首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 854 毫秒
1.
The minichromosome maintenance (MCM) complex, consisting of six subunits, Mcm2-7, is loaded onto replication origins through loading factors (origin recognition complex [ORC], Cdc6, and Cdt1) and forms an MCM double hexamer that licenses the initiation of DNA replication. Previous studies with Xenopus egg extracts showed that loading factors, especially Cdc6, dissociate from chromatin on MCM loading, but the molecular mechanism and physiological significance remain largely unknown. Using a cell-free system for MCM loading onto plasmid DNA in Xenopus egg extracts, we found that MCM loaded onto DNA prevents DNA binding of the loading factors ORC, Cdc6, and Cdt1. We further report that a peptide of the C-terminal region of MCM3 (MCM3-C), previously implicated in the initial association with ORC/Cdc6 in budding yeast, prevents ORC/Cdc6/Cdt1 binding to DNA in the absence of MCM loading. ATP-γ-S suppresses inhibitory activities of both the MCM loaded onto DNA and the MCM3-C peptide. Other soluble factors in the extract, but neither MCM nor Cdt1, are required for the activity. Conservation of the amino acid sequences of MCM3-C and its activity in vertebrates implies a novel negative autoregulatory mechanism that interferes with MCM loading in the vicinity of licensed origins to ensure proper origin licensing.  相似文献   

2.
3.
MCM proteins are molecular components of the DNA replication licensing system inXenopus.These proteins comprise a conserved family made up of six distinct members which have been found to associate in large protein complexes. We have used a combination of biochemical and cytological methods to study the association of soluble and chromatin-boundXenopusMCM proteins during the cell cycle. In interphase, soluble MCM proteins are found organized in a core salt-resistant subcomplex that includes MCM subunits which are known to have high affinity for histones. The interphasic complex is modified at mitosis and the subunit composition of the resulting mitotic subcomplexes is distinct, indicating that the stability of the MCM complex is under cell cycle control. Moreover, we provide evidence that the binding of MCM proteins to chromatin may occur in sequential steps involving the loading of distinct MCM subunits. Comparative analysis of the chromatin distribution of MCM2, 3, and 4 shows that the binding of MCM4 is distinct from that of MCM2 and 3. Altogether, these data suggest that licensing of chromatin by MCMs occurs in an ordered fashion involving discrete subcomplexes.  相似文献   

4.
In eukaryotes, DNA synthesis is preceded by licensing of replication origins. We examined the subcellular localization of two licensing proteins, ORC2 and MCM7, in the mouse zygotes and two-cell embryos. In somatic cells ORC2 remains bound to DNA replication origins throughout the cell cycle, while MCM7 is one of the last proteins to bind to the licensing complex. We found that MCM7 but not ORC2 was bound to DNA in metaphase II oocytes and remained associated with the DNA until S-phase. Shortly after fertilization, ORC2 was detectable at the metaphase II spindle poles and then between the separating chromosomes. Neither protein was present in the sperm cell at fertilization. As the sperm head decondensed, MCM7 was bound to DNA, but no ORC2 was seen. By 4 h after fertilization, both pronuclei contained DNA bound ORC2 and MCM7. As expected, during S-phase of the first zygotic cell cycle, MCM7 was released from the DNA, but ORC2 remained bound. During zygotic mitosis, ORC2 again localized first to the spindle poles, then to the area between the separating chromosomes. ORC2 then formed a ring around the developing two-cell nuclei before entering the nucleus. Only soluble MCM7 was present in the G2 pronuclei, but by zygotic metaphase it was bound to DNA, again apparently before ORC2. In G1 of the two-cell stage, both nuclei had salt-resistant ORC2 and MCM7. These data suggest that licensing follows a unique pattern in the early zygote that differs from what has been described for other mammalian cells that have been studied.  相似文献   

5.
6.
7.
8.
A yeast two-hybrid screen was employed to identify human proteins that specifically bind the amino-terminal 400 amino acids of the retinoblastoma (Rb) protein. Two independent cDNAs resulting from this screen were found to encode the carboxy-terminal 137 amino acids of MCM7, a member of a family of proteins that comprise replication licensing factor. Full-length Rb and MCM7 form protein complexes in vitro, and the amino termini of two Rb-related proteins, p107 and p130, also bind MCM7. Protein complexes between Rb and MCM7 were also detected in anti-Rb immunoprecipitates prepared from human cells. The amino-termini of Rb and p130 strongly inhibited DNA replication in an MCM7-dependent fashion in a Xenopus in vitro DNA replication assay system. These data provide the first evidence that Rb and Rb-related proteins can directly regulate DNA replication and that components of licensing factor are targets of the products of tumor suppressor genes.  相似文献   

9.
The DNA unwinding element (DUE)-binding protein (DUE-B) binds to replication origins coordinately with the minichromosome maintenance (MCM) helicase and the helicase activator Cdc45 in vivo, and loads Cdc45 onto chromatin in Xenopus egg extracts. Human DUE-B also retains the aminoacyl-tRNA proofreading function of its shorter orthologs in lower organisms. Here we report that phosphorylation of the DUE-B unstructured C-terminal domain unique to higher organisms regulates DUE-B intermolecular binding. Gel filtration analyses show that unphosphorylated DUE-B forms multiple high molecular weight (HMW) complexes. Several aminoacyl-tRNA synthetases and Mcm2–7 proteins were identified by mass spectrometry of the HMW complexes. Aminoacyl-tRNA synthetase binding is RNase A sensitive, whereas interaction with Mcm2–7 is nuclease resistant. Unphosphorylated DUE-B HMW complex formation is decreased by PP2A inhibition or direct DUE-B phosphorylation, and increased by inhibition of Cdc7. These results indicate that the state of DUE-B phosphorylation is maintained by the equilibrium between Cdc7-dependent phosphorylation and PP2A-dependent dephosphorylation, each previously shown to regulate replication initiation. Alanine mutation of the DUE-B C-terminal phosphorylation target sites increases MCM binding but blocks Cdc45 loading in vivo and inhibits cell division. In egg extracts alanine mutation of the DUE-B C-terminal phosphorylation sites blocks Cdc45 loading and inhibits DNA replication. The effects of DUE-B C-terminal phosphorylation reveal a novel S phase kinase regulatory mechanism for Cdc45 loading and MCM helicase activation.  相似文献   

10.
11.
12.
Cdc7 is an S‐phase‐promoting kinase (SPK) that is required for the activation of replication initiation complex assembly because it phosphorylates the MCM protein complex serving as the replicative helicase in eukaryotic organisms. Cdc7 activity is undetectable in immature mouse GV oocytes, although Cdc7 protein is already expressed at the same level as in mature oocytes or early one‐cell embryos at zygotic S‐phase, in which Cdc7 kinase activity is clearly detectable. Dbf4 is a regulatory subunit of Cdc7 and is required for Cdc7 kinase activity. Dbf4 is not readily detectable in immature GV oocytes but accumulates to a level similar to that in one‐cell embryos during oocyte maturation, suggesting that Cdc7 is already activated in unfertilized eggs (metaphase II). RNAi‐mediated knockdown of maternal Dbf4 expression prevents the maturation‐associated increase in Dbf4 protein, abolishes the activation of Cdc7, and leads to the failure of DNA replication in one‐cell embryos, demonstrating that Dbf4 expression is the key regulator of Cdc7 activity in mouse oocytes. Dormant Dbf4 mRNA in immature GV oocytes is recruited by cytoplasmic polyadenylation during oocyte maturation and is dependent on MPF activity via its cytoplasmic polyadenylation element (CPE) upstream of the hexanucleotide (HEX) in the 3′ untranslated region (3′UTR). Our results suggest that Cdc7 is inactivated in immature oocytes, preventing it from the unwanted phosphorylation of MCM proteins, and the oocyte is qualified by proper maturation to proceed following embryogenesis after fertilization through zygotic DNA replication.  相似文献   

13.
Mouse oocytes acquire the ability to replicate DNA during meiotic maturation, presumably to ensure that DNA replication does not occur precociously between MI and MII and only after fertilization. Acquisition of DNA replication competence requires protein synthesis, but the identity of the proteins required for DNA replication is poorly described. In Xenopus, the only component missing for DNA replication competence is CDC6, which is synthesized from a dormant maternal mRNA recruited during oocyte maturation, and a similar situation also occurs during mouse oocyte maturation. We report that ORC6L is another component required for acquisition of DNA replication competence that is absent in mouse oocytes. The dormant maternal Orc6l mRNA is recruited during maturation via a CPE present in its 3′ UTR. RNAi-mediated ablation of maternal Orc6l mRNA prevents the maturation-associated increase in ORC6L protein and inhibits DNA replication in 1-cell embryos. These results suggest that mammalian oocytes have more complex mechanisms to establish DNA replication competence when compared to their Xenopus counterparts.  相似文献   

14.

Background  

Vertebrate development relies on the regulated translation of stored maternal mRNAs, but how these regulatory mechanisms may have evolved to control translational efficiency of individual mRNAs is poorly understood. We compared the translational regulation and polyadenylation of the cyclin B1 mRNA during zebrafish and Xenopus oocyte maturation. Polyadenylation and translational activation of cyclin B1 mRNA is well characterized during Xenopus oocyte maturation. Specifically, Xenopus cyclin B1 mRNA is polyadenylated and translationally activated during oocyte maturation by proteins that recognize the conserved AAUAAA hexanucleotide and U-rich Cytoplasmic Polyadenylation Elements (CPEs) within cyclin B1 mRNA's 3'UnTranslated Region (3'UTR).  相似文献   

15.
《Autophagy》2013,9(4):520-526
Autophagy mediates the bulk turnover of cytoplasmic constituents in lysosomes. During embryonic development in animals, a dramatic degradation of yolk proteins and synthesis of zygotic proteins takes place, leading to intracellular remodeling and cellular differentiation. Zebrafish represents a unique system to study autophagy due in part to its rapid embryonic development relative to other vertebrates. The technical advantages of this organism make it uniquely suited to various studies including high throughput drug screens. To study autophagy in zebrafish, we identified two zebrafish Atg8 homologs, lc3 and gabarap, and generated two transgenic zebrafish lines expressing GFP-tagged versions of the corresponding proteins. Similar to yeast Atg8 and mammalian LC3, zebrafish Lc3 undergoes post-translational modification starting at the pharyngula stage during embryonic development. We observed a high level of autophagy activity in zebrafish embryos, which can be further upregulated by the TOR inhibitor rapamycin or the calpain inhibitor calpeptin. In addition, zebrafish Gabarap accumulates within lysosomes upon autophagy induction. Thus, we established a convenient zebrafish tool to assay autophagic activity during embryogenesis in vivo.  相似文献   

16.
17.
One contributing factor in the worldwide decline in amphibian populations is thought to be the exposure of eggs to UV light. Enrichment of pigment in the animal hemisphere of eggs laid in the sunlight defends against UV damage, but little is known about the cell biological mechanisms controlling such polarized pigment patterns. Even less is known about how such mechanisms were modified during evolution to achieve the array of amphibian egg pigment patterns. Here, we show that ectopic expression of the γ-tubulin regulator, Shroom2, is sufficient to induce co-accumulation of pigment granules, spectrin, and dynactin in Xenopus blastomeres. Shroom2 and spectrin are enriched and co-localize specifically in the pigmented animal hemisphere of Xenopus eggs and blastulae. Moreover, Shroom2 messenger RNA (mRNA) is expressed maternally at high levels in Xenopus. In contrast to Xenopus, eggs and blastulae of Physalaemus pustulosus have very little surface pigmentation. Rather, we find that pigment is enriched in the perinuclear region of these embryos, where it co-localizes with spectrin. Moreover, maternal Shroom2 mRNA was barely detectable in Physaleamus, though zygotic levels were comparable to Xenopus. We therefore suggest that a Shroom2/spectrin/dynactin-based mechanism controls pigment localization in amphibian eggs and that variation in maternal Shroom2 mRNA levels accounts in part for variation in amphibian egg pigment patterns during evolution. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
A partial cDNA from maize, ROA, encoding a protein homologous to the MCM3 family of essential factors for the initiation of DNA replication, has been isolated previously. In the present work, a longer version of the original ROA cDNA, encoding a full-length protein, was isolated and termed ZmROA1. In addition, three other closely related cDNAs, ZmROA2, ZmROA3 and ZmROA4, were also isolated. ZmROA2 end ZmROA3 appear to encode full-length proteins, whereas ZmROA4 a partial polypeptide. Two clusters of basic amino acids comprising putative nuclear localization signals were identified in the N-terminal domain of these proteins, together with a potential leucine zipper. Immunofluorescence studies on cycling meristematic root-tip cells revealed that these proteins are localized in the nucleus throughout interphase with a pattern overlapping that of chromatin. However, as chromatin condenses at prophase, ZmROA proteins become increasingly distinct from chromatin and appear totally dissociated from the segregating chromosomes during mitosis. This behaviour is consistent with a role in restricting DNA replication to only one round in each cell cycle. A 4.7 kb genomic sequence was also isolated, comprising part of the ZmROA2 gene, with approximately 3.2 kb of promoter sequence, and 600 bp of 5' sequence of the ZmROA2 cDNA, including the first four exons and three introns. Several putative regulatory elements were identified in the promoter sequence. This is the first report on promoter and cDNA sequences encoding full-length MCM3 homologues from higher plants and the distribution of such proteins during the plant cell cycle.Key words: Cell cycle, DNA replication licensing factor, MCM proteins, plant.   相似文献   

19.
The initiation of DNA replication requires two protein kinases: cyclin-dependent kinase (Cdk) and Cdc7. Although S phase Cdk activity has been intensively studied, relatively little is known about how Cdc7 regulates progression through S phase. We have used a Cdc7 inhibitor, PHA-767491, to dissect the role of Cdc7 in Xenopus egg extracts. We show that hyperphosphorylation of mini-chromosome maintenance (MCM) proteins by Cdc7 is required for the initiation, but not for the elongation, of replication forks. Unlike Cdks, we demonstrate that Cdc7 executes its essential functions by phosphorylating MCM proteins at virtually all replication origins early in S phase and is not limiting for progression through the Xenopus replication timing programme. We demonstrate that protein phosphatase 1 (PP1) is recruited to chromatin and rapidly reverses Cdc7-mediated MCM hyperphosphorylation. Checkpoint kinases induced by DNA damage or replication inhibition promote the association of PP1 with chromatin and increase the rate of MCM dephosphorylation, thereby counteracting the previously completed Cdc7 functions and inhibiting replication initiation. This novel mechanism for regulating Cdc7 function provides an explanation for previous contradictory results concerning the control of Cdc7 by checkpoint kinases and has implications for the use of Cdc7 inhibitors as anti-cancer agents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号