首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 100 毫秒
1.
Microorganisms including bacteria, actinomycetes and fungi were recovered from the leaves of Withania somnifera, which were collected from two altitudinal ranges (0–300 m and 1700–2000 m) in the Asir region, Saudi Arabia. Types and numbers of microorganisms varied according to the altitude and the month of collection. The number of microorganisms was higher on old leaves than that on young ones in most cases. Low altitude exhibited more microorganisms than high altitude. The relationship between meteorological factors and type and number of the recovered microorganisms is discussed. Inoculation of detached healthy leaves of Withania by all recovered fungal species revealed only Alternaria solani as a pathogen of this plant. To confirm pathogenicity, scanning and transmission electron microscopic examination revealed the colonization of this pathogen inside the leaf tissue. Penetration of Withania leaves by the fungus occurred only through stomata, and the invading hyphae were located in the intercellular spaces of leaf tissues. Ultrastructural changes noted in infected cells included changes in chloroplasts and the invagination of the host plasma membrane.  相似文献   

2.
The density, biomass and shoot morphology of two populations of Zostera noltii were monitored from January 1998 to July 1999 at two shallow Mediterranean lagoons of Biguglia and Urbino, which differ in hydro-morphological conditions and nutrient loading. Monitoring included the principal biological and foliar parameters (shoot density, aboveground and belowground biomass, length, width and number of leaves, LAI and coefficient A: percentage of leaves having lost their apex), the organic matter contents of the sediment and the environmental conditions (salinity, turbidity, temperature, nutrient concentrations and dissolved oxygen levels). The two populations of Z. noltii displayed seasonal changes in density (1600–19600 m2), aboveground biomass (11–153 g. DW. m−2), leaf length (33–255 mm), and leaf width (0.9–1.8 mm). Temperature and turbidity were significant environmental factors influencing the temporal changes observed in the Z. noltii meadows studied. Conversely, the belowground biomass, the number of leaves per shoot and the LAI did not undergo any seasonal changes. In the Biguglia lagoon, the functioning dynamics of the Z. noltii seagrass beds are determined by the catchment area and the inputs of nutrients derived from it, whereas in the Urbino lagoon the dynamics of the Z. noltiibeds depend on low levels of water turbidity.  相似文献   

3.
The effect of light intensity and root nitrogen supply on the levels of leaf hypericins was examined for St. John’s wort (Hypericum perforatum L.) grown in a sand culture system with artificial lighting. Increasing the light intensity illuminating St. John’s wort plants from 106 to 402 μmol·m–2·s–1 resulted in a continuous increase in the level of leaf hypericins. Using a leaf dissection approach, the association of hypericins with the dark glands on the leaves was shown, and it was found that increasing light intensity resulted in a parallel increase in the number of dark glands. In this respect, a linear relationship was observed between leaf gland number and the level of leaf hypericins (R = 0.901). While a decrease in nitrogen supply to St. John’s wort plants also yielded an increase in the level of leaf hypericins, this response occurred in a discontinuous manner over the range of nitrogen levels tested and no significant effect upon the number of dark leaf glands was observed. Overall, these effects of increased light intensity and decreased nitrogen supply on leaf hypericins appear to be independent and additive, and may reflect differences in the sites and processes where these environmental parameters impact production of these phytochemicals.  相似文献   

4.
R. Baur  S. Binder  G. Benz 《Oecologia》1991,87(2):219-226
Summary The grey alder compensates leaf area losses due to insect grazing by continuously producing new leaves throughout the vegetative period. Different degrees of defoliation were attained experimentally by a controlled release of the oligophagous beetle Agelastica alni on arbitrarily selected trees from a homogenous population of young alders. The reduction in leaf area per tree significantly influenced the density of leaf trichomes, assessed 10–30 days later, on newly sprouting leaves only. Cross-correlations between leaf area reduction and trichome density were strongest for leaves which completed unfolding 14–21 days after damage. Dualchoice assays suggested a negative influence of trichomes on oviposition rate of A. alni. Removal of trichomes by shaving demonstrated the highly significant effect of trichomes on feeding behavior of adults and larvae in dual-choice assays. The role of the induced increase in trichome density as a possible short-term defense reaction against herbivorous insects is discussed.  相似文献   

5.
Tobacco plantlets were cultured in vitro under high (200 µmol m–2 s–1) or low (60 µmol m–2 s–1) irradiance with or without saccharose in the medium. Light microscopy and image analysis were used to evaluate the effect of these culture conditions on leaf anatomy. Addition of saccharose resulted in thicker leaves (all leaf layers) and larger mesophyll cells under both growth irradiances. Various irradiance affected leaf anatomy differently when plantlets had been cultivated in presence or absence of saccharose in the medium. While under high irradiance in presence of saccharose leaf thickness and number of chloroplasts per cell section were increased, plantlets grown under high irradiance in absence of saccharose had thinner leaves and less chloroplasts per cell section. The changes were more pronounced in palisade parenchyma layer.  相似文献   

6.
Flaveria trinervia (Compositae) leaves are used for the treatment of jaundice and fever. From the leaf callus cultures regeneration of plantlets has been achieved. The results showed that BAP greatly stimulated the bud formation in concentrations ranging from 2–5 mg l–1 than at very low concentrations (0.2–1.0 mg l–1). Roots developed on the regenerated shoots, over a range of treatments, but were most prolific in the medium containing 1 mg l–1 IAA. Histological observations revealed that cultured spongy cells of the mesophyll were greatly enlarged and underwent repeated cell divisions leading to the formation of hard nodular callus from which shoot buds differentiated. The shoots obtained were readily rooted and transplanted into glass houses. Cytological studies of the callus showed abnormalities such as bridges, endomitosis and multinucleolate conditions. Root tip squashes of the regenerated plants showed no variations and were diploid in chromosome number.Abbreviations 2,4-D 2,4-dichlorophenoxy acetic acid - NAA napthalene acetic acid - IAA indole acetic acid - BAP 6-benzyl aminopurine - Kn kinetin  相似文献   

7.
Effects of leaf type on the consumption rates of aquatic detritivores   总被引:2,自引:2,他引:0  
Silver maple (Acer saccharinum) and cottonwood (Populus deltoides) leaves were incubated in cages excluding (controls) or containing (experimental) detritivores for periods of up to 123 days. Experimental cages contained either the cranefly larvae Tipula abdominalis, the amphipod Gammarus pseudolimnaeus or the caddisfly Pycnopsyche guttifer. Differences in daily consumption between leaf types and among species were compared.In control cages 20–23% of initial leaf weight was lost by leaching and 8–10% by microbial processes. T. abdominalis and P. guttifer consumed more silver maple than cottonwood during feeding intervals; no significant differences were observed for G. pseudolimnaeus. Invertebrate consumption of cottonwood leaves significantly increased with time; no significant differences in consumption of silver maple leaves with time were observed. Potential factors influencing the observed feeding pattern between leaf species are discussed.  相似文献   

8.
Qi Y  Sun Y  Xu L  Xu Y  Huang H 《Planta》2004,219(2):270-276
In seed plants, formation of the adaxial–abaxial polarity is of primary importance in leaf patterning. Since Arabidopsis thaliana (L.) Heynh. genes ASYMMETRIC LEAVES1 (AS1) and ASYMMETRIC LEAVES2 (AS2) are key regulators in specifying adaxial leaf identity, and ERECTA is involved in the AS1/AS2 pathway for regulating adaxial–abaxial polarity [L. Xu et al. (2003) Development 130:4097–4107], we studied the physiological functions of the ERECTA protein in plant development. We analyzed the effects of different environmental conditions on a special leaf structure in the as1 and as2 mutants. This structure, called the lotus-leaf, reflects a severe loss of adaxial–abaxial polarity in leaves. Higher concentrations of salt or other osmotic substance and lower temperature severely affected plant growth both in the wild type and the mutants, but did not affect lotus-leaf frequency in the as1 and as2 mutants. as1 and as2 mutants exhibited a very low lotus-leaf frequency at 22°C, a temperature that favors Arabidopsis growth. The lotus-leaf frequency rose significantly with an increase in growth temperature, and only in plants that are in the erecta mutation background. These results suggest that ERECTA function is required for reducing plant sensitivity to heat stress during adaxial–abaxial polarity formation in leaves.Abbreviations AS1, AS2 ASYMMETRIC LEAVES1, 2 - ER ERECTA  相似文献   

9.
Plant nitrogen (N)deficiency often limits crop productivity. Early detection of plant N deficiency is important for improving fertilizer N-use efficiency and crop yield. An experiment was conducted in sunlit, controlled environment chambers in the 2001 growing season to determine responses of corn (Zea mays L. cv. 33A14) growth and leaf hyperspectral reflectance properties to varying N supply. Four N treatments were: (1) half-strength Hoagland's nutrient solution applied throughout the experiment (control); (2) 20% of control N starting 15 days after emergence (DAE); (3) 0% N starting 15 DAE; and (4) 0% N starting 23 DAE (0% NL). Plant height, the number of leaves, and leaf lengths were examined for nine plants per treatment every 3–4 days. Leaf hyperspectral reflectance, concentrations of chlorophyll a, chlorophyll b,and carotenoids, leaf and canopy photosynthesis, leaf area, and leaf N concentration were also determined during the experiment. The various N treatments led to a wide range of N concentrations (11 – 48 g kg–1 DW) in uppermost fully expanded leaves. Nitrogen deficiency suppressed plant growth rate and leaf photosynthesis. At final harvest (42 DAE), plant height, leaf area and shoot biomass were 64–66% of control values for the 20% N treatment, and 46-56% of control values for the 0% N treatment. Nitrogen deficit treatments of 20% N and 0% N (Treatment 3) could be distinguished by changes in leaf spectral reflectance in wavelengths of 552 and 710 nm 7 days after treatment. Leaf reflectance at these two wavebands was negatively correlated with either leaf N (r = –0.72 and –0.75**) or chlorophyll (r = –0.60 and –0.72**) concentrations. In addition, higher correlations were found between leaf N concentration and reflectance ratios. The identified N-specific spectral algorithms may be used for image interpretation and diagnosis of corn N status for site-specific N management.  相似文献   

10.
The seasonal changes in leaf emergence and leaf-fall in a Japanese alder stand of the fen in Kushiro Marsh were studied, and survival curves for the leaves were drawn. Leaves collected in litter traps were dried and weighed to study the seasonal changes, peaks in mid-August and late September to October suggested a bimodal annual curve. Study of the seasonal changes in the number of emerged and fallen leaves per shoot revealed a third peak about one month before the August peak, showing a trimodal annual curve. First and second leaves had a longevity of about 40 and 50–60 days, respectively. The longevity increased until the fifth leaf. With the sixth and following leaves, longevity decreased. Leaf size increased with leaf rank, with the first leaf being the smallest. The first leaf had only about 10% and the second leaf only 20% of the area of the fifth leaf. On this basis, the early to mid-July peak in number of fallen leaves was composed of first and second leaves which were smaller and short-lived. The early August and September/October peaks were high in both number and mass of fallen leaves. Compared to reports on Japanese alder of other mountainous districts in Hokkaido, the alder trees of Kushiro Marsh had about the same number of leaves per shoot, but had a season of leaf emergence which was about 6 weeks shorter. In addition, the longevity of the longest-lived fifth leaf was about 30–40 days shorter. The short life span of the leaves could be considered as an adaptive strategy of this species to environmental constraints of its habitat.  相似文献   

11.
Miniature heat balance-sap flow gauges were used to measure water flows in small-diameter roots (3–4 mm) in the undisturbed soil of a mature beech–oak–spruce mixed stand. By relating sap flow to the surface area of all branch fine roots distal to the gauge, we were able to calculate real time water uptake rates per root surface area (Js) for individual fine root systems of 0.5–1.0 m in length. Study aims were (i) to quantify root water uptake of mature trees under field conditions with respect to average rates, and diurnal and seasonal changes of Js, and (ii) to investigate the relationship between uptake and soil moisture θ, atmospheric saturation deficit D, and radiation I. On most days, water uptake followed the diurnal course of D with a mid-day peak and low night flow. Neighbouring roots of the same species differed up to 10-fold in their daily totals of Js (<100–2000 g m−2 d−1) indicating a large spatial heterogeneity in uptake. Beech, oak and spruce roots revealed different seasonal patterns of water uptake although they were extracting water from the same soil volume. Multiple regression analyses on the influence of D, I and θ on root water uptake showed that D was the single most influential environmental factor in beech and oak (variable selection in 77% and 79% of the investigated roots), whereas D was less important in spruce roots (50% variable selection). A comparison of root water uptake with synchronous leaf transpiration (porometer data) indicated that average water fluxes per surface area in the beech and oak trees were about 2.5 and 5.5 times smaller on the uptake side (roots) than on the loss side (leaves) given that all branch roots <2 mm were equally participating in uptake. Beech fine roots showed maximal uptake rates on mid-summer days in the range of 48–205 g m−2 h−1 (i.e. 0.7–3.2 mmol m−2 s−1), oak of 12–160 g m−2 h−1 (0.2–2.5 mmol m−2 s−1). Maximal transpiration rates ranged from 3 to 5 and from 5 to 6 mmol m−2 s−1 for sun canopy leaves of beech and oak, respectively. We conclude that instantaneous rates of root water uptake in beech, oak and spruce trees are above all controlled by atmospheric factors. The effects of different root conductivities, soil moisture, and soil hydraulic properties become increasingly important if time spans longer than a week are considered.  相似文献   

12.
The time-dependence of Mn accumulation was confirmed in potato foliage (Solanum tuberosum. L.cv. Norland) grown in solution culture. Older leaves grown at 0.61 mM Mn had substantially higher Mn concentrations than younger leaves and stem samples. Levels of Mn in older leaves increased steadily from 4000 µg g–1 at one week to 8–10,000 µg g–1 at 6 weeks, but were relatively constant in the emerging leaves. Even foliage grown at low Mn levels (0.01 mM Mn) had 4 fold gradients in Mn concentration from younger (40 µg g–1) to older leaves (180 µg g–1).At 0.61 mM Mn, concentrations of 3–4000 µg g–1 in the youngest fully-developed leaves did not bring about any decline in yield, and levels of up to 5000 µg g–1 occurred in individual potato leaves before Mn toxicity symptoms were observed. Potato foliage grown at the high Mn had similar leaf numbers, but showed an increased stem length and smaller leaves than foliage grown at 0.01 mM Mn. In particular, the leaf area of the middle and lower leaf fractions were affected by the high Mn level.The ability of rapidly growing plants to withstand high concentrations of Mn is discussed in relation to the pattern of dry matter and Mn accumulation shown by potato foliage.  相似文献   

13.
Photosynthesis of individual field-grown cotton leaves during ontogeny   总被引:3,自引:0,他引:3  
Photosynthetic characteristics of field-grown cotton (Gossypium hirsutum L.) leaves were determined at several insertion levels within the canopy during the growing season. Single-leaf measurements of net photosynthesis (Pn), stomatal conductance to CO2 (gs·CO2), substomatal CO2, leaf area expansion, leaf nitrogen, and light intensity (PPFD) were recorded for undisturbed leaves within the crop canopy at 3–4 day intervals during the development of all leaves at main-stem nodes 8, 10, and 12. Patterns of Pn during leaf ontogeny exhibited three distinct phases; a rapid increase to maximum at 16–20 days after leaf unfolding, a relatively short plateau, and a period of linear decline to negligible Pn at 60–65 days. Analysis of the parameters which contributed to the rise and fall pattern of Pn with leaf age indicated the primary involvement of leaf area expansion, leaf nitrogen, PPFD, and gs·CO2 in this process. The response of Pn and gs·CO2 to incident PPFD conditions during canopy development was highly age dependent. For leaves less than 16 days old, the patterns of Pn and gs·CO2 were largely controlled by non-PPFD factors, while for older leaves Pn and gs·CO2 were more closely coupled to PPFD-mediated processes. Maximum values of Pn were not significantly different for any of the leaves monitored in this study, however, those leaves at main-stem node 8 did possess a significantly diminished photosynthetic capacity with age compared to upper canopy leaves. This accelerated decline in Pn could not be explained by age-related variations in gs·CO2 since all leaves showed similar changes in gs·CO2 with leaf age.Abbreviations gs·CO2 stomatal conductance to CO2 - Pn net photosynthesis - PPFD photosynthetic photon flux density  相似文献   

14.
The aims of this study were to describe the distribution of magnesium (Mg) and its retranslocation within wheat, in order to develop diagnostic procedures for Mg deficiency. Plants were grown in solution culture with both constant supply (0, 5, 10, 20, 40, 80, 160 MMg) and discontinued supply (40 M and 160 M decreased to nil).Magnesium was depleted from old leaves when Mg supply to the roots was halted. However, initial deficiency symptoms occurred on young leaves under constant but inadequate supply, contrasting with previous reports. Magnesium concentrations were also lower in young leaves compared to old leaves. Symptoms of yellowing and necrosis occurred if the leaf tissue contained <1194 gg–1, irrespective of leaf age. The minimum Mg concentration in whole shoots associated with maximum shoot weight was 932 gg–1; for the youngest emerged blade (YEB) it was 861 gg–1. Symptoms were apparent on the young leaf before a reduction in shoot weight was measurable. The concentration of Mg in the YEB and whole shoot were better related to solution Mg concentration than was the Mg concentration in the old leaf.  相似文献   

15.
We studied the relationship between variation in age and shoot characteristics of the host plant Salix exigua Nuttall (coyote or sandbar willow) and the attack and survival of Euura sp. (an unnamed leaf-midrib galling sawfly). Variation in shoot characteristics resulted from reduced growth as willow ramets aged. Mean shoot length per ramet and mean longest leaf length per shoot decreased by 95% and 50% respectively between 1- and 9-year-old willow ramets. All measured shoot characteristics-shoot length, longest leaf length, number of leaves per shoot, and mean internode length-were significantly negatively correlated with ramet age (r 2 ranged from –0.23 to –0.41). Correlations between shoot characteristics were highly positive, indicating that plants also grew in a strongly integrated fashion (r 2 ranged from 0.54 to 0.85). Four hypotheses were examined to explain sawfly attack patterns. The host-plant hypothesis was supported in explaining enhanced larval sawfly survival through reduced plant resistance. As willow ramets aged, the probability of Euura sp. attack decreased over 10-fold, from 0.315 on 1-year-old ramets to 0.024 on 2- to 9-year-old ramets. As shoot length increased, the probability of sawfly attack increased over 100-fold, from 0.007 on shoots <100 mm, to 0.800 on shoots in the 1001–1100 mm shoot length class. These attack patterns occurred even though 1-year-old ramets and shoots >500 mm each represented less than 2% of the total shoots available for oviposition. Host plant induced mortality of the egg/early instar stage decreased by 50% on longer leaves and was the most important factor determining survival differences between vigorous and non-vigorous hosts. Sawfly attack was not determined by the resource distribution hypothesis. Although shoots <200 mm contained 82% of the total leaves available, they contained only 43% of the galls initiated. The attack pattern also was not explained by the gall volume hypothesis. Although gall volume increased on longer shoots, there was no significant variation in mid or late instar mortality over shoot length, as would be expected if food resources within smaller galls were limited. The natural enemy attack hypothesis could not explain the pattern of oviposition since predation was greater on longer shoots and leaves. In addition, larval survival was related to oviposition behavior. Due to a 69% reduction in late instar death and an 83% reduction in parasitism, survival of progeny in galls initiated close to the petiole base was 2.8 times greater than in galls initiated near the leaf tip. A 75% reduction in gall volume over this range of gall positions may account for the observed increases in late instar mortality and parasitism.  相似文献   

16.
Tobacco (Nicotiana tabacum L.) plants transformed with antisense rbcS to decrease the expression of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) have been used to investigate the contribution of Rubisco to the control of photosynthesis in plants growing at different irradiances. Tobacco plants were grown in controlled-climate chambers under ambient CO2 at 20°C at 100, 300 and 750 mol·m–2·s–1 irradiance, and at 28°C at 100, 300 and 1000 mol·m–2·s–1 irradiance. (i) Measurement of photosynthesis under ambient conditions showed that the flux control coefficient of Rubisco (C infRubisco supA ) was very low (0.01–0.03) at low growth irradiance, and still fairly low (0.24–0.27) at higher irradiance. (ii) Short-term changes in the irradiance used to measure photosynthesis showed that C infRubisco supA increases as incident irradiance rises, (iii) When low-light (100 mol·m–2·s–1)-grown plants are exposed to high (750–1000 mol·m–2·s–1) irradiance, Rubisco is almost totally limiting for photosynthesis in wild types. However, when high-light-grown leaves (750–1000 mol·m–2·s–1) are suddenly exposed to high and saturating irradiance (1500–2000 mol·m–2·s–1), C infRubisco supA remained relatively low (0.23–0.33), showing that in saturating light Rubisco only exerts partial control over the light-saturated rate of photosynthesis in sun leaves; apparently additional factors are co-limiting photosynthetic performance, (iv) Growth of plants at high irradiance led to a small decrease in the percentage of total protein found in the insoluble (thylakoid fraction), and a decrease of chlorophyll, relative to protein or structural leaf dry weight. As a consequence of this change, high-irradiance-grown leaves illuminated at growth irradiance avoided an inbalance between the light reactions and Rubisco; this was shown by the low value of C infRubisco supA (see above) and by measurements showing that non-photochemical quenching was low, photochemical quenching high, and NADP-malate dehydrogenase activation was low at the growth irradiance. In contrast, when a leaf adapted to low irradiance was illuminated at a higher irradiance, Rubisco exerted more control, non-photochemical quenching was higher, photochemical quenching was lower, and NADP-malate dehydrogenase activation was higher than in a leaf which had grown at that irradiance. We conclude that changes in leaf composition allow the leaf to avoid a one-sided limitation by Rubisco and, hence, overexcitation and overreduction of the thylakoids in high-irradiance growth conditions, (v) Antisense plants with less Rubisco contained a higher content of insoluble (thylakoid) protein and chlorophyll, compared to total protein or structural leaf dry weight. They also showed a higher rate of photosynthesis than the wild type, when measured at an irradiance below that at which the plant had grown. We propose that N-allocation in low light is not optimal in tobacco and that genetic manipulation to decrease Rubisco may, in some circumstances, increase photosynthetic performance in low light.Abbreviations A rate of photosynthesis - C infRubisco supA flux control coefficient of Rubisco for photosynthesis - ci internal CO2 concentration - qE energy-dependent quenching of chlorophyll fluorescense - qQ photochemical quenching of chlorophyll fluorescence - NADP-MDH NADP-dependent malate dehydrogenase - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase - RuBP ribulose-1,5-bisphosphate This work was supported by the Deutsche Forschungsgemeinschaft (SFB 137).  相似文献   

17.
Nodal explants of Annona squamosa L. and Annona muricata L. were cultured in vitro under various types of ventilation: airtight vessel (sealed condition; number of air exchange 0.1 h–1), natural ventilation (via a polypropylene membrane; number of air exchange 1.5 h–1), and forced ventilation (5.0 cm3 min–1 in a 60 cm3 vessel; number of air exchange 5.0 h–1). In both species, numbers of leaves, leaf areas and numbers of nodes per shoot increased with improving standards of ventilation, while leaf abscissions were substantially reduced; all the leaves had abscised in the airtight vessels after 12–15 days, but none had done so with forced ventilation. Flower-bud abscission in A. muricatashowed a similar trend after 21 days. These effects were associated with reductions in the accumulation of ethylene within the culture vessels, produced by increasing the efficiency of ventilation; ethylene was not detected in those fitted with a forced ventilation system. CO2 concentrations in culture headspaces and the net photosynthetic rates of the plantlets were also evaluated. CO2 concentrations decreased well below the ambient in the natural and airtight vessels; however, under forced ventilation, CO2 concentrations were significantly higher during the photoperiod, compared to those of the natural ventilation and airtight vessel treatments. In general, net photosynthetic rates per unit leaf area increased with increasing photosynthetic photon flux (PPF) and rates were highest in plantlets grown under forced ventilation, intermediate under natural ventilation and lowest in the airtight vessels.Eighteen different media were investigated for their effects on multiple shoot induction in both species. The best medium for multiple shoot induction and growth in A. squamosa was Murashige and Skoog medium (MS) + 6-benzylaminopurine (BA; 1.5 mg l–1) + casein hydrolysate (1.0 g l–1) and for A. muricata MS + BA (1.0 mg l–1) + naphthaleneacetic acid (NAA; 0.1 mg l–1).  相似文献   

18.
Kage  H.  Alt  C.  Stützel  H. 《Plant and Soil》2002,246(2):201-209
Data from field experiments carried out in three consecutive years under contrasting N supply and radiation environment altered by artificial shading were used to identify (a) the relationship between N concentration and organ size under conditions of unrestricted N supply and (b) critical levels of soil nitrate (Nmincrit), where nitrogen concentration of cauliflower organs begin to decline because of N limitations. The decline of N concentrations in cauliflower was analysed at different levels of morphological aggregation, i.e., the whole shoot level, the organ level (leaves, stem, and curd), and within different leaf groups within the canopy. Nmincrit values (0–60 cm soil depth) for total nitrogen concentration of cauliflower organs leaves, stem and curd were estimated at 85, 93 and 28 kg N ha–1, respectively. Within the canopy, Nmincrit values for total N of leaves increased from the top to the bottom from 44 to 188 kg N ha–1. Nmincrit values for protein N in leaves from different layers of the canopy were much lower at around 30 kg N ha–1, without a gradient within the canopy. It is discussed that these differences in Nmincrit values are most likely a consequence of N redistribution associated with nitrogen deficiency. The decline of average shoot nitrogen concentrations, [Nm] (%N DM), with shoot dry matter, W sh, (t ha–1) under conditions of optimal N supply was [Nm]= 4.84 (±0.071) W sh –0.089(± 0.011), r 2=0.67 (±S.E.). The reduction of radiation intensity by artificial shading (60% of control) had no significant influence on total nitrogen concentrations of leaves and only a small influence on protein nitrogen concentrations in lower layers of the canopy. The leaf nitrate nitrogen fraction of nitrogen, f nitr (–), within the canopy decreased linearly with increased average incident irradiance in different canopy layers (I av, W PAR m–2) (f Nitr. = 0.2456(±0.0188) – 0.0023(±0.0004)I av, r 2 = 0.67.  相似文献   

19.
Lopez  Y.  Riaño  N.  Mosquera  P.  Cadavid  A.  Arcila  J. 《Photosynthetica》2000,38(2):215-220
In order to study photosynthetic characteristics, phosphoenolpyruvate carboxylase (PEPC) and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activities as well as soluble protein and chlorophyll contents were determined in leaf and fruit pericarp samples from diverse coffee genotypes (Coffea arabica cv. Colombia, Caturra, Caturra Erecta, San Pacho, Tipica, C. stenophylla, C. eugenioides, C. congensis, C. canephora, C. canephora cv. Arabusta, C. arabica cv. Caturra×C. canephora and Hibrido de Timor. We found a slightly higher PEPC activity in fruit pericarp than in leaves, while RuBPCO activity was much lower in pericarp than leaf tissue. Partial purification of PEPC and RuBPCO was carried out from leaves of C. arabica cv. Caturra and Michaelis-Menten kinetics for RuBPCO (Km CO2 = 5.34 µM), (Km RuBP = 9.09 µM) and PEPC (Km PEP = 19.5 µM) were determined. Leaf tissues of Colombia, Hibrido de Timor, and Caturra consistently showed higher content of protein [55.4–64.4 g kg–1 (f.m.)] than San Pacho, C. stenophylla, Tipica, Caturra Erecta, and Caturra×C. canephora [25.6–36.9 g kg–1 (f.m.)] and C. canephora cv. Arabusta, Borbon, C. congensis, C. eugenioides, and C. canephora [16.1–21.1 g kg–1 (f.m.)].  相似文献   

20.
The water status of Fagus sylvatica L. and Quercus petraea (Matt) Liebl. was analysed during a cycle of progressive natural drought in southern Europe. Predawn (Ψpd) and midday water potential were measured in transpiring (Ψleaf) and non-transpiring leaves (Ψxyl). Furthermore, photosynthesis (A), stomatal conductance to water vapour (gs) and sap flow (Fd) were recorded on the same dates. Apparent leaf specific hydraulic conductance in the soil–plant–air continuum (Kh) and whole tree hydraulic conductance (Khsf) were calculated by using the simple analogy of the Ohm’s law. Kh was estimated at different points in the pathway as the ratio between transpiration (E) in the uppermost canopy leaves at midday and the gradient of water potential in the different compartments of the continuum soil–roots–stem–branches–leaves. There was a progressive decrease in water potential measured on non-transpiring leaves at the base of tree crown in both species (Ψlxyl) from the beginning of the growing season to the end of summer. A similar decrease was shown in shoot water potential (Ψuxyl) at the uppermost canopy. Predawn water potential (Ψpd) was high in both species until late July (28 July); afterwards, a significant decrease was registered in F. sylvatica and Q. petraea with minimum values of −0.81±0.03 and −0.75±0.06 MPa, respectively, by 15 September. In both species, leaf specific hydraulic conductance in the overall continuum soil–plant–air (Kh) decreased progressively as water stress increases. Minimum values of Kh and Khsf were recorded when Ψpd was lower. However, Q. petraea showed higher Kh than F. sylvatica for the same Ψpd. The decrease in Kh with water stress was mainly linked to its fall from the soil to the lowermost canopy (Ksrs). Nevertheless, a significant resistance in the petiole–leaf lamina (Kpl) was also recorded because significant differences in all dates were found on Ψ between transpiring and non-transpiring leaves from the same shoot. The decline in Kh was followed by an increase in stomatal control of daily water losses through the decrease of stomatal conductance to water vapour (gs) during the day. It promoted a seasonal increase in the stomatal limitation to carbon dioxide uptake for photosynthesis (A). These facts were more relevant in F. sylvatica, which had concurrently a higher decline in water use at the tree level than Q. petraea. The results showed a strong coupling in F. sylvatica and Q. petraea between processes at leaf and tree level. It may be hypothesised a role of specific hydraulic conductance not only in the regulation of water losses by transpiration but also of carbon uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号