首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, we published our results (Bókkon et al., 2011. Electromagn Biol Med.) regarding the effectiveness of the EMOST (Electro-Magnetic-Own-Signal-Treatment) method for the reduction of phantom limb pain under clinical circumstances. However, EMOST treatments not only significantly reduced phantom pain, but that most of the patients also reported about additional benefits such as improvement of their sleep and mood quality after treatments. Here we report some unusual applications of EMOST method under special situations. That is, we report about our effective EMOST treatments of humans under catastrophic conditions and commando training course. This article points out that it is reasonable to apply biophysical electromagnetic management under unique circumstances. We also report some preliminary experiments on 12 members of our BioLabor regarding the effectiveness of single EMOST treatment on some serum parameters and electrocardiogram.  相似文献   

2.
Although various treatments have been presented for phantom pain, there is little proof supporting the benefits of pharmacological treatments, surgery or interventional techniques, electroconvulsive therapy, electrical nerve stimulation, far infrared ray therapy, psychological therapies, etc. Here, we report the preliminary results for phantom pain reduction by low-frequency and intensity electromagnetic fields under clinical circumstances. Our method is called as Electromagnetic-Own-Signal-Treatment (EMOST). Fifteen people with phantom limb pain participated. The patients were treated using a pre-programmed, six sessions. Pain intensity was quantified upon admission using a 0-10 verbal numerical rating scale. Most of the patients (n?=?10) reported a marked reduction in the intensity of phantom limb pain. Several patients also reported about improvement in their sleep and mood quality, or a reduction in the frequency of phantom pain after the treatments. No improvements in the reduction of phantom limb pain or sleep and mood improvement were reported in the control group (n?=?5). Our nonlinear electromagnetic EMOST method may be a possible therapeutic application in the reduction of phantom limb pain. Here, we also suggest that some of the possible effects of the EMOST may be achieved via the redox balance of the body and redox-related neural plasticity.  相似文献   

3.
Although various treatments have been presented for phantom pain, there is little proof supporting the benefits of pharmacological treatments, surgery or interventional techniques, electroconvulsive therapy, electrical nerve stimulation, far infrared ray therapy, psychological therapies, etc. Here, we report the preliminary results for phantom pain reduction by low-frequency and intensity electromagnetic fields under clinical circumstances. Our method is called as Electromagnetic-Own-Signal-Treatment (EMOST). Fifteen people with phantom limb pain participated. The patients were treated using a pre-programmed, six sessions. Pain intensity was quantified upon admission using a 0–10 verbal numerical rating scale. Most of the patients (n = 10) reported a marked reduction in the intensity of phantom limb pain. Several patients also reported about improvement in their sleep and mood quality, or a reduction in the frequency of phantom pain after the treatments. No improvements in the reduction of phantom limb pain or sleep and mood improvement were reported in the control group (n = 5). Our nonlinear electromagnetic EMOST method may be a possible therapeutic application in the reduction of phantom limb pain. Here, we also suggest that some of the possible effects of the EMOST may be achieved via the redox balance of the body and redox-related neural plasticity.  相似文献   

4.
Multiple sclerosis (MS) is the most frequent demyelinating disease of the central nervous system (CNS) that affects worldwide about 2.5 million people. The morphological correlates of the disease are multiple lesions in brain and spinal cord which are characterized by demyelination, inflammation, gliosis and axonal damage. The underlying cause for the permanent neurological deficits in MS patients is axonal loss. Demyelinated axons are prone to damage due to the lack of trophic support by myelin sheaths and oligodendrocytes, as well as the increased vulnerability to immune mediated attacks. Remyelination occurs, but especially in chronic lesions is frequently limited to a small rim at the lesion border. Current treatment strategies are based on anti-inflammatory or immunomodulatory drugs and have the potential to reduce the numbers of newly evolving lesions, although as yet no treatment strategy exists to influence or prevent the progressive disease phase. Therefore, the development of neuroprotective treatment options, such as the promotion of endogenous remyelination is an attractive strategy. A prerequisite for the development of such new treatments is the understanding of the mechanisms leading to remyelination and the reasons for insufficient endogenous repair in chronic MS. This review will therefore provide an overview of the current concepts regarding remyelination in the rodent and human CNS. We will also summarize a selected number of inhibitory pathways and non-disease related factors which may contribute to remyelination failure in chronic MS.  相似文献   

5.
Beta-hydroxy-beta-methylbutyrate (HMB), a metabolite of the branched-chain amino acid leucine, is extensively used by athletes and bodybuilders in order to increase strength, muscle mass and exercise performance. We performed a systematic review of the clinical literature on the effectiveness of HMB supplementation in healthy and pathological conditions (i.e. training programs, aging, acute and chronic diseases, and after bariatric surgery). We reviewed all clinical trials indexed in Medline that tested HMB supplementation as well as all the experimental data regarding HMB intracellular mechanisms of action. Search terms included: randomized controlled trials, controlled clinical trials, single- and double-blind method, HMB, proteolytic pathways, muscle atrophy, cachexia, and training. We found out 13 studies testing HMB in healthy young trained subjects, 11 in healthy young untrained subjects, 9 in patients affected by chronic diseases (i.e. cancer, HIV, chronic obstructive pulmonary disease), and 6 in elderly subjects. The indexed studies support that HMB is effective in preventing exercise-related muscle damage in healthy trained and untrained individuals as well as muscle loss during chronic diseases. Most of the selected studies showed the effectiveness of HMB in preventing exercise-related muscle damage in healthy trained and untrained individuals as well as muscle loss during chronic diseases. The usual dose of 3 g/day may be routinely recommended to maintain or improve muscle mass and function in health and disease. The safety profile of HMB is unequivocal. Further, well-designed clinical studies are needed to confirm effectiveness and mode of action of HMB, particularly in pathological conditions.  相似文献   

6.
It has been well established that S-adenosyl-L-methionine (SAMe) is the principal methyl donor in methyltransferase reactions and that SAMe supplementation restores hepatic glutathione (GSH) deposits and attenuates liver injury. However, the effectiveness of SAMe therapy in chronic liver disease has not been adequately addressed. We searched globally recognized electronic databases, including PubMed, the Cochrane Database and EMBASE, to retrieve relevant randomized controlled trials (RCTs) of chronic liver disease published in the past 20 years. We then performed a systematic review and meta-analysis of the enrolled trials that met the inclusion criteria.The results showed that twelve RCTs from 11 studies, which examined 705 patients, were included in this research. For liver function, certain results obtained from data synthesis and independent comparisons demonstrated significant differences between the levels of total bilirubin (TBIL) and aspartate transaminase (AST). However, no studies identified significant differences regarding alanine transaminase (ALT) levels. An analysis of the adverse events and long-term prognosis also indicated no significant differences between the SAMe and the placebo groups. In a subgroup analysis of gravidas and children, several of the included data indicated that there was a significant difference in the pruritus score. Furthermore, the results regarding ursodeoxycholic acid (UDCA) and stronger neo-minophagen C (SNMC) indicated that both treatments were more effective than SAMe was in certain chronic liver diseases. These findings suggest that SAMe could be used as the basis of a medication regimen for liver function improvement because of its safety. However, SAMe also demonstrated limited clinical value in the treatment of certain chronic liver diseases.  相似文献   

7.
The adult central nervous system (CNS) contains a population of neural stem cells, yet unlike many other tissues, has a very limited capacity for self-repair. Promoting tissue repair and functional recovery following CNS injury or disease is a high priority as there are currently no effective treatments towards this end for the treatment of disorders such as stroke, traumatic brain injury and spinal cord injury. Recent advances in stem cell biology have offered a number of enticing potential avenues and we will discuss these possibilities along with the associated challenges as they pertain to stroke. We will consider exogenous therapies involving the transplantation of adult stem cells, and the mobilization of endogenous stem cells, as well as drug delivery and tissue engineering strategies that enhance and complement the cell based strategies.  相似文献   

8.
Levran O  Yuferov V  Kreek MJ 《Human genetics》2012,131(6):823-842
Addiction to drugs is a chronic, relapsing brain disease that has major medical, social, and economic complications. It has been established that genetic factors contribute to the vulnerability to develop drug addiction and to the effectiveness of its treatment. Identification of these factors may increase our understanding of the disorders, help in the development of new treatments and advance personalized medicine. In this review, we will describe the genetics of the major genes of the opioid system (opioid receptors and their endogenous ligands) in connection to addiction to opioids, cocaine, alcohol and methamphetamines. Particular emphasis is given to association and functional studies of specific variants. We will provide information on the sample populations and the size of each study, as well as a list of the variants implicated in association with addiction-related phenotypes, and with the effectiveness of pharmacotherapy for addiction.  相似文献   

9.
During development, oligodendrocytes are generated from oligodendrocyte precursor cells (OPCs), a cell type that is a significant proportion of the total cells (3-8%) in the adult central nervous system (CNS) of both rodents and humans. Adult OPCs are responsible for the spontaneous remyelination that occurs in demyelinating diseases like Multiple Sclerosis (MS) and they constitute an interesting source of cells for regenerative therapy in such conditions. However, there is little data regarding the neurobiology of adult OPCs isolated from mice since an efficient method to isolate them has yet to be established. We have designed a protocol to obtain viable adult OPCs from the cerebral cortex of different mouse strains and we have compared its efficiency with other well-known methods. In addition, we show that this protocol is also useful to isolate functional OPCs from human brain biopsies. Using this method we can isolate primary cortical OPCs in sufficient quantities so as to be able to study their survival, maturation and function, and to facilitate an evaluation of their utility in myelin repair.  相似文献   

10.
Clinical trials and other forms of evaluation of medical treatment are held to give an objective assessment of the ‘clinical effectiveness’ of the medical treatments under evaluation. This kind of evaluation is central to the evidence-based medicine movement, as it provides a basis for the rational selection of treatment. The ethical status of randomised clinical trials is widely agreed to depend crucially upon the state of equipoise regarding which of two (or more) treatments is more (or most) effective in a defined population. However, the meaning and nature of ‘clinical effectiveness’ are unclear. in this paper, I discuss the proposals to define clinical effectiveness as a relational property and as an intrinsic property, and the way effectiveness may supervene upon more fundamental physical properties of treatments. I discuss whether effectiveness is a single property or a family of properties; the types of outcome which can be explained by effectiveness properties; and the relationship between ‘objective’ and ‘preference’ outcomes. This paper suggests that while it may be possible to put clinical effectiveness on a proper metaphysical footing, in practice the language of clinical effectiveness is more properly a topic of the human sciences than of the natural sciences.  相似文献   

11.
The complex molecular pathways that mediate the effects of vitamin A and its derivatives, are increasingly recognized as a component of the repair capacity that could be activated to induce protection and regeneration in the mature nervous tissue. Retinoid and retinoid-associated signaling plays an essential role in normal neurodevelopment and appears to remain active in the adult CNS. In this paper, we review evidence which supports the hypothesis of an activation of retinoid-associated signaling molecular pathways in the mature nervous tissue and its significance in the context of neurodegenerative, trauma-induced and psychiatric disorders, at spinal and supra-spinal levels. Finally, we summarize the potential therapeutic avenues based on the modulation of retinoid targets undergoing reactivation under conditions of acute injury and chronic degeneration in the central nervous system, and discuss some of the unresolved issues linked to this treatment strategy.  相似文献   

12.
In vitro and in vivo studies on the role of tenascins have shown that the two paradigmatic glycoproteins of the tenascin family, tenascin-C (TnC) and tenascin-R (TnR) play important roles in cell proliferation and migration, fate determination, axonal pathfinding, myelination, and synaptic plasticity. As components of the extracellular matrix, both molecules show distinct, but also overlapping dual functions in inhibiting and promoting cell interactions depending on the cell type, developmental stage and molecular microenvironment. They are expressed by neurons and glia as well as, for TnC, by cells of the immune system. The functional relationship between neural and immune cells becomes relevant in acute and chronic nervous system disorders, in particular when the blood brain and blood peripheral nerve barriers are compromised. In this review, we will describe the functional parameters of the two molecules in cell interactions during development and, in the adult, in synaptic activity and plasticity, as well as regeneration after injury, with TnC being conducive for regeneration and TnR being inhibitory for functional recovery. Although not much is known about the role of tenascins in neuroinflammation, we will describe emerging knowledge on the interplay between neural and immune cells in autoimmune diseases, such as multiple sclerosis and polyneuropathies. We will attempt to point out the directions of experimental approaches that we envisage would help gaining insights into the complex interplay of TnC and TnR with the cells that express them in pathological conditions of nervous and immune systems.  相似文献   

13.
Neuronal death during nervous system development, a widely observed phenomenon, occurs through unknown mechanisms. Recent evidence suggests an active, destructive process requiring new gene expression. Sulfated glycoprotein-2 (SGP-2), a secretory product of testicular Sertoli cells has been shown to up-regulate in several nonneural tissues undergoing programmed cell death and in several types of neuronal degeneration. In order to determine if this message up-regulates in neurons undergoing developmentally determined cell death, we have studied the expression of SGP-2 mRNA in the developing and adult rat central nervous system (CNS) with in situ hybridization. We also report on the expression of this message in nonneural tissues from several regions of the developing embryo. The developing and adult rat central nervous system as well as widely varied tissues in the rat embryo express SGP-2 mRNA in a pattern that does not correlate with regions undergoing developmental cell death. In the nervous system, SGP-2 mRNA is expressed in neuronal populations including motor neurons, cortical neurons, and hypothalamic neurons at ages when the period of developmental cell death has passed. In a nonneural tissue (palatal shelve epithelium) for which a developmental cell death period has been described, SGP-2 mRNA was not present in the region where cell death occurs. We conclude that SGP-2 mRNA expression cannot be correlated with programmed cell death in neural or nonneural tissues. The results of this study as well as recently reported SGP-2 homologies indicate a possible role for this protein in secretion and lipid transport.  相似文献   

14.
Multiple sclerosis (MS) is an autoimmune disease that leads to oligodendrocyte loss and subsequent demyelination of the adult central nervous system (CNS). The pathology is characterized by transient phases of recovery during which remyelination can occur as a result of resident oligodendroglial precursor and stem/progenitor cell activation. However, myelin repair efficiency remains low urging the development of new therapeutical approaches that promote remyelination activities. Current MS treatments target primarily the immune system in order to reduce the relapse rate and the formation of inflammatory lesions, whereas no therapies exist in order to regenerate damaged myelin sheaths. During the last few years, several transplantation studies have been conducted with adult neural stem/progenitor cells and glial precursor cells to evaluate their potential to generate mature oligodendrocytes that can remyelinate axons. In parallel, modulation of the endogenous progenitor niche by neural and mesenchymal stem cell transplantation with the aim of promoting CNS progenitor differentiation and myelination has been studied. Here, we summarize these findings and discuss the properties and consequences of the various molecular and cell-mediated remyelination approaches. Moreover, we address age-associated intrinsic cellular changes that might influence the regenerative outcome. We also evaluate the extent to which these experimental treatments might increase the regeneration capacity of the demyelinated human CNS and hence be turned into future therapies.  相似文献   

15.
We present a method to use the commercially available LEGO Mindstorms NXT robotics platform to test systems level neuroscience hypotheses. The first step of the method is to develop a nervous system simulation of specific reflexive behaviors of an appropriate model organism; here we use the American Lobster. Exteroceptive reflexes mediated by decussating (crossing) neural connections can explain an animal''s taxis towards or away from a stimulus as described by Braitenberg and are particularly well suited for investigation using the NXT platform.1 The nervous system simulation is programmed using LabVIEW software on the LEGO Mindstorms platform. Once the nervous system is tuned properly, behavioral experiments are run on the robot and on the animal under identical environmental conditions. By controlling the sensory milieu experienced by the specimens, differences in behavioral outputs can be observed. These differences may point to specific deficiencies in the nervous system model and serve to inform the iteration of the model for the particular behavior under study. This method allows for the experimental manipulation of electronic nervous systems and serves as a way to explore neuroscience hypotheses specifically regarding the neurophysiological basis of simple innate reflexive behaviors. The LEGO Mindstorms NXT kit provides an affordable and efficient platform on which to test preliminary biomimetic robot control schemes. The approach is also well suited for the high school classroom to serve as the foundation for a hands-on inquiry-based biorobotics curriculum.  相似文献   

16.
Normal maturation and functioning of the central auditory system affects the development of speech perception and oral language capabilities. This study examined maturation of central auditory pathways as reflected by age-related changes in the P1/N1 components of the auditory evoked potential (AEP). A synthesized consonant-vowel syllable (ba) was used to elicit cortical AEPs in 86 normal children ranging in age from 6 to 15 years and ten normal adults. Distinct age-related changes were observed in the morphology of the AEP waveform. The adult response consists of a prominent negativity (N1) at about 100 ms, preceded by a smaller P1 component at about 50 ms. In contrast, the child response is characterized by a large P1 response at about 100 ms. This wave decreases significantly in latency and amplitude up to about 20 years of age. In children, P1 is followed by a broad negativity at about 200 ms which we term N1b. Many subjects (especially older children) also show an earlier negativity (N1a). Both N1a and N1b latencies decrease significantly with age. Amplitudes of N1a and N1b do not show significant age-related changes. All children have the N1b; however, the frequency of occurrence of N1a increases with age. Data indicate that the child P1 develops systematically into the adult response; however, the relationship of N1a and N1b to the adult N1 is unclear. These results indicate that maturational changes in the central auditory system are complex and extend well into the second decade of life.  相似文献   

17.
18.
Increased blood pressure (BP) in genetic hypertension is usually caused by high activity of sympathetic nervous system (SNS) which is enhanced by central angiotensin II but lowered by central nitric oxide (NO). We have therefore evaluated NO synthase (NOS) activity as well as neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS) protein expression in brainstem and midbrain of adult spontaneously hypertensive rats (SHR) characterized by enhanced sympathetic vasoconstriction. We also studied possible participation of brain NO in antihypertensive effects of chronic captopril treatment of adult SHR. NOS activity was increased in midbrain of SHR compared to Wistar-Kyoto (WKY) rats. This could be ascribed to enhanced iNOS expression, whereas nNOS expression was unchanged and eNOS expression was reduced in this brain region. In contrast, no significant changes of NOS activity were found in brainstem of SHR in which nNOS and iNOS expression was unchanged, but eNOS expression was increased. Chronic captopril administration lowered BP of adult SHR mainly by attenuation of sympathetic tone, whereas the reduction of angiotensin II-dependent vasoconstriction and the decrease of residual BP (amelioration of structural remodeling of resistance vessels) were less important. This treatment did not affect significantly either NOS activity or expression of any NOS isoform in the two brain regions. Our data do not support the hypothesis that altered brain NO formation contributes to sympathetic hyperactivity and high BP of adult SHR with established hypertension.  相似文献   

19.
Several recent lines of inquiry have pointed to the amygdala as a potential lesion site in autism. Because one function of the amygdala may be to produce autonomic arousal at the sight of a significant face, we compared the responses of autistic children to their mothers' face and to a plain paper cup. Unlike normals, the autistic children as a whole did not show a larger response to the person than to the cup. We also monitored sympathetic activity in autistic children as they engaged in a wide range of everyday behaviours. The children tended to use self-stimulation activities in order to calm hyper-responsive activity of the sympathetic ('fight or flight') branch of the autonomic nervous system. A small percentage of our autistic subjects had hyporesponsive sympathetic activity, with essentially no electrodermal responses except to self-injurious behaviour. We sketch a hypothesis about autism according to which autistic children use overt behaviour in order to control a malfunctioning autonomic nervous system and suggest that they have learned to avoid using certain processing areas in the temporal lobes.  相似文献   

20.
Neuronal death is an essential feature in the normal development of the nervous system and in neurodegenerative states of the adult or ageing brain. Bcl-2 is the prototype of a growing family of proteins which control cell death. Many of these proteins are expressed in the nervous system during development and in the adult. Numerous observations have suggested that this family of proteins plays a central role in the control of naturally occurring and pathological neuronal death. In this review, I will discuss the possible mechanisms of action of these proteins as well as their potential use in treating neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号