首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A monoclonal antibody (C219) that recognizes the P-glycoprotein (Mr = 170,000) in plasma membranes of multidrug-resistant Chinese hamster ovary (CHO) cell lines was used to assay renal brush border membrane (BBM) and basolateral membrane (BLM) fractions for the presence of a cross-reactive polypeptide. The C219 antibody bound to a 155,000 dalton protein in immunoblots of rat BBM but not BLM proteins resolved by sodium dodecyl sulfate gel electrophoresis. The corresponding human kidney BBM and dog kidney BBM proteins had molecular weights of 170,000 and 160,000 respectively. The glycoprotein nature of the renal protein was shown by its sensitivity to N-glycanase treatment which reduced the apparent molecular weight of the dog protein to 120,000. In addition, dog P-glycoprotein could be bound to and eluted from immobilized wheat germ agglutinin. The molecular weight, antibody crossreactivity, glycosidase sensitivity and lectin binding show that this protein is a normal kidney analogue of the P-glycoprotein induced in multidrug resistant cell lines.  相似文献   

2.
P-Glycoprotein is an integral membrane protein which mediates the energy-dependent efflux of various antitumor agents from multidrug-resistant cancer cells. Surface plasmon resonance was used for the detection of P-glycoprotein after solubilization from drug-resistant and drug-sensitive Chinese hamster ovary cells and for the analysis of its interaction with cyclosporin A, a competitive inhibitor of drug efflux. Detection of P-glycoprotein relied on its binding to the monoclonal antibody C219 which was immobilized on a sensor chip. Binding of Zwittergent 3-14-solubilized P-glycoprotein to the antibody was concentration-dependent and reflected the relative abundance of P-glycoprotein in both cell lines. It was abolished when C219 was omitted or replaced by a rabbit anti-mouse IgG antibody and considerably reduced after precipitation of P-glycoprotein with wheat germ agglutinin. Preincubation of solubilized proteins with cyclosporin A increased the amount of protein bound to the antibody by approximately 30%. These results indicate that surface plasmon resonance is well suited to the detection of P-glycoprotein from biological samples and shows promise as a tool for the study of its interaction with different drugs.  相似文献   

3.
170-180-kDa membrane glycoprotein (P-glycoprotein) associated with multidrug resistance is involved in drug transport mechanisms across the plasma membrane of resistant cells. From sequence analysis of cDNAs of the P-glycoprotein gene, it is postulated that the active drug-efflux pump function may be attributable to the protein. However, purification of the P-glycoprotein while preserving its enzymatic activity has not been reported. In this study, we have purified the P-glycoprotein from the human myelogenous leukemia K562 cell line resistant to adriamycin (K562/ADM) by means of one-step immunoaffinity chromatography using a monoclonal antibody against P-glycoprotein. The procedure was simple and efficiently yielded an electrophoretically homogeneous P-glycoprotein sample. By solubilization with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, the purified P-glycoprotein was found to have ATPase activity. This ATP hydrolysis may be coupled with the active efflux of anticancer drugs across the plasma membrane of multidrug-resistant cells.  相似文献   

4.
5.
5'-Nucleotidase, an integral glycoprotein enzyme of the lymphocyte plasma membrane, is inhibited cooperatively by the lectin concanavalin A. Because divalent succinyl-concanavalin A is a poor enzyme inhibitor, both binding and lectin-induced cross-linking of 5'-nucleotidase may be necessary for inhibition. Succinyl-concanavalin A does not compete with concanavalin A for binding to the enzyme; however, maleyl-concanavalin A, another poor inhibitor, competes effectively with the parent lectin. Thus, maleyl-concanavalin A binds to the same site as concanavalin A but causes little inhibition, whereas succinyl-concanavalin A does not bind to this site. The monovalent lectin from Ricinus communis (RCA-60) is a more effective enzyme inhibitor than the related divalent lectin (RCA-120), and inactivation of the second low-affinity sugar binding site on RCA-60 does not abolish inhibition, suggesting that multivalent cross-linking is not required for 5'-nucleotidase inhibition. Peanut and wheat germ agglutinins do not inhibit the enzyme, whereas lectins from lentil, pea, soybean, Griffonia simplicifolia, and Phaseolus vulgaris inhibit 5'-nucleotidase with various degrees of effectiveness. The only lectin showing strong positive cooperativity in its interaction with 5'-nucleotidase is concanavalin A.  相似文献   

6.
P170 (P-glycoprotein) is a membrane protein found in high levels in multidrug-resistant cultured cell lines. We have localized this protein using monoclonal antibody MRK16 by immunofluorescence and electron microscopy in the multidrug-resistant human carcinoma cell line KB-C4. The P170 determinant recognized by antibody MRK16 was found on drug-resistant KB-C4 cells, but not on parental drug-sensitive KB-3-1 cells. The determinant was present on the external surface of the plasma membrane and on the luminal side of Golgi stack membranes. P170 was excluded from coated pits at the plasma membrane and absent from endocytic vesicles and lysosomes. This determinant was detected only in small amounts in the endoplasmic reticulum. The high protein concentration of P170 in the plasma membrane is consistent with a role of this protein as a drug efflux pump at the cell surface.  相似文献   

7.
In vitro studies of multidrug-resistant cell lines have shown that a membrane protein, the P-glycoprotein, is responsible for resistance to a wide range of structurally and functionally dissimilar anti-cancer drugs. The amino-acid sequence of P-glycoprotein (Pgp) indicates two consensus sequences for ATP binding and the purified protein has been reported to possess a low level of ATPase activity. As part of our goal to further characterize the ATPase activity of P-glycoprotein, we have developed a procedure for rapid partial purification of the protein in a highly active form. Plasma membrane vesicles from multidrug-resistant CHRC5 Chinese hamster ovary cells were subjected to a two-step procedure involving selective extraction with different concentrations of the zwitterionic detergent CHAPS. The resulting extract was enriched in P-glycoprotein (around 30% pure) and displayed an ATPase activity (specific activity 543 nmol mg-1 min-1) that was not found in a similar preparation from drug-sensitive cells. The ATPase specific activity was over 10-fold higher than that previously reported for immunoprecipitated Pgp and 280-fold higher than that of immunoaffinity-purified Pgp. This ATPase activity could be distinguished from that of other ion-motive ATPases and membrane-associated phosphatases and is, thus, proposed to be directly attributable to P-glycoprotein. Optimal P-glycoprotein ATPase activity required Mg2+ at an ATP: Mg2+ molar ratio of 0.75:1 and the apparent Km for ATP was 0.88 mM. P-Glycoprotein ATPase could be completely inhibited by vanadate and by the sulfhydryl-modifying reagents N-ethylmaleimide, HgCl2 and p-chloromercuribenzenesulfonate. Certain drugs and chemosensitizers, including colchicine, progesterone, nifedipine, verapamil and trifluoperazine, produced up to 50% activation of P-glycoprotein ATPase activity.  相似文献   

8.
Abstract— Fluorescein isothiocyanate-labelled lectins were used to identify lectin-binding glycoproteins of the chromaffin granule after electrophoresis of the membrane and soluble granule proteins on sodium dodecyl sulphate polyacrylamide slab gels. The glycoprotein nature of all lectin-binding bands was confirmed by staining the gels for carbohydrates, and the specificity of the lectin-binding was demonstrated by hapten sugar inhibition of binding. In samples of granule membrane proteins reduced with dithiothreitol 10 concanavalin A (Con A), 5 wheat germ agglutinin, 8 Ricinus communis agglutinin-60, and 7 Ricinus communis agglutinin-120 (RCA-120) binding glycoproteins were identified. Molecular weights of these glycoproteins varied from 20,000 to 200,000 daltons. All but two of the Con A-binding bands and one of the RCA-120 binding bands appeared to react with more than one lectin, suggesting possible carbohydrate heterogeneity in these membrane glycoproteins. The band identified as dopamine β-hydroxylase reacted most intensely with all four lectin tested, and in the soluble core material this enzyme was the sole significant lectin binding glycoprotein.  相似文献   

9.
Summary The pattern of lectin binding in normal human labial mucosa was examined by light and electron microscopy using eight different lectins (ConA, LCA, WGA, UEA-1, RCA-1, SBA, DBA and PNA) and compared with the patterns in normal human skin and oesophageal mucosa. As seen by light microscopy, ConA, LCA, and WGA stained cell membranes in all layers of the mucosae. RCA-1 stained the plasma membrane of cells in the basal and middle layers, whereas cells in the superficial layers showed little positive staining. UEA-1, SBA, and PNA stained the cells in the middle layers weakly in some cases. No positive staining for DBA was seen. By electron microscopy, reaction product indicating ConA-binding sites was observed in the plasma membrane, cisternae of the endoplasmic reticulum, nuclear envelope and the Golgi apparatus. Binding of LCA, WGA, and RCA-1 was observed in the plasma membrane. These results show that the binding pattern of PNA, SBA, and RCA-1 in labial mucosa is different from that in the normal skin or oesophageal mucosa, although the labial mucosal epithelium, epidermis, and oesophageal epithelium are all stratified squamous epithelia. These differences in the cell-surface sugar residues are likely to be related to the possible functional differences in these tissues.  相似文献   

10.
Microglial cells were selectively demonstrated in the central nervous system of adult rabbits and rats using lectin histochemistry. Biotinylated Ricinus communis agglutinin-120 (RCA-1) and biotinylated Griffonia simplicifolia B4 isolectin (GSA I-B4) were used as histochemical markers on sections of Bouin-fixed paraffin-embedded cerebrum and cerebellum. Results were quite similar using both lectins and both species. GSA I-B4 resulted in a better staining in the rat, while RCA-1 labelling was superior in the rabbit. Neither neurons nor glial cells other than microglia were stained with our technique. Lectin histochemistry applied for the detection of microglial cells appears to be of sufficient selectivity and may be considered as an important tool in the morphological and neurobiological study of these cells.  相似文献   

11.
P-Glycoprotein is not present in mitochondrial membranes   总被引:1,自引:0,他引:1  
Recent reports have indicated the presence of P-glycoprotein in crude mitochondrial membrane fractions, leading to the assumption that P-glycoprotein is present in mitochondrial membranes, and may be involved in transport across these membranes. To determine the validity of this claim, two cell lines overexpressing endogenous P-glycoprotein were investigated. Using various centrifugation steps, mitochondria were purified from these cells and analyzed by Western blot reaction with the anti-P-glycoprotein antibody C219 and organelle-specific antibodies. While P-glycoprotein is present in crude mitochondrial fractions, these fractions are contaminated with plasma membranes. Further purification of the mitochondria to remove plasma membranes revealed that P-glycoprotein is not expressed in mitochondria of the KB-V1 (vinblastine-resistant KB-3-1 cells) or MCF-7(ADR) (adriamycin-resistant MCF-7 cells) cell lines. To further substantiate these findings, we used confocal microscopy and the anti-P-glycoprotein antibody 17F9. This demonstrated that in intact cells, P-glycoprotein is not present in mitochondria and is primarily localized to the plasma membrane. These findings are consistent with the role of P-glycoprotein in conferring multidrug resistance by decreasing cellular drug accumulation. Therefore, contrary to previous speculation, P-glycoprotein does not confer cellular protection by residing in mitochondrial membranes.  相似文献   

12.
Anthracycline resistance in multidrug-resistant (MDR) tumor cells is due in part to a reduced cellular drug accumulation. Using a simple kinetic model and numerical computer simulations, we have analyzed mathematically the following possible mechanisms controlling fluxes of the membrane permeable anthracyclines in MDR cells: (1) active outward transport via a specific drug transporter (P-glycoprotein), (2) exocytotic drug export via the endosomal vesicle system, and (3) pH-gradients across the plasma membrane. Model calculations were based on morphometric and kinetic data previously presented in the literature for daunorubicin transport in wild-type Ehrlich ascites tumor cells (EHR2) and the corresponding daunorubicin (DNR)-resistant cell line EHR2/DNR+. The results confirm the possible importance of the cell-surface pH in controlling DNR accumulation in the cells. With P-glycoprotein as the main efflux pump, a catalytic constant of the protein greater than 40 mol DNR transported/mol protein per min is predicted by the model calculations. Changes in the drug binding affinity of P-glycoprotein (Km = 10(-9)-10(-6) M) is of little importance in influencing its effectiveness to reduce DNR accumulation, which could explain the broad substrate specificity of the MDR efflux pump system. The conditions to evaluate unidirectional fluxes of DNR across the plasma membrane in cells with active P-glycoprotein are defined. An efflux mechanism which relies solely on pH-dependent drug trapping in a pH 5 endosomal compartment by a simple diffusion process followed by exocytosis, appears inadequate to account for the high rate of DNR efflux in EHR2/DNR+ cells.  相似文献   

13.
Using peroxidase immunohistochemistry, we examined the distribution of P170, a multidrug transport protein, in normal tissues by use of two different monoclonal antibodies (MAb). MAb MRK16 is a MAb that has been shown to react with an epitope in P170 located on the external face of the plasma membrane of multidrug-resistant human cells. MAb C219 has been shown to react with P170 in many mammalian species, and detects an epitope located on the cytoplasmic face of the plasma membrane. Using MRK16, we have previously described the localization of P170 on the bile canalicular face of hepatocytes, the apical surface of proximal tubular cells in kidney, and the surface epithelium in the lower GI tract in normal human tissues. In this work, we report that MRK16 also detects P170 in the capillaries of some human brain samples. A similar pattern was found using MAb C219 in rat tissues. in addition, MAb C219 showed intense localization in selected skeletal muscle fibers and all cardiac muscle fibers in rat and human tissues. ATPase cytochemistry showed that these reactive skeletal muscle fibers were of the type I (slow-twitch) class. Other additional sites of C219 reactivity in rat tissues were found in pancreatic acini, seminal vesicle, and testis. Electrophoretic gel immunoblotting showed two protein bands reactive with MAb C219. In liver, MAb C219 reacted with a approximately 170 KD band. In skeletal and cardiac muscle, MAb C219 reacted with a approximately 200 KD band which migrated in the same position as myosin. This band also reacted with an antibody to skeletal muscle myosin. This result suggests that C219 may crossreact with the heavy chain of muscle myosin in cardiac and skeletal muscle. Because MAb C219 reacts with proteins other than P170, it should be used with caution in studies of multidrug resistance.  相似文献   

14.
Global analyses of protein phosphorylation require specific enrichment methods because of the typically low abundance of phosphoproteins. To date, immobilized metal ion affinity chromatography (IMAC) for phosphopeptides has shown great promise for large-scale studies, but has a reputation for poor specificity. We investigated the potential of IMAC in combination with capillary liquid chromatography coupled to tandem mass spectrometry for the identification of plasma membrane phosphoproteins of Arabidopsis. Without chemical modification of peptides, over 75% pure phosphopeptides were isolated from plasma membrane digests and detected and sequenced by mass spectrometry. We present a scheme for two-dimensional peptide separation using strong anion exchange chromatography prior to IMAC that both decreases the complexity of IMAC-purified phosphopeptides and yields a far greater coverage of monophosphorylated peptides. Among the identified sequences, six originated from different isoforms of the plasma membrane H(+)-ATPase and defined two previously unknown phosphorylation sites at the regulatory C terminus. The potential for large-scale identification of phosphorylation sites on plasma membrane proteins will have wide-ranging implications for research in signal transduction, cell-cell communication, and membrane transport processes.  相似文献   

15.
The overexpression of the P-glycoprotein, theMDR1 gene product, has been linked to the development of resistance to multiple cytotoxic natural product anticancer drugs in certain cancers and cell lines derived from tumors. P-glycoprotein, a member of the ATP-binding cassette (ABC) superfamily of transporters, is believed to function as an ATP-dependent drug efflux pump with broad specificity for chemically unrelated hydrophobic compounds. We review here recent studies on the purification and reconstitution of P-glycoprotein to elucidate the mechanism of drug transport. P-glycoprotein from the human carcinoma multidrug resistant cell line, KB-V1, was purified by sequential chromatography on anion exchange followed by a lectin (wheat germ agglutinin) column. Proteoliposomes reconstituted with pure protein exhibited high levels of drug-stimulated ATPase activity as well as ATP-dependent [3H]vinblastine accumulation. Both the ATPase and vinblastine transport activities of the reconstituted P-glycoprotein were inhibited by vanadate. In addition, the vinblastine transport was inhibited by verapamil and daunorubicin. These studies provide strong evidence that the human P-glycoprotein functions as an ATP-dependent drug transporter. The development of the reconstitution system and the availability of recombinant protein in large amounts due to recent advances in overexpression of P-glycoprotein in a heterologous expression system should facilitate a better understanding of the function of this novel protein.  相似文献   

16.
Molecular mechanism of multidrug resistance in tumor cells   总被引:2,自引:0,他引:2  
The ability of tumor cells to develop simultaneous resistance to multiple lipophilic cytotoxic compounds represents a major problem in cancer chemotherapy. This review describes recent molecular biological studies which resulted in the identification and cloning of the gene responsible for multidrug resistance in human tumor cells. This gene, designated mdr1, is overexpressed in all and amplified in many of the multidrug-resistant cell lines analyzed. Gene transfer and expression assays have indicated that the mdr1 gene is both necessary and sufficient for multidrug resistance. The product of the mdr1 gene is P-glycoprotein, a transmembrane protein which shares homology with several bacterial proteins involved in active membrane transport. P-glycoprotein appears to function as an energy-dependent efflux pump responsible for the removal of drugs from multidrug-resistant cells. The functions of the mdr system in normal cells and its potential clinical implications are discussed.  相似文献   

17.
Multidrug resistance (MDR) is a major problem in cancer chemotherapy. As P-glycoprotein is the key molecule in MDR, many investigators have constructed anti-P-glycoprotein monoclonal antibodies (MAbs). Those antibodies, including MRK16 and C219, were used for elucidation of the mechanism of MDR and for overcoming of MDR. This article describes the characterization of the antibodies against the P-glycoprotein and other proteins of multidrug-resistant tumor cells, and discusses the therapeutic implication of the antibodies.Abbreviation ADCC antibody-dependent cell-mediated cytotoxicity  相似文献   

18.
Several fluorescent probes have been used in functional studies to analyze drug transport in multidrug-resistant cells by fluorescent microscopy. Because many of these molecules have some drawbacks, such as toxicity, nonspecific background, or accumulation in mitochondria, new fluorescent compounds have been proposed as more useful tools. Among these substances, Bodipy-FL-Verapamil, a fluorescent conjugate of the drug efflux blocker verapamil, has been used to study P-glycoprotein activity in different cell types. In this study we tested by fluorescent microscopy the accumulation of Bodipy-FL-Verapamil in cell lines that overexpress either P-glycoprotein (P-gp) or multidrug resistance-related protein 1 (MRP1). Expression of P-gp and MRP1 was evaluated at the mRNA level by RT-PCR technique and at the protein level by flow cytometric analysis using C219 and MRP-m6 monoclonal antibodies. Results indicate that Bodipy-FL-Verapamil is actually a substrate for both proteins. As a consequence, any conclusion about P-gp activity obtained by the use of Bodipy-FL-Verapamil as fluorescent tracer should be interpreted with caution.  相似文献   

19.
We investigated the cellular/subcellular localization and functional expression of P-glycoprotein, an ATP-dependent membrane-associated efflux transporter, in astrocytes, a brain parenchyma compartment that is poorly characterized for the expression of membrane drug transporters. Analyses were carried out on primary cultures of astrocytes isolated from the cerebral cortex of neonatal Wistar rats and CTX TNA2, an immortalized rat astrocyte cell line. Both cell cultures display morphological features typical of type I astrocytes. RT-PCR analysis revealed mdr1a and mdr1b mRNA in primary cultures of astrocytes and in CTX TNA2 cells. Western blot analysis using the P-glycoprotein monoclonal C219 antibody detected a single band of appropriate size in both cell systems. Immunocytochemical analysis using the monoclonal antibodies C219 and MRK16 labeled P-glycoprotein along the plasma membrane, caveolae, coated vesicles and nuclear envelope. Immunoprecipitation studies using the caveolin-1 polyclonal H-97 antibody demonstrated that P-glycoprotein is physically associated with caveolin-1 in both cell culture systems. The accumulation of [(3)H]digoxin (an established P-glycoprotein substrate) by the astrocyte cultures was significantly enhanced in the presence of standard P-glycoprotein inhibitors and an ATP depleting agent. These results demonstrate the cellular/subcellular location and functional expression of P-glycoprotein in rat astrocytes and suggest that this glial compartment may play an important role in the regulation of drug transport in the CNS.  相似文献   

20.
Cells containing increased levels of the membrane phosphoprotein P-glycoprotein exhibit a multidrug-resistant phenotype. In the present study we have analyzed protein kinases capable of phosphorylating P-glycoprotein in membranes of HL60 cells isolated for resistance to vincristine. Analysis of this system demonstrates that in isolated membranes the protein kinase inhibitor staurosporine greatly reduces P-glycoprotein phosphorylation. In contrast, the kinase inhibitor H-7 does not affect this reaction. Fractionation of solubilized membrane proteins from sensitive and resistant cells on DEAE-cellulose reveals a major protein kinase (PK-1) which exhibits optimal activity in the presence of Mn2+ and histone H1. This enzyme fraction does not contain detectable levels of protein kinase C or cAMP-dependent protein kinase. PK-1 phosphorylation of two endogenous proteins is, however, greatly enhanced in the presence of phosphatidylserine or phosphatidyl-inositol. In reaction mixtures containing Mg2+ or Mn2+ in the absence of phospholipid, PK-1 from resistant cells phosphorylates an endogenous protein of 180 kilodaltons (P180), which exhibits an electrophoretic mobility identical to P-glycoprotein. In parallel experiments with PK-1 from sensitive cells there is no detectable phosphorylation of a P180 protein. P180 phosphorylated by PK-1 from resistant cells is immunoprecipitated by antibody against P-glycoprotein. Additional studies demonstrate that PK-1 is capable of phosphorylating specific synthetic peptides which correspond to the sequence of P-glycoprotein. Peptide phosphorylation occurs at both serine and threonine residues. These studies thus identify a novel membrane-associated protein kinase in HL60 cells which is capable of phosphorylating P-glycoprotein. This enzyme may have an important role in regulating levels of multidrug resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号