). One strain each of B. bassiana and P. farinosus caused infection even at 2°C, whereas the two strains of M. anisopliae caused no infection below 10°C. Infection of adult beetles by B. bassiana (one strain) and M. anisopliae (one strain) was tested at 15°, 20°, and 25°C (B. bassiana) and at 15° and 20°C (M. anisopliae). Fungal infection occurred at all three temperatures, but at 25°C beetles tended to succumb to bacterial infection. The effect of relative humidity on infection of larvae by B. bassiana (one strain), M. anisopliae (one strain), and P. farinosus (one strain) was tested at 51, 74, 86, 90, 95, 97.5, and 100% relative humidity. B. bassiana and M. anisopliae caused some infection at all humidities: with P. farinosus there was no infection at the two lowest humidities. Mortality due to infection by these fungi was most rapid at the highest humidities.  相似文献   

5.
The cotton stainer bug Dysdercus peruvianus (Hemiptera: Pyrrhocoridae) is an insect pest that causes heavy losses in cotton plantations. The need to reduce the use of insecticides for control of this pest has increased steadily, and Metarhizium anisopliae (Ascomycota: Clavicipitaceae) could be an important biopesticide candidate to control this pest. The effect of M. anisopliae on D. peruvianus nymphs and adults using formulations with soybean oil and Agral® was evaluated. Formulation using 10% soybean oil added to 108 conidia mL?1 (grown on used and reused rice) was the most effective for nymph and adult, causing 100% mortality 6 and 7 days after exposure, respectively. The SEM analysis of infected insects showed that M. anisopliae conidia were able to adhere anywhere on the exoskeleton, but were more abundant between the joints. Using the same rice for two batches of growth may be an option for improving commercial conidial production of M. anisopliae and may reduce overall costs. Its effect on D. peruvianus adults opens a new possibility for using this fungus as an alternative to chemical pesticides and the use of M. anisopliae in association with integrate pest management.  相似文献   

6.
Less than 1% of an ingested inoculum of the pathogenic fungus Metarhizium anisopliae was retained for long enough (ca. 24 h) in the gut of the desert locust, Schistocerca gregaria, for germination and penetration to have occurred. The residual inoculum did not initiate an infection in guts of fed conventional or axenic locusts. However, symptoms of mycosis (hyphal bodies in the haemolymph, fungal penetration of the hindgut intima and epithelium, tetanic paralysis) were consistently observed in axenic but not conventional locusts which were starved post-inoculation.It is concluded that the antifungal toxin produced by the gut bacteria defends the desert locust against gut invasion by Metarhizium anisopliae during periods of starvation when the physical defences, prominent in fed insects, are less apparent.  相似文献   

7.
Bioassays were conducted to document the effects of Metarhizium anisopliae infection on adult female Asian longhorned beetle (Anoplophora glabripennis) reproduction before death and subsequent survival of offspring. The effect of infection on fecundity was evaluated for females already laying eggs and for newly eclosed females using M. anisopliae isolates ARSEF 7234 and 7711, respectively. Decreased longevity and oviposition compared with controls were observed in females that were already laying eggs when exposed to M. anisopliae ARSEF 7234. Newly eclosed females exposed to M. anisopliae ARSEF 7711 displayed shortened longevity (10.0 ± 0.7 days vs 74.3 ± 6.8 days for controls) and decreased oviposition (1.3 ± 0.7 eggs per ARSEF 7711-exposed female vs 97.2 ± 13.7 eggs per female for controls) compared with controls. Percentages of eggs that did not hatch were greater for both groups of fungal-treated females compared with controls and 60.0% of unhatched eggs contained signs of fungal infection. The percentage of larvae dying within 9 weeks of oviposition was higher for sexually mature females exposed to ARSEF 7234 compared with controls and >40% of dead larvae displayed signs of fungal infection. Thus, for both stages of females and both fungal isolates, fewer surviving larvae were produced after female fungal infection compared with controls. M. anisopliae infection affects female fitness by decreasing female longevity, by decreasing female oviposition before death and through horizontal transmission of M. anisopliae to offspring.  相似文献   

8.
The entomogenous fungi Beauveria bassiana (nine isolates), Metarhizium anisopliae (seven isolates), and Paecilomyces farinosus (four isolates) were tested as pathogens of larvae of the elm bark beetle, Scolytus scolytus. Single isolates of B. bassiana and M. anisopliae were also tested against adult beetles. Of the 21 isolates tested as conidial suspensions against larvae, all proved pathogenic. The three most and least virulent isolates were, respectively, isolates of B. bassiana and M. anisopliae. The other isolates fell between these two extremes, with the four P. farinosus isolates all moderately virulent. Spore retention on larvae following inoculation was estimated by washing conidia off the larvae. From the results it was possible to relate larval mortality to the approximate spore dose causing infection at different spore concentrations. Thus, application of spores of the three pathogens at a concentration of 103 spores/ml resulted in limited mortality. At this concentration, an average of only a single spore was recovered from the inoculated larva. Adult bark beetles also proved susceptible to infection by isolates of B. bassiana and M. anisopliae. They were exposed to discs of elm bark dipped in a conidial suspension. It was estimated that a dose of less than 100 spores could cause infection of beetles following feeding on the elm bark discs.  相似文献   

9.
10.
One Indonesian isolate of the fungus Metarhizium anisopliae, named Majalengka strain, was evaluated not only for its virulence but also for the immune response of rice grasshopper Oxya japonica (Orthoptera: Acrididae) as a target organism. Five aqueous suspensions with different conidia concentrations in logarithmic series were prepared. The fungus showed high virulence as it caused 100% mortality at low conidia concentration (1.5 × 102 conidia/mL). Remarkable changes in the cellular and humoral responses were also observed when adult grasshoppers were infected with the fungus. The number of hemocytes decreased significantly within 12 h after infection. In addition, the total number of granulocytes increased rapidly in the first 12 h then gradually decreased 24 and 48 h after infections, while the number of coagulocytes fluctuated over time. The infection influenced the humoral response by increasing the phenoloxidase activity.  相似文献   

11.
Eight native isolates of the entomopathogenic fungus Metarhizium anisopliae (Metschnikoff) Sorokin were obtained by monitoring soils cultivated in a conventional manner. These isolates were compared in three areas: (a) conidial germination, (b) radial growth and sporulation and (c) ability of conidia to infect Tenebrio molitor larvae. All bioassays were carried out at constant temperatures of 10, 15, and 20 °C. Conidia of individual isolates demonstrated differences in germination after a 24-h long incubation at all evaluated temperatures. At 20 °C, the germination ranged from 67 to 100 % and at 15 °C from 5.33 to 46.67 %. At 10 °C, no germination was observed after 24 h; nevertheless, it was 8.67–44.67 % after 48 h. In terms of radial growth, the culture diameters and the associated production of spores of all isolates increased with increasing temperature. At 10 °C, sporulation was observed in three isolates while all remaining cultures appeared sterile. Three weeks post-inoculation, conidia of all assessed isolates caused 100 % cumulative mortality of treated larvae of T. molitor at 15 and 20 °C with the exception of isolate 110108 that induced 81.33 % mortality at 15 °C. At 10 °C, larval cumulative mortality ranged from 6.67 to 85.33 % depending on the isolate. Isolates 110108 and 110111 showed significantly slower outset and a much lower rate of infection at all temperatures compared to other tested isolates of M. anisopliae. The bioassays were carried out with the purpose to sort and select indigenous isolates of M. anisopliae useful as biocontrol agents in their original habitat.  相似文献   

12.
Metarhizium anisopliae was grown on six complex mycological media and on three types of rice at three moisture levels to determine the effect of growth substrate on conidial yield, viability, and virulence against mosquitoes immediately after spore maturation and after the storage of conidia at four different temperature-relative humidity (RH) combinations over a 1-year period. Conidial yields varied with the mycological media, but the viability and virulence of conidia against mosquitoes produced on all substrates were similar when spores were stored under the same conditions. The storage conditions were more critical to spore survival and virulence than the substrate upon which conidia were produced. The comparison of rice types for conidial production indicated that conidial yield, viability, and virulence to mosquitoes were more dependent upon the moisture level during growth and on the storage conditions that upon the rice used. The best storage conditions among those tested for the retention of both spore viability and virulence against mosquitoes were 19°C–97% RH and 4°C–0% RH.  相似文献   

13.
Characterization of pathogenesis genes of Metarhizium anisopliae, will provide better understanding of the role of these genes during pathogenesis. The expression profiles of pathogenesis-related genes encoding for a subtilisin-like protease (PR1), two types of chitinases (CHI2 and CHI3), and a peptide synthetase (PES) were studied during the different stages of M. anisopliae infection in Spodoptera exigua larvae using quantitative real-time RT-PCR. Sampling were at 0, 2, 12, and 24 h after infection, when the infected larvae reached the moribund stage (36 h), when mycelia emerged from the cadavers, when few conidia had formed on the mycelia, and when the cadavers were covered by conidia. For comparison, conidia and mycelial samples harvested from culture media were also included. Among the studied genes, PR1 expression was detected early at 2 h after infection and increased as the infection progressed. CHI2 and CHI3 expressions were detected 12 h after infection and when the mycelia emerged from cadavers, respectively. The expression levels of PR1, CHI2 and CHI3 genes increased significantly at the beginning of conidiogenesis on cadavers, but decreased at later stages. As expected, their expressions in pure fungal propagules were at very low levels. For PES gene, fold changes were not significant between different samples (less than onefold), indicating it might not have a major role in infecting stages. High expression levels of PR1, CHI2, and CHI3 genes during the post-mortem hyphal growth and conidiation stages of M. anisopliae clearly indicate the importance of these genes during the saprophytic phase of this fungus on host insect.  相似文献   

14.
The white grub species Phyllophaga polyphylla and Anomala cincta (Coleoptera: Melolonthidae) are economically important species that affect many crops in Mexico. A series of experiments to study the pathogenic interaction between isolates of Beauveria bassiana and Metarhizium anisopliae and these two insect species were undertaken. First, the susceptibility of third instar P. polyphylla larvae to each of seven isolates representing both species of fungus was evaluated by dipping the insects in 1?×?108 conidia?ml?1 suspensions. A second study examined the differences in the susceptibility of P. polyphylla and A. cincta larvae to two selected isolates for each of the fungal species. Finally, the susceptibility of A. cincta larvae to one M. anisopliae isolate when incubated in soil collected from four different sites was assessed. No significant differences in proportion of infection of P. polyphylla larvae were observed amongst the fungal isolates tested and mortality due to fungal infection was never greater than 20% after 36?days incubation. Anomala cincta larvae were more susceptible than P. polyphylla larvae, with greater than 90% infection when inoculated with isolates of M. anisopliae whereas mortalities of only 20% where achieved against P. polyphylla larvae. The soil type in which A. cincta were incubated following inoculation with M. anisopliae affected their susceptibility to infection. The results demonstrated that there is a complex interaction amongst entomopathogenic fungi, white grub larvae and soil properties, and points to the need of further investigation of this system in order to optimize the efficacy of entomopathogenic fungi against these insect species.  相似文献   

15.
Metarhizium anisopliae is a well-characterized biocontrol agent of a wide range of insects including cane grubs. In this study, a two-dimensional (2D) electrophoresis was used to display secreted proteins of M. anisopliae strain FI-1045 growing on the whole greyback cane grubs and their isolated cuticles. Hydrolytic enzymes secreted by M. anisopliae play a key role in insect cuticle-degradation and initiation of the infection process. We have identified all the 101 protein spots displayed by cross-species identification (CSI) from the fungal kingdom. Among the identified proteins were 64-kDa serine carboxypeptidase, 1,3 beta-exoglucanase, Dynamin GTPase, THZ kinase, calcineurin like phosphoesterase, and phosphatidylinositol kinase secreted by M. ansiopliae (FI-1045) in response to exposure to the greyback cane grubs and their isolated cuticles. These proteins have not been previously identified from the culture supernatant of M. anisopliae during infection. To our knowledge, this the first proteomic map established to study the extracellular proteins secreted by M. ansiopliae (FI-1045) during infection of greyback cane grubs and its cuticles.  相似文献   

16.
Aims: To determine the stability and conidial yield of two strains of the entomopathogenic fungus Metarhizium anisopliae and one strain of M. brunneum, being developed for the control of insect pests. Methods and Results: The conidial yields and the shelf‐life of the conidia of two commercially viable strains of M. anisopliae V275 (=F52) and ARSEF 4556 and one strain of M. brunneum (ARSEF 3297) were determined after harvesting conidia from in vitro subcultures on Sabouraud dextrose agar (SDA) and broken basmati rice. The strains were stable and showed no decline in virulence against Tenebrio molitor, even when subcultured successively 12 times on SDA. Conidia‐bound Pr1 protease activity decreased in conidia harvested from SDA and mycosed cadavers after the 1st subculture, but increased in conidia produced on rice. The C:N ratio of conidia from mycosed cadavers was lower than that of conidia from rice or SDA. Irrespective of the number of subcultures, strain ARSEF 4556 produced significantly higher conidial yields than ARSEF 3297 and V275. The 12th subculture of V275 and ARSEF 3297 produced the lowest conidial yield. Shelf‐life studies showed that conidia of strain ARSEF 4556 had a higher conidial viability than V275 and ARSEF 3297 after 4 months, stored at 4°C. Conclusions: The current study shows that determining strain stability and conidial yield through successive subculturing is an essential component for selecting the best strain for commercial purposes. Significance and Impact of the Study: This is the first study to compare quality control parameters in the production of conidia on rice, and it shows that the level of Pr1 is comparatively high for inoculum produced on rice.  相似文献   

17.
《Journal of Asia》2022,25(1):101846
Meloidogyne incognita is one of the most important plant parasitic nematodes. This study was conducted to determine the nematicidal potential of Beauveria bassiana and Metarhizium anisopliae against M. incognita. B. bassiana and M. anisopliae spore suspensions and bio -nematicide, Purpureocillium lilacinum were applied. B. bassiana and M. anisopliae revealed considerable nematicidal activity against M. incognita in tomato and cucumber. The gall index decreased gradually from 8.0 for control to 3.2, 2.0 and 2.2 for B. bassiana, M. anisopliae and P. lilacinum in tomato, respectively. The highest reduction (%) in gall formation (control index) was calculated as 75.2 % in M. anisopliae treated group for tomato. The gall index was 7.6 for control, but decreased to 3.6, 2.0 and 2.2 for B. bassiana, M. anisopliae and P. lilacinum in cucumber, respectively. The highest control index was 71.7 % for M. anisopliae in cucumber. The number of the second instar juveniles of M. incognita was recorded as 2240 for control. However, this value reduced to 508, 332 and 328 by B. bassiana, M. anisopliae and P. lilacinum in tomato, respectively. The highest control indexes for the second instar juveniles were 85.2 % and 85.3 % for M. anisopliae and P. lilacinum in tomato, respectively. Alike, the highest control indexes were 84.9 % and 85.7 % for the same applications in cucumber, respectively. B. bassiana and M. anisopliae displayed also positive effect on the number of leaves, dry and fresh root weights of tomato. The results showed that B. bassiana and M. anisopliae can be considered as an alternative.  相似文献   

18.

Background

Metarhizium anisopliae, a soil-borne entomopathogen found worldwide, is an interesting fungus for biological control. However, its efficacy in the fields is significantly affected by environmental conditions, particularly moisture. To overcome the weakness of Metarhizium and determine its isolates with antistress capacity, the efficacies of four M. anisopliae isolates, which were collected from arid regions of Yunnan Province in China during the dry season, were determined at different moisture levels, and the efficacy of the isolate MAX-2 from Shangri-la under desiccation stress was evaluated at low moisture level.

Results

M. anisopliae isolates MAX-2, MAC-6, MAL-1, and MAQ-28 showed gradient descent efficacies against sterile Tenebrio molitor larvae, and gradient descent capacities against desiccation with the decrease in moisture levels. The efficacy of MAX-2 showed no significant differences at 35% moisture level than those of the other isolates. However, significant differences were found at 8% to 30% moisture levels. The efficacies of all isolates decreased with the decrease in moisture levels. MAX-2 was relatively less affected by desiccation stress. Its efficacy was almost unaffected by the decrease at moisture levels > 25%, but slowly decreased at moisture levels < 25%. By contrast, the efficacies of other isolates rapidly decreased with the decrease in moisture levels. MAX-2 caused different infection characteristics on T. molitor larvae under desiccation stress and in wet microhabitat. Local black patches were found on the cuticles of the insects, and the cadavers dried without fungal growth under desiccation stress. However, dark black internodes and fungal growth were found after death of the insects in the wet microhabitat.

Conclusions

MAX-2 showed significantly higher efficacy and superior antistress capacity than the other isolates under desiccation stress. The infection of sterile T. molitor larvae at low moisture level constituted a valid laboratory bioassay system in evaluating M. anisopliae efficacy under desiccation stress.  相似文献   

19.
Metarhizium anisopliae is an imperfect entomopathogenic fungus. Once invading into its host,M. anisopliae needs to absorb basic nutrients such as phosphorus from the host haemolymph. A large number of phosphorylated compounds in haemolymph cannot be directly utilised by the fungal cell and must be hydrolysed into available form by phosphatase before ingested. Aims of this paper were to investigate optimum fermentation conditions for production of acid phosphatase and phosphatase isoenzymes byMetarhizium anisopliae. The optimum fermentation conditions were: glucose, 20 g/l; (NH4)2SO4, 2 g/l; casein, 4 g/l; MgSO4, 0.5 g; KCl, 0.5 g; microelement salt solution, 10 ml; inoculum size, 1×107 spores per 100 ml medium; initial medium pH, 6.0. Under these conditions, the highest total acid phosphatase activity was 3.05 U/ml in 4 days at 27 °C and 160 rpm. Synthesis of the acid phosphatase was repressed by 0.01% inorganic phosphate in culture medium. The spectrum of isoenzymes produced byM. anisopliae varied depending on the phosphorus source employed in the culture. A specific isoform with pI 9.45 was induced by casein, and another isoform of pI 8.21 was induced by phytic acid and disodium phenyl phosphate.  相似文献   

20.
The rhinoceros beetle, Oryctes rhinoceros L., is an economically important pest of the coconut palm. Management of this pest has been accomplished using microbial agents viz., Oryctes virus (OrV) and an entomofungal pathogen Metarhizium anisopliae. Recently an opportunistic bacterial pathogen Pseudomonas alcaligenes has also been noticed to cause septicaemia in the grubs when under stress. To unravel the influence of abiotic weather factors and the interactions amongst these microbial pathogens, a 3 year study was conducted from September 1996 to August 1999 in three of the southern districts of Kerala, India. Of the 6627 grubs and 307 adults collected from various breeding sites of the pest, 5% of the grubs and 22% of the adults had natural virus infection, 3% larvae died of M. anisopliae mycosis and 20% larvae succumbed to bacterial septicaemia. Oryctes virus infection in grubs and adults was negatively correlated to minimum temperature (correlation co-efficient, r = –0.4, and –0.6 respectively, sample size, n = 0). Increase in relative humidity increased the fungal activity (r = 0.8) whereas, maximum temperature had a negative impact (r = –0.7). Occurrence of virus infection in grubs and adults was positively correlated (r = 0.6), supporting the contention of active transmission of the virus pathogen between these two stages. The bacterial septicaemia in the grubs was marginally correlated with virus infection and P. alcaligenes undermined the efficiency of the virus pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号