首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
植物凝集素的分子生物学研究   总被引:34,自引:0,他引:34  
植物凝集素是一类具有高度特异性糖结合活性的蛋白,含有一个或多个可与单糖或寡聚糖特异可逆结合的非催化结构域。它的糖结合特异性主要针对外源寡糖,主要生理功能是介异植物的防御反应。到目前为止已克隆了222个植物凝集素基因。作者就植物凝集素的分类、性质、功能、凝集素基因的克隆和凝集素的翻译后加工过程作一综述。  相似文献   

2.
植物血凝素(1ectin)一词,起源于拉丁语Legere,它是非免起源的,能与糖类结合的一类蛋白质,具有使细胞凝集和多糖沉淀的性质。一般而言,植物凝集素是由二至四个亚单位的寡聚蛋白,个别植物凝集素分子的亚单位可达十八个,通常每个亚单位有一个能与糖结合的位点,这样使植物血凝素能凝能植物和动物的细胞,在含糖的微分子之间起连接作用,其连接方式主要是疏水键和氢键。不同的植物血凝素在分子量大小,氨基酸组成,对金属的需求及三维结构方面都不相同。最早的凝集素是1888在植物中发现的,所以命名为植物凝集素。当时,Stillmark在蓖麻子中发现了一种蛋白酶细胞凝集因子。至今,已分离了几百种凝集素,发现其不光存在于植物中,亦存在于动物和微生物中,几乎见于各种生活的有机体,并不限于特殊的器官和组织。  相似文献   

3.
植物凝集素研究进展   总被引:18,自引:1,他引:17  
植物凝集素广泛分布于植物界,它可以根据不同性质进行分类,按进化及结构相关性可以分为七个家族;豆科凝集素,单子叶植物甘露糖结构凝集素,含橡胶素结构域的几丁质结合凝集素,2型核糖体失活蛋白,葫芦科韧皮部凝集素,木菠萝素相关凝集素和苋科凝集素,在长期的进化过程中,它们形成几种不同的结合模体来识别一些外源多糖,在植物中未发现合适的内源性多糖受体。植物凝集素在生物学研究,农业和医学上有广泛的应用。  相似文献   

4.
蘑菇凝集素及其研究进展   总被引:7,自引:0,他引:7  
凝集素是非酶、非抗体,可凝集细胞的蛋白质或糖蛋白。作为药用真菌重要的药理成分,蘑菇凝集素已成为继研究蘑菇多糖之外的另一活性物质。基于其众多生物学性质,其研究越来越深入,在生命科学各个研究领域中用途也越来越广。就蘑菇凝集素的分布、结构、性质、作用与功能、提取方法和应用作简要综述。主要涵盖凝集性质及其影响因子、抑制肿瘤及抗癌抗增生活性、促有丝分裂活性及免疫调节活性、毒性作用、抗植物病毒及杀虫剂活性、促菌丝分化及识别活性等。  相似文献   

5.
在转基因植物中利用植物凝集素防治害虫的研究   总被引:17,自引:0,他引:17  
植物凝集素对包括同翅目在内的害虫具有有效抗性。本文就同翅目害虫的危害性、植物凝集素定义的不断深入认识、植物凝集素在植物体内的生理作用、对害虫的作用机理、并对人工饲喂害虫实验及转凝集素的抗虫基因工程研究进展、存在总是等方面作一阐述。  相似文献   

6.
植物凝集素对包括同翅目在内的害虫具有有效抗性作用。本文就同翅目害虫的危害性、植物凝集素定义的不断深入认识、植物凝集素在植物体内的生理作用、对害虫的作用机理、并对人工饲喂害虫实验及转凝集素的抗虫基因工程研究进展、存在问题等方面作一阐述。  相似文献   

7.
植物凝集素及其在抗虫植物基因工程中的应用   总被引:5,自引:0,他引:5  
常团结  朱祯 《遗传》2002,24(4):493-500
植物凝集素是一类具有特异糖结合活性的蛋白,具有一个或多个可以与糖或寡聚糖特异可逆结合的非催化结构域。其糖结合活性是针对外源寡糖,参与植物的防御反应。本文综述了有关植物凝集素分子生物学的研究进展,介绍了植物凝集素的分类、糖结合特性、近年来有关植物凝集素蛋白晶体结构的研究,及其与糖结合能力相关的生物学功能。并对植物凝集素在抗虫植物基因工程中的应用现状及发展前景做了阐述。 Abstract:Plant lectins are proteins possessing at least one non-catalytic domain that binds reversibly to specific mono-or oligosaccharides.They distinguish themselves from other plant proteins by the ability of carbohydrate binding.Most plant lectins are directed to bind foreign polysacchride.Plant lectin is believed to take part in the defense responses against invader.In this paper we presented a review on the classification,characters,functions,crystal structure and,functions related to the carbohydrate binding activity.The status and prospect of plant lectins utilization were also discussed.  相似文献   

8.
植物凝集素的主要生物学作用及应用   总被引:5,自引:0,他引:5  
一、植物凝集素简介 植物凝集素(Lectin)一词,起源于拉丁语Legere。它是非免疫起源的,能与糖类结合的一类蛋白质,具有使细胞凝集和使多糖沉淀的特性,每分子的植物凝集素至少有二个能与糖结合的位点。一般而言,植物凝集素是由二  相似文献   

9.
近年来利用植物凝集素控制蚜虫的研究越来越多。本文主要介绍了植物凝集素的分类、抗蚜作用及机理、定性与定量的测定方法;并对单子叶甘露糖结合凝集素家族和豆科类凝集素家族的抗蚜效益、凝集素对蚜虫天敌的影响等研究进行了综述;对其应用前景及可能存在的问题进行了讨论。  相似文献   

10.
植物凝集素在植物体内的生理作用   总被引:4,自引:0,他引:4  
现有研究表明,植物种子中的凝集素是植物体内的储存蛋白;扁豆和稻胚凝集素对胚胎的分裂和分化有促进作用;在豆科植物和根瘤菌之间的共生作用中,凝集素起着高度专一的识别作用;麦胚凝集素在种胚萌发时,起着抗真菌的作用;体外实验也证明凝集素对危害玉米的主要害虫的发育有阻碍作用;还发现植物凝集素具有酶的活性和酶抑制剂的作用,从而调节植物体的生理活动。  相似文献   

11.
Plant lectins: occurrence,biochemistry, functions and applications   总被引:17,自引:0,他引:17  
Growing insights into the many roles of glycoconjugates in biorecognition as ligands for lectins indicates a need to compare plant and animal lectins. Furthermore, the popularity of plant lectins as laboratory tools for glycan detection and characterization is an incentive to start this review with a brief introduction to landmarks in the history of lectinology. Based on carbohydrate recognition by lectins, initially described for concanavalin A in 1936, the chemical nature of the ABH-blood group system was unraveled, which was a key factor in introducing the term lectin in 1954. How these versatile probes are produced in plants and how they are swiftly and efficiently purified are outlined, and insights into the diversity of plant lectin structures are also given. The current status of understanding their functions calls for dividing them into external activities, such as harmful effects on aggressors, and internal roles, for example in the transport and assembly of appropriate ligands, or in the targeting of enzymatic activities. As stated above, attention is given to intriguing parallels in structural/functional aspects of plant and animal lectins as well as to explaining caveats and concerns regarding their application in crop protection or in tumor therapy by immunomodulation. Integrating the research from these two lectin superfamilies, the concepts are discussed on the role of information-bearing glycan epitopes and functional consequences of lectin binding as translation of the sugar code (functional glycomics).  相似文献   

12.
The establishment of a robust technology platform for the expression cloning of carbohydrate-binding proteins remains a key challenge in glycomics. Here we explore the utility of using yeast surface display (YSD) technology in the interaction-based lectin cloning from complete cDNA libraries. This should pave the way for more detailed studies of protein-carbohydrate interactions. To evaluate the performance of this system, lectins representing three different subfamilies (galectins, siglecs, and C-type lectins) were successfully displayed on the surface of Saccharomyces cerevisiae and Pichia pastoris as a-agglutinin and/or alpha-agglutinin fusions. The predicted carbohydrate-binding activity could be detected for three out of five lectins tested (galectin-1, galectin-3, and siaoadhesin). For galectin-4 and E-selectin, no specific carbohydrate-binding activity could be detected. We also demonstrate that proteins with carbohydrate affinity can be specifically isolated from complex metazoan cDNA libraries through multiple rounds of FACS sorting, employing multivalent, fluorescent-labeled polyacrylamide-based glycoconjugates.  相似文献   

13.
Carbohydrate-binding proteins of marine invertebrates   总被引:1,自引:0,他引:1  
The information on the carbohydrate specificity and molecular organization of some carbohydrate-binding proteins (lectins) of marine invertebrates is reported. Antiviral activity of some of the lectins against human immunodeficiency virus has been studied. Lectins of marine invertebrates are promising tools for studying natural glycoconjugates and cell effectors in vitro.  相似文献   

14.
Carbohydrate microarray technologies are new developments at the frontiers of glycomics. Results of 'proof of concept' experiments with carbohydrate-binding proteins of the immune system - antibodies, selectins, a cytokine and a chemokine - and several plant lectins indicate that microarrays of carbohydrates (glycoconjugates, oligosaccharides and monosaccharides) will greatly facilitate not only surveys of proteins for carbohydrate-binding activities but also elucidation of their ligands. It is predicted that both naturally occurring and synthetic carbohydrates will be required for the fabrication of microarrays that are sufficiently comprehensive and representative of entire glycomes. New leads to biological pathways that involve carbohydrate-protein interactions and new therapeutic targets are among biomedically important outcomes anticipated from applications of carbohydrate microarrays.  相似文献   

15.
植物凝集素的超级家族   总被引:8,自引:0,他引:8  
凝集素是一类专一、可逆地和糖类结合的蛋白质,迄今已经分离纯化并测定了氨基酸序列的凝集素已有不少,一些凝集素以及它们与配体糖相互结合的复合物的高级结构也已经给出,许多工作已深入到基因水平.就目前已有的知识,说明植物凝集素是一个庞大的蛋白质家族.  相似文献   

16.
Aims:  Dental caries is caused by the disturbance in oral homeostasis, marked by a notable increase in the population of Streptococcus mutans . Lectins are a group of plant proteins that are capable of recognizing the glycoconjugates present on the bacterial surface. The aim of this study was to evaluate the effect of seven plant lectins on the growth and initial adhesion of S. mutans .
Methods and Results:  Lectins of different carbohydrate specificities were isolated from plant sources by conventional methods of protein purification. The effect on growth of S. mutans was evaluated following CLSI guidelines. None of the lectins used in this study inhibited the bacterial growth and multiplication. The adherence and biofilm formation of bacteria to saliva-coated polystyrene plates was tested in the presence of plant lectins. All the plant lectins tested, inhibited both the adherence and biofilm in a concentration dependent manner. Confocal microscopy and scanning electron microscopy were employed to assess the biofilm formation in the presence of plant lectin (glucose/mannose-specific) at sub-minimal inhibitory concentrations. These evaluations revealed that lectins inhibited the clumping and attachment of S. mutans .
Conclusions:  Lectins tested here inhibited initial biofilm formation by S. mutans. Glucose/Mannose-specific lectin altered the adhesion arrangement of the bacteria on the saliva-coated surfaces.
Significance and Impact of the Study:  The plant lectins used in this study may offer a novel strategy to reduce development of dental caries by inhibiting the initial adhesion and subsequent biofilm formation of S. mutans.  相似文献   

17.
We examined the carbohydrate-binding potential of the C-type lectin-like receptor Dectin-2 (Clecf4n). The carbohydrate-recognition domain (CRD) of Dectin-2 exhibited cation-dependent mannose/fucose-like lectin activity, with an IC(50) for mannose of approximately 20 mM compared to an IC(50) of 1.5 mM for the macrophage mannose receptor when assayed by similar methodology. The extracellular domain of Dectin-2 exhibited binding to live Candida albicans and the Saccharomyces-derived particle zymosan. This binding was completely abrogated by cation chelation and was competed by yeast mannans. We compared the lectin activity of Dectin-2 with that of two other C-type lectin receptors (mannose receptor and SIGNR1) known to bind fungal mannans. Both mannose receptor and SIGNR1 were able to bind bacterial capsular polysaccharides derived from Streptococcus pneumoniae, but interestingly they exhibited distinct binding profiles. The Dectin-2 CRD exhibited only weak interactions to some of these capsular polysaccharides, indicative of different structural or affinity requirements for binding, when compared with the other two lectins. Glycan array analysis of the carbohydrate recognition by Dectin-2 indicated specific recognition of high-mannose structures (Man(9)GlcNAc(2)). The differences in the specificity of these three mannose-specific lectins indicate that mannose recognition is mediated by distinct receptors, with unique specificity, that are expressed by discrete subpopulations of cells, and this further highlights the complex nature of carbohydrate recognition by immune cells.  相似文献   

18.
Carbohydrate-binding polypeptides, including carbohydrate-binding modules (CBMs) from polysaccharidases, and lectins, are widespread in nature. Whilst CBMs are classically considered distinct from lectins, in that they are found appended to polysaccharide-degrading enzymes, this distinction is blurring. The crystal structure of CsCBM6-3, a "sequence-family 6" CBM in a xylanase from Clostridium stercorarium, at 2.3 A reveals a similar, all beta-sheet fold to that from MvX56, a module found in a family 33 glycoside hydrolase sialidase from Micromonospora viridifaciens, and the lectin AAA from Anguilla anguilla. Sequence analysis leads to the classification of MvX56 and AAA into a family distinct from that containing CsCBM6-3. Whilst these polypeptides are similar in structure they have quite different carbohydrate-binding specificities. AAA is known to bind fucose; CsCBM6-3 binds cellulose, xylan and other beta-glucans. Here we demonstrate that MvX56 binds galactose, lactose and sialic acid. Crystal structures of CsCBM6-3 in complex with xylotriose, cellobiose, and laminaribiose, 2.0 A, 1.35 A, and 1.0 A resolution, respectively, reveal that the binding site of CsCBM6-3 resides on the same polypeptide face as for MvX56 and AAA. Subtle differences in the ligand-binding surface give rise to the different specificities and biological activities, further blurring the distinction between classical lectins and CBMs.  相似文献   

19.
S H Barondes  M A Gitt  H Leffler  D N Cooper 《Biochimie》1988,70(11):1627-1632
All vertebrates synthesize soluble galactoside-binding lectins. Many are expressed at high levels in the embryo and at lower levels in the adult, whereas others show an inverse pattern of expression. Most lectins tend to be concentrated in one or a number of specific cell types. In the past few years, the multiplicity of these lectins has become more apparent. For example, in Xenopus laevis 3 galactoside-binding lectins, 2 with a preference for alpha-galactosides, have been purified and partially characterized. They have subunit molecular weights ranging from 16,000 to 69,000. More detailed studies have been done in mammals. For example, rat lung contains 3 soluble beta-galactoside-binding lectins, RL-14.5, RL-18 and RL-29, with subunit molecular weights, respectively, of 14,500, 18,000 and 29,000. A notable feature of these lectins is that, although they all bind lactose about equally well, their carbohydrate-binding sites are actually quite different, as shown by competitive binding studies with a range of complex mammalian glycoconjugates. Human lung also contains several beta-galactoside-binding lectins, including HL-14, HL-22 and HL-29 with subunit molecular weights, respectively, of 14,000, 22,000 and 29,000. They too show significant differences in their carbohydrate-binding sites when analyzed with naturally occurring mammalian glycoconjugates. Sequencing of purified lectins and cDNA clones indicates that at least 4 distinct genes code for what appears to be a family of HL-14. Heterogeneity is also indicated from isoelectric focusing studies which resolve at least 6 acidic forms of HL-14 and 5 acidic forms of HL-29.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号