首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
由禾谷镰刀菌引起的小麦赤霉病是小麦生产最重要的真菌病害之一,除了造成严重的产量损失外,其病原菌还会产生多种真菌毒素危害人畜健康。蛋白激酶在禾谷镰刀菌生长发育、植物侵染和胁迫应答等方面具有重要作用。综述了禾谷镰刀菌主要蛋白激酶在生物学功能和分子作用机制等方面的研究进展,并对未来禾谷镰刀菌蛋白激酶的研究趋势进行了展望,以期为今后禾谷镰刀菌蛋白激酶的研究与小麦赤霉病的防治提供理论参考。  相似文献   

2.
禾谷镰刀菌复合种(Fusarium graminearum species complex,FGSC)引起的赤霉病是小麦生产上危害最为严重的病害之一。赤霉病除了造成减产外,感病籽粒中含有多种镰刀菌毒素,如单端孢霉烯族的呕吐毒素,可引起人畜中毒和重大疾病,给食品安全构成严重威胁。过去20年,随着禾谷镰刀菌全基因组序列的公布和遗传转化体系的成熟,禾谷镰刀菌Fusarium graminearum的功能基因组学的研究取得了较大进展,单端孢霉烯族毒素的产生、调控机制及网络研究成为热点。本文综述国内外单端孢霉烯族毒素的生物合成和分子调控机制,包括合成基因簇及决定不同产毒化学型的基因、产毒调控元件、环境因子调控产毒的分子机制,可为小麦抗赤霉病的育种提供新思路,为新型药剂的研发提供分子靶标,为赤霉病的持续防控和毒素污染的有效治理提供理论依据。  相似文献   

3.
从全国29个省、自治区和直辖市分离到的镰刀菌中,随机抽取335株分别接种到大米培养基上,进行变温培养。用薄层扫描法定量检测培养物在不同温度阶段的玉米赤霉烯酮含量。检测结果表明,50.7%的受检菌株具有产生玉米赤霉烯酮的能力,分布广泛,产量范围为0.3—5143.8mg/kg大米.玉米赤霉烯酮产量与低温无必然相关性。125株菌株(占产生菌的73.5%)在常温下即可产生玉米赤霉烯酮。经低温处理后,它们之中仅有41.6%的菌株显著增加了产量。产生菌分属7个种:禾谷镰刀菌(F.graminearum)大刀镰刀菌(F.culmorum),燕麦镰刀菌(F.avenaceum),半裸镰刀菌(F.semitectum),木贼镰刀菌(F.equiseti),紧密镰刀菌(F.compactum)和克地镰刀菌(F.crookwellense)。其中,禾谷镰刀菌占85.3%。  相似文献   

4.
青海豌豆根腐病病原菌种类及致病性的研究   总被引:4,自引:0,他引:4  
豌豆极腐病是青海东部干旱地区豌豆生产上的一种新病害,近年来危害逐年加重,致使豌豆产量遭受严重损失。根据分离鉴定和致病性测定结果,青海豌豆根腐病病原真菌是由茄镰刀菌、尖孢镰刀菌、豌豆丝囊霉、根串珠霉、立枯丝核菌、腐霉、链孢粘帚霉等复合反染所引起的。经回接试验:镰刀菌和豌豆丝囊霉对豌豆具有较强的致病力;腐霉及其他病原菌则有加强腐烂作用。  相似文献   

5.
从全国29个省、自治区和直辖市分离到的镰刀菌中,随机抽取335株分别接种到大米培养基上,进行变温培养。用薄层扫描法定量检测培养物在不同温度阶段的玉米赤霉烯酮含 量。检测结果表明,50.7%的受检菌株具有产生玉米赤霉烯酮的能力,分布广泛,产量范围为0.3—5143.8mg/kg大米.玉米赤霉烯酮产置与低温无必然相关性。 125株菌株(占产生菌的73.5%)在常温下即可产生玉米赤霉烯酮。经低温处理后,它们之中仅有41.6%的菌株显著增加了产量。产生菌分属7个种:禾谷镰刀菌(F.Grammearum)大刀镰刀菌(F.Culmorum),燕麦镰刀菌(F.Avenaceum),半裸镰刀菌(F.Semitectum),木贼镰刀菌(F. equiseti),紧密 镰刀菌(F.Compactum)和克地镰刀菌(F. crookwellense)。其中,禾谷镰刀菌占85.3%。  相似文献   

6.
禾谷镰刀菌是小麦赤霉病的主要致病菌,其真菌次生代谢产生的单端孢霉烯类B型毒素,如雪腐镰刀菌烯醇(nivalenol,NIV)、脱氧雪腐镰刀菌烯醇(deoxynivalenol,DON)和其它乙酰化衍生物等污染小麦籽粒后对人畜健康构成威胁。综述了近年来国内外对小麦赤霉病镰孢菌单端孢霉烯类B型毒素生物合成的主要途径及分子调控研究进展,对毒素合成过程中的重要调控基因如TRI5、TRI7和TRI13在农业中的应用进行了阐述。  相似文献   

7.
龙血树真菌群及其对血竭形成的影响   总被引:19,自引:0,他引:19  
从柬埔寨龙血树(Dracaenacochinchinensis)茎杆中分离到303株真菌,其中镰刀菌属(Fusarium)菌株占总分离频率的52%,其次是短梗霉(Aureobasidium)和枝孢霉(Cladosporium)。通过活体接种对血竭产生的影响试验表明,对血竭形成起重要作用的真菌主要是禾谷镰刀菌龙血树变种(F.graminumvar.dracaena)等4株红色镰刀菌,可使血竭形成量提高66%-120%。  相似文献   

8.
真菌毒素是丝状真菌产生的次级代谢物,脊椎动物通过自然途径即使吸入少量也会中毒。为了提高食品的安全性,使消费者免遭有害污染,就必须对可能产生这类有毒物质的真菌进行严格的检测,这种检测要贯穿于农产品生产以及粮食和饲料加工的各个重要环节。基于聚合酶链式反应的诊断技术已经应用于最严重的毒素产生菌(诸如镰刀霉菌、曲霉菌和青霉菌等)的检测和鉴定,  相似文献   

9.
尖孢镰刀菌是从大骨节病病区玉蜀黍种粒中分离出最多的一种菌。近年来,Brian,P.W.等报道一些镰刀菌属既能产生植物毒素,又能产生真菌毒素,二者常呈正相关。我们曾以土壤接菌诱发植株凋萎法筛选出强毒性尖孢镰刀菌775-3-3菌株,并对其毒力作了动物试  相似文献   

10.
镰刀菌属分类学研究历史与现状   总被引:18,自引:0,他引:18  
张向民 《菌物研究》2005,3(2):59-62
镰刀菌是农作物和经济作物的重要病原菌,其产生的真菌毒素可危及人畜健康。近十几年来欧美的科学家在研究技术上有新的突破,使镰刀菌属种的概念在认识上有迅速的发展,尤其是那些引起谷类作物严重病害,并产生毒素的种类。在我国,从谷类粮食、饲料中检出镰刀菌毒素的现象屡有报道,我们对镰刀菌属种以及产生这些毒素的菌种(菌株)的认识还有待进一步加强。  相似文献   

11.
The fungal species isolated from Korean cereals (barley, polished barley, wheat, rye, and malt) were Alternaria spp., Aspergillus spp., Chaetomium spp., Drechslera spp., Epicoccum sp., Fusarium spp., and Penicillium spp., etc. The number of Fusarium strains isolated was 36, and their ability to produce Fusarium mycotoxins on rice was tested. Nivalenol (NIV) was produced by Fusarium graminearum (7 of 9 isolates), Fusarium oxysporum (3 of 10 isolates), and Fusarium spp. (7 of 15 isolates). Of 15 isolates of Fusarium spp., 6 formed deoxynivalenol (DON). Fusarenon-X and 3-acetyl-DON were produced by most NIV- and DON-forming isolates, respectively. Zearalenone was produced by 3 isolates of F. graminearum, 1 isolate of Fusarium equiseti, and 11 isolates of Fusarium spp. T-2 toxin was not produced by any Fusarium isolates. The highest concentrations of mycotoxins produced by Fusarium isolates were 77.4 (NIV), 5.3 (DON), 138.3 (fusarenon-X), 40.6 (3-acetyl-DON), and 23.2 (zearalenone) micrograms/g.  相似文献   

12.
The fungal species isolated from Korean cereals (barley, polished barley, wheat, rye, and malt) were Alternaria spp., Aspergillus spp., Chaetomium spp., Drechslera spp., Epicoccum sp., Fusarium spp., and Penicillium spp., etc. The number of Fusarium strains isolated was 36, and their ability to produce Fusarium mycotoxins on rice was tested. Nivalenol (NIV) was produced by Fusarium graminearum (7 of 9 isolates), Fusarium oxysporum (3 of 10 isolates), and Fusarium spp. (7 of 15 isolates). Of 15 isolates of Fusarium spp., 6 formed deoxynivalenol (DON). Fusarenon-X and 3-acetyl-DON were produced by most NIV- and DON-forming isolates, respectively. Zearalenone was produced by 3 isolates of F. graminearum, 1 isolate of Fusarium equiseti, and 11 isolates of Fusarium spp. T-2 toxin was not produced by any Fusarium isolates. The highest concentrations of mycotoxins produced by Fusarium isolates were 77.4 (NIV), 5.3 (DON), 138.3 (fusarenon-X), 40.6 (3-acetyl-DON), and 23.2 (zearalenone) micrograms/g.  相似文献   

13.
Fusarium species cause not only root, stem and ear rot with severe reductions in crop yield, they produce also toxic secondary metabolites (mycotoxins) such as deoxynivalenol (DON) and zearalenone (ZEA). During several growing seasons the presence of Fusarium spp was followed up. DON and ZEA were determined and related to infection levels. The distribution of DON and ZEA in the different plant parts was studied as well as the influence of the ensiling process on the mycotoxin content. More or less important varietal differences in susceptibility for Fusarium spp. could be detected. DON and ZEA were clearly present in most of the analysed samples. No clear relationship could be detected between visual disease symptoms and mycotoxin content. The accumulation of DON and ZEA was different for the analysed aerial plant parts. The ensiling process gave no reduction of the mycotoxin content.  相似文献   

14.
From 1997 to 1999 the occurrence ofFusarium spp. on wheat grain and its contamination with the mycotoxins deoxynivalenol and invalenol were investigated under organic farming conditions in the Rhineland, Germany. For comparison, some trials were also run under integrated farming conditions. The importance of the seed contamination withFusarium spp. as well as the impact of farming system, previous crop and soil preparation on the inoculum sources ofFusarium spp. in the soil were investigated. The data on the inoculum sources was compared to the Fusarium infection of grains and their content of DON and NIV. The crop residues in the soil were the most important inoculum source for the Fusarium species infecting wheat ears and grains. The amount of potential inoculum in the soil largely depended on the previous crop and the system of soil preparation.  相似文献   

15.
A single isolates ofFusarium graminearum Schwabe KF 366 andFusarium culmorum (W.G.Sm.) Sacc. KF 365 were used to infect 10 genotypes (9 lines and one cultivar) of winter triticale, 1 rye cultivar and 1 wheat cultivar, and amounts of mycotoxins in kernels were analysed at the same stage of development. One genotype of triticale CHD 353/79 and rye “Chodan” were found to be most resistant towards both species infection with lowest amount of mycotoxins (deoxynivalenol) content in kernels and also the lowest yield reduction. The most susceptible line CZR 142 cumulated in kernels about ten times higher amount of mycotoxins (up 53 mg DON/kg and 16 mg 3AcDON/kg, and 5 mg zearalenone/kg). GenerallyF, culmorum formed higher level of mycotoxins in kernels of infected heads thanF. graminearum. In kernels of more susceptible genotypes except deoxynivalenol, 3 acetyldeoxynivalenol and zearalenone also were present.  相似文献   

16.
Fusarium spp. are ubiquitous fungi infecting cereals and grains, and therefore constitute a major problem for agriculture. Their trichothecene metabolites, and in particular deoxynivalenol and its 3-acetylated derivative, are the mycotoxins involved. The major metabolite produced by Fusarium culmorum is 3-acetyldeoxynivalenol. Studies in vivo with Fusarium culmorum have established that its tricyclic intermediate, isotrichodermin, is a major biosynthetic precursor, which is hydroxylated at position 15 to give 15-deacetylcalonectrin, prior to being converted to the product. In a preliminary in vitro investigation of the cell-free system involved in this transformation, we suggested that cytochrome P450 enzymes are not involved. In this paper, the isotrichodermin-15-hydroxylase from the microsomal fraction of Fusarium culmorum was solubilized and partially purified (60 fold). Our studies with cofactors indicate that this enzyme is a flavoprotein, and the inducers tested highly indicate that indeed the hydroxylase is not attached to cytochrome P450. This is particularly interesting, since the only other enzyme catalyzing the same reaction isolated from Fusarium sporotrichiodes is attached to cytochrome P450.  相似文献   

17.
The microbial modification of several trichothecene mycotoxins by trichothecene-producing strains of Fusarium nivale and F. solani was studied. These results were compared with the corresponding chemical modifications. The growing mycelia of Fusarium spp. did not convert 4beta-acetoxy-3alpha,7alpha, 15-trihydroxy-12, 13-epoxytrichothec-9-en-8-one (fusarenon) into 3alpha,4beta, 7alpha,15-tetrahydroxy-12,13-epoxy-trichothec-9-en-8-one (nivalenol), whereas 3alpha,4beta,7alpha,15-tetracetoxy-12,13-epoxytrichothec-9-en-8-one (tetraacetylnivalenol) was deacetylated to yield 3alpha-hydroxy-4beta,7alpha,15-triacetoxy-12,13-epoxytrichothec-9-en-8-one (4,7,15-triae-tylnivalenol), which was resistant to further deacetylation. T-2 toxin was transformed intoHT-2 toxin, and 8alpha-(3-methylbutyryloxy)-3alpha,4beta,-15-triacetoxy-12,13-epoxytrichothec-9-en-8-one (T-2 acetate) was transformed into HT-2 toxin via T-2 toxin. Chemical modification with ammonium hydroxide converted tetraacetylnivalenol into fusarenon via 4,7,15-triacetylnivalenol. 3alpha-7alpha,15-Triacetoxy-12,13-epoxytrichothec-9-en-8-one (triacetyldeoxynivalenol) gave deacetylation products lacking the C-7 or c-15 acetyl group in addition to 7alpha,15- diacetoxy-3alpha-hydroxy-12, 13-epoxytrichothec-9-en-8-one (7,15-diacetyldeoxynivalenol). These results demonstrate the regio-selectivity in microbial modification of trichothecenes. Based on the results and available knowledge concerning the transformation of trichothecenes, mechanisms for biological modifications of these mycotoxins are postulated.  相似文献   

18.
Certain Fusarium species cause head blight of wheat and other small grains worldwide and produce trichothecene mycotoxins. These mycotoxins can induce toxicoses in animals and humans and can contribute to the ability of some fusaria to cause plant disease. Production of the trichothecene 3-acetyldeoxynivalenol (3-ADON) versus 15-acetyldeoxynivalenol (15-ADON) is an important phenotypic difference within and among some Fusarium species. However, until now, the genetic basis for this difference in chemotype has not been identified. Here, we identified consistent DNA sequence differences in the coding region of the trichothecene biosynthetic gene TRI8 in 3-ADON and 15-ADON strains. Functional analyses of the TRI8 enzyme (Tri8) in F. graminearum, the predominant cause of wheat head blight in North America and Europe, revealed that Tri8 from 3-ADON strains catalyzes deacetylation of the trichothecene biosynthetic intermediate 3,15-diacetyldeoxynivalenol at carbon 15 to yield 3-ADON, whereas Tri8 from 15-ADON strains catalyzes deacetylation of 3,15-diacetyldeoxynivalenol at carbon 3 to yield 15-ADON. Fusarium strains that produce the trichothecene nivalenol have a Tri8 that functions like that in 15-ADON strains. TRI3, which encodes a trichothecene carbon 15 acetyltransferase, was found to be functional in all three chemotypes. Together, our data indicate that differential activity of Tri8 determines the 3-ADON and 15-ADON chemotypes in Fusarium.  相似文献   

19.
Fungal contamination of plant products is an important risk factor for health, because of the high mycotoxin potential deriving from these contaminations with multiple effects: hepatic toxicity, teratogenic, mutagenic and carcinogenic. The contamination of cereals with mycotoxins has been a serious problem in Balkan communities. Several studies implicated mycotoxins, in endemic kidney disease geographically limited to Balkan region (Balkan endemic nephropathy). The trichothecenes are of particular concern because they are ubiquitous found in wheat, corn and barley throughout the world. Fumonisins have been isolated from certain Fusarium species of which FB1, FB2 and FB3 are the major ones produced in naturally contaminated foods.These mycotoxins are produced on cereal grains infected by Fusarium while being grown in-the-field. The aim of this study is to evaluate the presence of the Fusarium species in cereals from West side of Romania and to determinate the concentrations of deoxynivalenol (DON) and fumonisine (F1+F2). Identification of Fusarium species was done using the total number of fungal species determination method. The level of mycotoxins was determined with the immune-enzymatic method ELISA. 27 cereal samples from rural households in three counties in West Romania were analysed.  相似文献   

20.
Cylindrocarpon, Cylindrocladium and Fusarium spp. were often isolated from the woody roots, stem-base and lower foliage of diseased container-grown Calluna vulgaris and Erica spp. plants collected from English and Scottish nurseries. The highest isolation frequencies were obtained for Cylindrocarpon destructans, Cylindrocladium scoparium, Cylindrocladium ilicicola. Fusarium tricinctum, Fusarium avenaceum and Fusarium sporotrichioides . Isolations of these fungi were made more frequently from diseased plants that were at least 1-year-old. The percentage incidence of Cylindrocarpon, Cylindrocladium and Fusarium spp. did not differ between Scottish and English nurseries. Cylindrocarpon destructans. Cylindrocladium ilicicola and C. scoparium were more pathogenic to rooted C. vulgaris cuttings than F. tricinctum. F. avenaceum or F. sporotrichioides in laboratory and glasshouse tests. The high isolation frequency of Cylindrocarpon. Cylindrocladium and Fusarium spp., and their pathogenicity in tests, suggests that these fungi are involved in root, stem-base and lower foliage diseases in crops of C. vulgaris and Erica spp. The importance of these findings for the integrated control of diseases on ericaceous plant nurseries is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号