首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Retaining biopharmaceutical proteins in a stable form is critical to their safety and efficacy, and is a major factor for optimizing the final product. Freeze‐dried formulations offer one route for improved stability. Currently the optimization of formulations for freeze‐drying is an empirical process that requires many time‐consuming experiments and also uses large quantities of product material. Here we describe a generic framework for the rapid identification and optimization of formulation excipients to prevent loss of protein activity during a lyophilization process. Using factorial design of experiment (DOE) methods combined with lyophilization in microplates a range of optimum formulations were rapidly identified that stabilized lactose dehydrogenase (derived from Lactobacillus leichmanii) during freeze‐drying. The procedure outlined herein involves two rounds of factorially designed experiments—an initial screen to identify key excipients and potential interactions followed by a central composite face designed optimization experiment. Polyethylene glycol (PEG) and lactose were shown to have significant effects on maintaining protein stability at the screening stage and optimization resulted in an accurate model that was used to plot a window of operation. The variation of freezing temperatures and rates of sublimation that occur across a microplate during freeze‐drying have been characterized also. The optimum formulation was then freeze‐dried in stoppered vials to verify that the microscale data was relevant to the effects observed at larger pilot scales. This work provides a generic approach to biopharmaceutical formulation screening where possible excipients can be screened for single and interactive effects thereby increasing throughput while reducing costs in terms of time and materials. Biotechnol. Bioeng. 2009; 104: 957–964. © 2009 Wiley Periodicals, Inc.  相似文献   

2.
Oxidation reactions represent an important degradation pathway of nucleic acid-based pharmaceuticals. To evaluate the role of metal contamination and chelating agents in the formation of reactive oxygen species (ROS) during lyophilization, ROS generation and the stability of lipid/DNA complexes were investigated. Trehalose-containing formulations were lyophilized with different levels of transition metals. ROS generation was examined by adding proxyl fluorescamine to the formulations prior to freeze-drying. Results show that ROS were generated during lyophilization, and both supercoil content and transfection rates decreased as the levels of metal-induced ROS increased. The experiments incorporating chelators demonstrated that some of these agents (e.g., DTPA, desferal) clearly suppress ROS generation, while others (e.g., EDTA) enhance ROS. Surprisingly, there was not a strong correlation of ROS generated in the presence of chelators with the maintenance of supercoil content. In this study, we demonstrated the adverse effects of the presence of metals (especially Fe(2+)) in nonviral vector formulations. While some chelators attenuate ROS generation and preserve DNA integrity, the effects of these additives on vector stability during lyophilization are difficult to predict. Further study is needed to develop potent formulation strategies that inhibit ROS generation and DNA degradation during lyophilization and storage.  相似文献   

3.
Liquid formulation of therapeutic proteins is a maturing technology. Demand for products that are easy to use in the clinic or that are amenable to self-administration make a ready to use liquid formulation desirable. Most modern liquid formulations have a simple composition; comprising a buffer, a tonicity modifier, a surfactant, sometimes a stabiliser, the therapeutic protein and water. Recent formulations of monoclonal antibodies often use histidine or acetate as the buffer, sucrose or trehalose as the tonicity modifier and polysorbate 20 or 80 as the surfactant with a pH of 5.7 +/? 0.4. The mechanisms for the behaviour of excipients is still debated by academics so formulation design is still a black art. Fortunately, a statistical approach like design of experiment is suitable for formulation development and has been successful when combined with accelerated stability experimentation. The development of prefilled syringes and pens has added low viscosity and shear resistance to the quality attributes for a successful formulation. To achieve patient compliance for self-administration, formulations that cause minimal pain and tissue damage is also desirable.  相似文献   

4.
Oxidation reactions represent an important degradation pathway of nucleic acid-based pharmaceuticals. To evaluate the role of metal contamination and chelating agents in the formation of reactive oxygen species (ROS) during lyophilization, ROS generation and the stability of lipid/DNA complexes were investigated. Trehalose-containing formulations were lyophilized with different levels of transition metals. ROS generation was examined by adding proxyl fluorescamine to the formulations prior to freeze-drying. Results show that ROS were generated during lyophilization, and both supercoil content and transfection rates decreased as the levels of metal-induced ROS increased. The experiments incorporating chelators demonstrated that some of these agents (e.g., DTPA, desferal) clearly suppress ROS generation, while others (e.g., EDTA) enhance ROS. Surprisingly, there was not a strong correlation of ROS generated in the presence of chelators with the maintenance of supercoil content. In this study, we demonstrated the adverse effects of the presence of metals (especially Fe2+) in nonviral vector formulations. While some chelators attenuate ROS generation and preserve DNA integrity, the effects of these additives on vector stability during lyophilization are difficult to predict. Further study is needed to develop potent formulation strategies that inhibit ROS generation and DNA degradation during lyophilization and storage.  相似文献   

5.
The purpose of this research was to develop mouth dissolve tablets of nimesulide. Granules containing nimesulide, camphor, crospovidone, and lactose were prepared by wet granulation technique. Camphor was sublimed from the dried granules by exposure to vacuum. The porous granules were then compressed. Alternatively, tablets were first prepared percentage friability, wetting time, and disintegration time. In the investigation, a 32 full factorial design was used to investigate the joint influence of 2 formulation variables: amount of camphor and crospovidone. The results of multiple linear regression analysis revealed that for obtaining a rapidly disintegrating dosage form, tablets should be prepared using an optimum concentration of camphor and a higher percentage of crospovidone. A contour plot is also presented to graphically represent the effect of the independent variables on the disintegration time and percentage friability. A checkpoint batch was also prepared to prove the validity of the evolved mathematical model. Sublimation of camphor from tablets resulted in superior tablets as compared with the tablets prepared from granules that were exposed to vacuum. The systematic formulation approach helped in understanding the effect of formulation processing variables.  相似文献   

6.

Objectives

The effect of different formulations variables on protein integrity were investigated using lysozyme as a model protein for the development of biotherapeutic protein formulations for use in the clinic.

Results

Buffer composition/concentration was the key variable of formulation reagents investigated in determining lysozyme stability and authenticity independent of protein concentration whilst the storage temperature and time, not surprisingly, were also key variables. Tryptic peptide mapping of the protein showed that the modifications occurred when formulated under specific conditions but not others. A model peptide system was developed that reflected the same behavior under formulation conditions as intact lysozyme.

Conclusions

Peptide models may mirror the stability of proteins, or regions of proteins, in the same formulations and be used to help develop a rapid screen of formulations for stabilisation of biotherapeutic proteins.
  相似文献   

7.
Although substantial effort has been made in the development of next-generation recombinant vaccine systems, maintenance of a cold chain is still typically required and remains a critical challenge in effective vaccine distribution. The ability to engineer alternative containment systems that improve distribution and administration represents potentially significant enhancements to vaccination strategies. In this work, we evaluate the ability to successfully lyophilize a previously demonstrated thermostable tuberculosis vaccine formulation (ID93 + GLA-SE) in a cartridge format compared to a traditional vial container format. Due to differences in the shape of the container formats, a novel apparatus was developed to facilitate lyophilization in a cartridge. Following lyophilization, the lyophilizate was assessed visually, by determining residual moisture content, and by collecting melting profiles. Reconstituted formulations were assayed for particle size, protein presence, and GLA content. Based on assessment of the lyophilizate, the multicomponent vaccine was successfully lyophilized in both formats. Also, the physicochemical properties of the major components in the formulation, including antigen and adjuvant, were retained after lyophilization in either format. Ultimately, this study demonstrates that complex formulations can be lyophilized in alternative container formats to the standard pharmaceutical glass vial, potentially helping to increase the distribution of vaccines.  相似文献   

8.

Objectives

There are a number of blockbuster monoclonal antibodies on the market used for the treatment of a variety of diseases. Although the formulation of many antibodies is achieved in ‘platform’ formulations, some are so difficult to formulate that it can result in an inability to develop a finished drug product. Further, a large number of antibody-inspired or-based molecules are now being developed and assessed for biotherapeutic purposes and less is understood around the required active protein drug concentrations, excipients and additives required in final product formulations.

Results

We investigated the effect of formulation variables (pH, buffer composition, glycine and NaCl concentration, time and temperature of accelerated stability studies) on antibody solubility/aggregation and activity using a Plackett–Burman Experimental Design approach. We then used the findings from this study and applied these to the formulation of a single chain variable fragment (ScFv) molecule. Our data shows that prediction of ScFc stability from a model monoclonal antibody could be achieved although further formulation optimization was required. Mass spectrometry analysis confirmed changes to the mass and hence authenticity of both the model antibody and ScFv under formulation conditions that did not provide appropriate conditions for protection of the molecules.

Conclusions

The role of the different formulation conditions on maintaining protein integrity is described and using mass spectrometry shows that protein integrity is compromised under particular conditions. The implications for predicting successful formulations for protein molecules is discussed and how antibody formulations could be used to predict formulation components for novel antibody based molecules.
  相似文献   

9.
Liu W  Wang DQ  Nail SL 《AAPS PharmSciTech》2005,6(2):E150-E157
The purpose of this study was to investigate the effect of sucrose-glycine excipient systems on the stability of selected model proteins during lyophilization. Recovery of protein activity after freeze-drying was examined for the model proteins lactate dehydrogenase and glucose 6-phosphate dehydrogenase in a sucrose-glycine-based excipient system in which the formulation composition was system-atically varied. In a sucrose-only excipient system, activity recovery of both model proteins is about 80% and is independent of sucrose concentration over a range from 1 to 40 mg/mL. When both sucrose and glycine are used and the ratio of the 2 excipients is varied, however, activity recovery decreases in a pattern that is consistent with the inhibition of activity recovery by glycine crystals, despite the presence of an adequate amount of sucrose to afford protection. Annealing of sucrose-glycine formulations causes a small but significant decrease in activity recovery relative to unannealed controls, whereas no annealing effect is observed with sucrose-only formulations. Addition of 0.01% polysorbate 80 to the formulation resulted in complete recovery of activity, irrespective of the sucroseglycine ratio or annealing. Addition of the same concentration of polysorbate 80 to the reconstitution medium caused an increase in activity recovery for each formulation, but the overall pattern remained unchanged. The data are consistent with an interfacial model for lyophilization-associated loss of protein activity involving denaturation at a solid/freeze-concentrate interface. Published: September 30, 2005  相似文献   

10.
An enzyme-mediated assay has been developed for the measurement of salicylate using salicylate monooxygenase purified from Pseudomonas cepacia ATCC 29351. Two assay formulations were produced, based on either a multiple-reagent or a single-reagent formulation, to allow sufficient flexibility for automated use. The multiple-reagent formulation was especially suited to diagnostic laboratories performing infrequent manual salicylate estimation where stability of the reconstituted reagent is of paramount importance. This was achieved by preparing the enzyme and color reagents in separate vials, so keeping the enzyme at a stable pH. For more frequent assay use where a reconstituted reagent shelf life was less important, the single-reagent system offers advantages of convenience. However, the working reagent required a pH of 10.0 upon reconstitution. Although the enzyme was sufficiently active at this pH to give a reliable assay, its storage stability was poor at pH 10.0, preventing lyophilization of the reagent at a pH suitable for immediate use on reconstitution. This incompatibility was overcome by use of a layering technique. The enzyme was separated from the buffering solution in the same vial by freezing the buffering solution and then overlayering with the enzyme reagent prior to a second freezing cycle and subsequent freeze drying.  相似文献   

11.
In the past decade there has been an increase in the application of viral vectors in the laboratory and clinical trials of human gene therapy, retroviral and adenoviral vectors among the most used. However, the limited stability of these vectors creates problems in the design of experiments, transport, and storage. Vectors stored at -80 degrees C must be quickly shipped on dry ice, which is somewhat cumbersome. Alternatively, viral vectors can be preserved in a lyophilized form. However, loss of viral activity during lyophilization can also be a serious problem. In this report we identify novel candidate formulations containing new compatible solutes, ectoin, hydroxyectoin, and firoin, that allow better stability of retroviral and adenoviral vectors during storage. For retroviral vectors, the maximum stabilization for long-term storage was achieved through lyophilization followed by storage at -20 degrees C using a formulation of Tris buffer pH 7.2 containing firoin (0.5 M), a half-life of 340 days being obtained. Adenoviral vectors storage at -80 degrees C in solution using Tris buffer pH 8.0 with firoin was the best method for long-term storage, with a half-life exceeding 1 year.  相似文献   

12.
The goal of this research was to assess the feasibility of using lyophilization to stabilize an exploratory compound, CNK-20402, with a minimal amount of impurity (CNK-20193) formation. A mixed-level full factorial experimental design was used to screen excipients of glycine, mannitol, lactose monohydrate, and povidone K-12. Cryostage microscopy, powder X-ray diffraction, Karl Fischer titration, HPLC, and water vapor sorption were used to assess the formulations' physicochemical properties and stability. Initial physical characterization from powder X-ray diffraction revealed that the mannitol- and glycine-containing formulations were crystalline with the patterns of the pure excipient, whereas the remaining formulations were amorphous in structure. Chemically, the formulations stored at 50°C for 1 month had 2.36%, 1.05%, 0.81%, 0.79%, and 0.49% CNK-20193 for glycine, mannitol, drug alone, povidone K-12, and lactose formulations, respectively. The formulations containing drug-mannitol, drug alone, and druglactose were selected for accelerated stability study based on statistical analysis. Recovery of CNK-20193 in these formulations was 1.22%, 1.00%, and 0.55%, respectively, when stored at 40°C/75% relative humidity storage conditions for 3 months. Water vapor sorption analysis revealed weight gains of over 7%, 21%, and 24% for the mannitol, lactose, and drug alone formulations, respectively. Testing formulations with different concentrations of lactose by water vapor sorption indicated that CNK-20402 concentrations as low as 10% (wt/wt) could inhibit the recrystallization of lactose. The lactose-containing formulation exhibited the best stability among the formulations tested. The protective mechanism of lactose on the CNK-20402, based on water vapor sorption studies, is believed to be a result of (1) the drug-lactose interaction, and (2) competition between lactose and drug for the residual water in the formulation. Published: September 20, 2005  相似文献   

13.
Lu D  Hickey AJ 《AAPS PharmSciTech》2005,6(4):E641-E648
The purpose of this research was to develop liposomal dry powder aerosols for protein delivery. The delivery of stable protein formulations is essential for protein subunit vaccine delivery, which requires local delivery to macrophages in the lungs. β-Glucuronidase (GUS) was used as a model protein to evaluate dry powder liposomes as inhaled delivery vehicles. Dimyristoyl phosphatylcholine:cholesterol (7∶3) was selected as the liposome composition. The lyophilization of liposomes, micronization of the powders, aerosolization using a dry powder inhaler (DPI), and in vitro aerodynamic fine particle fraction upon collection in a twinstage liquid impinger were evaluated. After lyophilization and jet-milling, the total amount of GUS and its activity, representing encapsulation efficiency and stability, were evaluated. The GUS amount and activity were measured and compared with freshly-prepared liposomes in the presence of mannitol, 43% of initial GUS amount, 29% of GUS activity after lyophilization and 36% of GUS amount, 22% of activity after micronization were obtained. Emitted doses from dry powder inhaler were 53%, 58%, 66%, and 73% for liposome powder:mannitol carrier ratios of 1∶0, 1∶4, 1∶9, and 1∶19. Fifteen percent of the liposome particles were less than 6.4 μm in aerodynamic diameter. The results demonstrate that milled liposome powders containing protein molecules can be aerosolized effectively at a fixed flow rate. Influences of different cryoprotectants on lyophilization of protein liposome formulations are reported. The feasibility of using liposomal dry powder aerosols for protein delivery has been demonstrated but further optimization is required in the context of specific therapeutic proteins. Published: December 21, 2005  相似文献   

14.
The purpose of this research was to describe the application of lyophilization in the delivery of siRNA using cationic lipids by addressing the long-term formulation/stability issues associated with cationic lipids and to understand the mechanism of lyoprotection. siRNA liposomes complexes were formed in different potential cyro/lyoprotectants and subjected to either lyophilization or freeze thaw cycles. siRNA, liposomes and/or lipoplexes were tested for activity, SYBR Green I binding, cellular uptake and particle size. The lipoplexes when lyophilized in the presence of sugars as lyoprotectants could be lyophilized and reconstituted without loss of transfection efficacy but in ionic solutions they lost 65–75% of their functionality. The mechanism of this loss of activity was further investigated. The lyophilization process did not alter siRNA’s intrinsic biological activity as was evident by the ability of lyophilized siRNA to retain functionality and SYBR green I binding ability. While the lipoplex size dramatically increased (∼50–70 times) after lyophilization in the absence of non-ionic lyoprotectants. This increase in size correlated to the decrease in cellular accumulation of siRNA and a decrease in activity. In conclusion, siRNAs can be applied in cationic lipid lyophilized formulations and these complexes represent a potential method of increasing the stability of pre-formed complex.  相似文献   

15.
Protein‐based biological drugs and many industrial enzymes are unstable, making them prohibitively expensive. Some can be stabilized by formulation with excipients, but most still require low temperature storage. In search of new, more robust excipients, we turned to the tardigrade, a microscopic animal that synthesizes cytosolic abundant heat soluble (CAHS) proteins to protect its cellular components during desiccation. We find that CAHS proteins protect the test enzymes lactate dehydrogenase and lipoprotein lipase against desiccation‐, freezing‐, and lyophilization‐induced deactivation. Our data also show that a variety of globular and disordered protein controls, with no known link to desiccation tolerance, protect our test enzymes. Protection of lactate dehydrogenase correlates, albeit imperfectly, with the charge density of the protein additive, suggesting an approach to tune protection by modifying charge. Our results support the potential use of CAHS proteins as stabilizing excipients in formulations and suggest that other proteins may have similar potential.  相似文献   

16.
Plant extract possess various secondary metabolites which are antifungal in nature and can be used as a safer alternative to the synthetic fungicides. As we all know that the chemical fungicides are harmful not only for humans but also for animals, other vegetation and for complete ecosystem. To overcome this problem, we have to focused on another alternative which are biologically libel and nonhazardous also. In the present study, herbal formulation was prepared in various combination ratios with Thevetia peruviana leaf extracts, cow dung and neem oil cake. The major aim of this short study is to check the stability of the said plant extracts and prepared herbal formulation on various physical factors like heat, temperature, pH, sunlight and storage etc. The extracts and herbal formulations were exposed to varying conditions of the parameters selected for a precise time period, and then observing the effect as a function of change in the crude extract activity, herbal formulation activity and change minimum inhibitory concentration of plant extract against the Alternaria solani. Control set of MIC, and extract free medium were maintained for comparison in each set of experiment against Alternaria solani. Results suggested that efficacy of leaf extracts and different formulations was not affected by wet heat up to 100 °C while slight reduction in antifungal activity of the plant extract and herbal formulations were observed with dry heat at 100 °C. In addition, slight reduction in activity of extract and herbal formulations was observed with change in pH. However antifungal activity of plant extract as well as herbal formulations, remain unaffected at alkaline pH (pH 9) and neutral pH (pH7). Storage for 6 and 12 months had no negative effect on extract and herbal formulation efficacy and the antifungal activity was observed similar to freshly prepared extract activity. The present study concluded that the plant disease or plant pathogens can be controlled by plant extract and plant based bioformulations by increasing the shelf life with some little changes in the physical parameters such as light, temperature, pH and storage.  相似文献   

17.
Development of palatable formulations for pediatric and geriatric patients involves various challenges. However, an innovative development with beneficial characteristics of marketed formulations in a single formulation platform was attempted. The goal of this research was to develop solid oral flexible tablets (OFTs) as a platform for pediatrics and geriatrics as oral delivery is the most convenient and widely used mode of drug administration. For this purpose, a flexible tablet formulation using cetirizine hydrochloride as model stability labile class 1 and 3 drug as per the Biopharmaceutical Classification System was developed. Betadex, Eudragit E100, and polacrilex resin were evaluated as taste masking agents. Development work focused on excipient selection, formulation processing, characterization methods, stability, and palatability testing. Formulation with a cetirizine-to-polacrilex ratio of 1:2 to 1:3 showed robust physical strength with friability of 0.1% (w/w), rapid in vitro dispersion within 30 s in 2–6 ml of water, and 0.2% of total organic and elemental impurities. Polacrilex resin formulation shows immediate drug release within 30 min in gastric media, better taste masking, and acceptable stability. Hence, it is concluded that ion exchange resins can be appropriately used to develop taste-masked, rapidly dispersible, and stable tablet formulations with tailored drug release suitable for pediatrics and geriatrics. Flexible formulations can be consumed as swallowable, orally disintegrating, chewable, and as dispersible tablets. Flexibility in dose administration would improve compliance in pediatrics and geriatrics. This drug development approach using ion exchange resins can be a platform for formulating solid oral flexible drug products with low to medium doses.  相似文献   

18.
With the growing interest in developing biologics for pulmonary delivery, systematic fast screening methods are needed for rapid development of formulations. Due to the labile nature of macromolecules, the development of stable, biologically active formulations with desired aerosol performance imposes several challenges both from a formulation and processing perspective. In this study, spray-freeze-drying was used to develop respirable protein powders. In order to systematically map the selected design space, lysozyme aqueous pre-formulations were prepared based on a constrained mixture design of experiment. The physicochemical properties of the resulting powders were characterized and the effects of formulation factors on aerosol performance and protein stability were systematically screened using a logic flow chart. Our results elucidated several relevant formulation attributes (density, total solid content, protein:sugars ratio) required to achieve a stable lysozyme powder with desirable characteristics for pulmonary delivery. A similar logical fast screening strategy could be used to delineate the appropriate design space for different types of proteins and guide the development of powders with pre-determined aerodynamic properties.  相似文献   

19.
The purpose of the study was to prepare stable liposomally entrapped budesonide (BUD) for a dry powder inhaler (DPI) formulation. BUD liposomes composed of egg phosphatidyl choline and cholesterol were prepared by lipid film hydration technique and sonicated to have the desired size (<5 μm). A rapid method was used for separation of free drug by centrifugation at a lower centrifugal force (G value). Liposomal dispersion was subjected to lyophilization after blending BUD with cryoprotectant in varying bulk and mass ratios, and percent drug remaining entrapped after lyophilization was optimized. Comparative drug retention studies on storage of DPI formulations were carried out in accordance with International Conference on Harmonization guidelines. Critical relative humidity of the formulations was determined and reported as one of the manufacturing controls. Sucrose was found to be the most effective cryoprotectant when present on both sides of the lamellae of liposomes in a bulk strength of 500 mM and mass ratio of lipid:sugar; 1∶10. Blending of sorbolac before lyophilization showed better retention of encapsulated drug (95.59%). The respirable fraction of the product (20.69±1.50%) was comparable with that of the control (26.49±1.52%), suggesting that the liposomal BUD can be successfully delivered throughout the broncho-pulmonary tree. The findings demonstrate that liposome of BUD can be prepared with a high entrapment value, stabilized by lyophilization, and delivered as an aerosolized DPI. The stability studies of lyophilized product suggests a shelf-life of one year when stored under refrigeration (2°C–8°C).  相似文献   

20.
This article describes the optimization of a peel-off facial mask formulation. An investigation was carried out on the parameters of the formulation that most affect the desirable characteristics of peel-off facial masks. Cereal alcohol had a significant effect on the drying time at concentrations of 1–12% (w/w). The applicability of the evaluated formulations was influenced by both carbomer (0–2.4%; w/w) and polyvinyl alcohol (PVA; 2.5–17.5%; w/w) content due to their ability to alter the formulation viscosity. Inverse concentrations of carbomer and PVA led to formulations with optimum viscosity for facial application. Film-forming performance was influenced only by the PVA concentration, achieving maximum levels at concentrations of around 11% (w/w). The optimized formulation, determined mathematically, contained 13% (w/w) PVA and 10% (w/w) cereal alcohol with no addition of carbomer. This formulation provided high levels of applicability and film-forming performance, the lowest drying time possible and excellent homogeneity of the green clay particles and aloe vera before and after drying. The preliminary stability study indicated that the optimized formulation is stable under normal storage conditions. The microbiological stability evaluation indicated that the preservative was efficient in terms of avoiding microbial growth. RSM was shown to be a useful statistical tool for the determination of the behavior of different compounds and their concentrations for the responses studied, allowing the investigation of the optimum conditions for the production of green clay and aloe vera peel-off facial masks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号