首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Signaling pathways mediating gastrin's growth-promoting effects.   总被引:2,自引:0,他引:2  
R R Yassin 《Peptides》1999,20(7):885-898
In addition to its fundamental role in stimulating gastric acid secretion, the peptide hormone gastrin induces growth-promoting effects on diversity of target cells. Various mechanisms, including endocrine, paracrine, and autocrine, have been proposed for gastrin's growth-promoting actions. The mitogenic effects of gastrin are mediated by specific cell surface receptors activated after gastrin binding. The functionally defined receptors for gastrin include cholecystokinin A (CCKA) receptor, which is discriminating for sulfated CCK8; cholecystokinin B (CCKB)/gastrin receptor, which binds gastrin17 sulfated, and nonsulfated CCK8 with nearly equal affinities; cholecystokinin C (CCKC), which is a low-affinity gastrin binding protein; and novel, high-affinity receptors selective for amidated gastrin, processing intermediates of gastrin, or both. The signaling pathways mediating gastrin's stimulation of the CCKB/gastrin receptor have been progressively outlined, and the pathways mediating other receptors have been slowly emerging. Engagement of the gastrin receptor initiates various biochemical and molecular events, including recruitment and activation of tyrosine kinases, activation of the phospholipase C signaling pathway leading to phosphoinositide breakdown, intracellular calcium mobilization and protein kinase C stimulation, activation of the mitogen-activated protein kinase pathway, and induction of early response genes. Current emphasis is on understanding the functional significance of processing intermediate forms of gastrin, and the receptor subtypes and pathways that promote the trophic/mitogenic effects of the different molecular forms of gastrin.  相似文献   

2.
In order to determine which physiological functions can be regulated by the pancreatic CCKB/gastrin receptor, studies were carried out on pancreatic acini from mice expressing transgenic CCKB/gastrin receptors in the exocrine pancreas (ElasCCKB mice). Acini were stimulated by sulfated gastrin in the presence of SR 27897 (1.8 microM), blocking endogenous CCKA receptors. After 30 min incubation with gastrin, the secretion of chymotrypsinogen and amylase showed superimposable monophasic dose-response curves. Enzyme secretion was detectable and maximal at 100 pM and 1 nM of gastrin, respectively. No increase in chymotrypsinogen and amylase mRNAs was detected for doses of gastrin which specifically occupy the CCKB/gastrin receptor. In contrast, gastrin stimulated total protein synthesis in isolated acini from ElasCCKB mice. [35S]Methionine incorporation into total proteins was increased dose-dependently to a maximum for 30 pM gastrin and inhibited with higher doses (> 300 pM). Gastrin stimulated p70 S6 kinase activity for concentrations ranging from 10 pM to 1 nM. Gastrin-stimulated p70 S6 kinase activity and protein synthesis were blocked by rapamycin and wortmannin. Therefore, in ElasCCKB mice acinar cells, the CCKB/gastrin receptor mediates enzyme release and protein synthesis. However, a more efficient coupling of the CCKB/gastrin receptor to protein synthesis than to enzyme secretion was demonstrated. CCKB/gastrin receptor-stimulated protein synthesis likely results from an enhancement of mRNA translation and involves phosphatidyl inositol 3-kinase and p70 S6 kinase.  相似文献   

3.
Evidence from several laboratories indicates that the anxiogenic effects of cholecystokinin (CCK) are mediated by CCKB receptors. However, it has been reported that CCKA receptors have been found in brain and CCKA antagonists have anxiolytic properties. The aim of this work was to study whether CCKA receptors are also involved in the modulation of anxiety. Anxiogenic effects were observed in the elevated plus maze in rats when pure CCKB receptor agonists (CCK-4 and CCK-8 non-sulfated) or CCK-8S, a CCKB/CCKA agonist, were injected into the lateral ventricle. In contrast, CCK-33, a CCKA agonist or CCK-(1-21) and CCK-(26-29) were ineffective. Furthermore, the anxiogenic effects of CCK-8S were prevented by blocking CCKB but not CCKA receptors. Finally, CCK-33 injected into the postero-medial nucleus accumbens failed to affect the anxiety level of the rats. These results indicate that CCKA receptors are not involved in anxiety, as measured by the paradigms used in this work.  相似文献   

4.
5.
Gastrin-recognizing CCK2 receptors are expressed in parietal cells and in so-called ECL cells in the acid-producing part of the stomach. ECL cells are endocrine/paracrine cells that produce and store histamine and chromogranin A (CGA)-derived peptides, such as pancreastatin. The ECL cells are the principal cellular transducer of the gastrin-acid signal. Activation of the CCK2 receptor results in mobilization of histamine (and pancreastatin) from the ECL cells with consequent activation of the parietal cell histamine H2 receptor. Thus, release of ECL-cell histamine is a key event in the process of gastrin-stimulated acid secretion. The oxyntic mucosal histidine decarboxylase (HDC) activity and the serum pancreastatin concentration are useful markers for the activity of the gastrin-ECL cell axis. Powerful and selective CCK2 receptor antagonits have been developed from a series of benzodiazepine compounds. These agents are useful tools to study how gastrin controls the ECL cells. Conversely, the close control of ECL cells by gastrin makes the gastrin-ECL cell axis well suited for evaluating the antagonistic potential of CCK2 receptor antagonists with the ECL-cell HDC activity as a notably sensitive and reliable parameter. The CCK2 receptor antagonists YF476, YM022, RP73870, JB93182 and AG041R were found to cause prompt inhibition of ECL-cell histamine and pancreastatin secretion and synthesis. The circulating pancreastatin concentration is raised, was lowered when the action of gastrin on the ECL cells was blocked by the CCK2 receptor antagonists. These effects were associated with inhibition of gastrin-stimulated acid secretion. In addition, sustained receptor blockade was manifested in permanently decreased oxyntic mucosal HDC activity, histamine concentration and HDC mRNA and CGA mRNA concentrations. CCK2 receptor blockade also induced hypergastrinemia, which probably reflects the impaired gastric acid secretion (no acid feedback inhibition of gastrin release). Upon withdrawal of the CCK2 receptor antagonists, their effects on the ECL cells were readily reversible. In conclusion, gastrin mobilizes histamine from the ECL cells, thereby provoking the parietal cells to secrete acid. While CCK2 receptor blockade prevents gastrin from evoking acid secretion, it is without effect on basal and vagally stimulated acid secretion. We conclude that specific and potent CCK2 receptor antagonists represent powerful tools to explore the functional significance of the ECL cells.  相似文献   

6.
INTRODUCTION: Gastrin acts to stimulate gastric acid secretion and is an acknowledged growth factor for human gastrointestinal (GI) cancer. The identity of the exact receptor type mediating the growth promoting effects of gastrin in tumours is uncertain. However, the best-characterised gastrin receptor is the CCK receptor type B (CCKB)/gastrin receptor. The anti-GRE1 antibody is a polyclonal, affinity-purified antibody raised against GRE1, a synthetic 21 amino acid peptide homologous to part of the extracellular, N-terminal tail of the CCKB receptor. We have recently proven that GRE1 antiserum specifically localises CCKB receptors on CCKB receptor transfected NIH3T3 cells and human gastrointestinal tumour cells by Western blotting and immunocytochemistry. GRE1 antiserum also inhibits liver invasion in the C170HM2 colorectal liver-metastasis model. AIM: To relate the ability of GRE1 antiserum to displace G17 from CCKB receptors with its impact on cellular transduction effects. METHODS: Radioligand binding studies were performed with 125IG17 and Calcium mobilisation studies by use of the fluorescent dye Fura 2-am. RESULTS: GRE1 antiserum competitively displaced 50% radiolabelled gastrin-17 from whole cell NIH3T3 CCKB transfectants at a protein concentration of 250 microg x ml(-1). GRE1 antiserum did not stimulate calcium ion influx in the transfectant NIH3T3 cells when used at a range of protein concentrations. Pre-incubation with GRE1 antiserum was required to inhibit gastrin-stimulated calcium ion influx. This was found to be concentration-dependent, with inhibition shown at 30 and 5 microg x ml(-1) but not at 500 ng x ml(-1) or below. CONCLUSION: The GRE1 antiserum is specific for the CCKB receptor and may act to inhibit gastrin-stimulated signalling in tumour cells.  相似文献   

7.
This study was undertaken to confirm the presence of CCK receptor subtypes in calf pancreas and establish their cellular localization. Using specific antibodies against CCKA and CCKB receptors, somatostatin, glucagon and insulin, we were able to confirm by Western blot the presence of both CCK receptor protein subtypes in the calf pancreas as a 80-85-kDa CCKA receptor and 40-45-kDa CCKB receptor. By immunofluorescence, the CCKB receptor colocalizes with the islets' somatostatin delta cells, confirming what was previously shown in other species, as well as on ductal cells. We could not reproduce in the calf its colocalization with glucagon alpha cells as observed in human and rat. Any specific localization of CCKA receptors with our multiple antibodies failed. Our observation that the CCKB receptor subtype is specifically localized on pancreatic delta cells as well as on ductal cells lets us support the hypothesis that in this species, CCK could be involved in somatostatin metabolism as well as hydrelatic secretion; its effect on enzyme secretion would be indirect.  相似文献   

8.
To elucidate the regulatory mechanism of acid secretion by cholecystokinin (CCK) in vivo, we compared the effects of CCK and gastrin on acid secretion and histidine decarboxylase (HDC) activity. We also examined the effects of MK-329, a specific antagonist for pancreatic-type CCK receptor, and L-365,260, a specific antagonist for gastrin-type CCK receptor, on the action of CCK. Graded doses of CCK or gastrin were intravenously infused into conscious rats with gastric fistula. Gastrin-17 I infusion up to 10 nmol/kg/h resulted in dose-related increases in acid secretion. CCK-8 infusion also caused an increase in acid secretion. However, it reached a peak with 0.3 nmol/kg/h CCK-8 and attenuated with higher concentrations of CCK-8. This attenuating effect of a higher dose of CCK was reversed by MK-329, but not by L-365,260. Both CCK and gastrin were potent in increasing fundic HDC activity, and the effect of CCK on HDC activity was significantly inhibited by L-365,260, but not by MK-329. Taken together, the present study suggests that CCK and gastrin stimulate histamine formation via a gastrin-type CCK receptor, and the attenuating action of CCK with higher concentrations on acid secretion in vivo is mediated by a pancreatic-type CCK receptor.  相似文献   

9.
The aspartic acid residue at the penultimate position is known to be essential for the hormonal activity of CCK and gastrin on gastric acid secretion. This residue was successively replaced by beta-aspartic acid, beta-alanine, and glutamic acid in the C-terminal heptapeptide of CCK 27-33. The analogues obtained were tested on rat gastric acid secretion and for recognition by gastrin receptors. The replacement by beta-aspartic or beta-alanine decreased gastric secretion and gastrin receptor recognition. In contrast, replacement by glutamic acid affected these two parameters less. The nature of the N-blocking group (Boc or Z) also influenced these activities, Boc derivatives being more potent than Z derivatives. The results were compared to those previously obtained on pancreatic secretion and on stimulation of gall bladder contraction where the modifications were found capable of differentiating between cholecystokinin, pancreozymin and gastrin activities.  相似文献   

10.
Z Szelényi 《Peptides》2001,22(8):1245-1250
Thermoregulatory effects of cholecystokinin (CCK) peptides are reviewed with special emphasis on two types of responses, that is hypothermia or hyperthermia. In rodents exposed to cold a dose-dependent hypothermia has been observed on peripheral injection of CCK probably acting on CCKA receptors. Central microinjection of CCK in rats induced a thermogenic response that could be attenuated by CCKB receptor antagonists, but some authors observed a hypothermia. It is suggested that neuronal CCK may have a specific role in the development of hyperthermia, and endogenous CCK-ergic mechanisms could contribute to the mediation of fever. Possible connections between thermoregulatory and other autonomic functional changes induced by CCK are discussed.  相似文献   

11.
The C-terminal tetrapeptide, Trp-Met-Asp-Phe-NH2, is a full agonist of gastrin, but des-Phe analogues, including Boc-Trp-Met-Asp-NH2, are antagonists. To ascertain the minimum structural requirement for an antagonist, we used conventional solution phase methodology to synthesize analogues with further modifications including removal of the alpha-amino group of Trp, conversion of the indole to a phenyl ring, and methylation of amide bonds. These analogues were tested for their effect on pentagastrin-stimulated acid release in dogs surgically prepared with a gastric fistula. When infused intravenously at a dose of 20 pmol kg-1 h-1, the peptides significantly inhibited acid secretion. The extent of inhibition ranged from 12% to 60%. Thus, tripeptide analogues based on the C-terminal sequence of gastrin act as potent and specific antagonists of gastrin-stimulated acid secretion.  相似文献   

12.
This study was designed to determine the role of cholecystokinin (CCK) in the inhibition of gastric HCl secretion by duodenal peptone, fat and acid in dogs with chronic gastric and pancreatic fistulas. Intraduodenal instillation of 5% peptone stimulated both gastric HCl secretion and pancreatic protein secretion and caused significant increments in plasma gastrin and CCK levels. L-364,718, a selective antagonist of CCK-A receptors, caused further increase in gastric HCl and plasma gastrin responses to duodenal peptone but reduced the pancreatic protein outputs in these tests by about 75%. L-365,260, an antagonist of type B receptors, reduced gastric acid by about 25% but failed to influence pancreatic response to duodenal peptone. Addition of 10% oleate or acidification of peptone to pH 3.0 profoundly inhibited acid secretion while significantly increasing the pancreatic protein secretion and plasma CCK levels. Administration of L-364,718 reversed the fall in gastric HCl secretion and significantly attenuated pancreatic protein secretion in tests with both peptone plus oleate and peptone plus acid. Exogenous CCK infused i.v. in a dose (25 pmol/kg per h) that raised plasma CCK to the level similar to that achieved by peptone meal plus fat resulted in similar inhibition of gastric acid response to that attained with fat and this effect was completely abolished by the pretreatment with L-364,718. We conclude that CCK released by intestinal peptone meal, containing fat or acid, exerts a tonic inhibitory influence on gastric acid secretion and gastrin release through the CCK-A receptors.  相似文献   

13.
Gastrin regulates ECL cell histamine release and is a critical determinant of acid secretion. ECL cell secretion and proliferation is inhibited by gastrin antagonists and somatostatin but little is known about the role of dopamine agonists in this process. Since the ECL cell exhibits all three classes of receptor we evaluated and compared the effects of the gastrin receptor antagonist, (YF476), lanreotide (SST agonist) and novel dopaminergic agents (BIM53061 and BIM27A760) on ECL cell histamine secretion and proliferation. Highly enriched (>98%) ECL cell preparations prepared from rat gastric mucosa using a FACS approach were studied. Real-time PCR confirmed presence of the CCK2, SS2 and SS5 and D1 receptors on ECL cells. YF476 inhibited histamine secretion and proliferation with IC(50)s of 1.25 nM and 1.3 x 10(-11) M respectively, values 10-1000x more potent than L365,260. Lanreotide inhibited secretion and proliferation (2.2 nM, 1.9 x 10(-10) M) and increased YF476-inhibited proliferation a further 5-fold. The dopamine agonist, BIM53061, inhibited gastrin-mediated ECL cell secretion and proliferation (17 nM, 6 x 10(-10) M) as did the novel dopamine/somatostatin chimera BIM23A760 (22 nM, 4.9 x 10(-10) M). Our studies demonstrate that the gastrin receptor antagonist, YF476, is the most potent inhibitor of ECL cell histamine secretion and proliferation. Lanreotide, a dopamine agonist and a dopamine/somatostatin chimera inhibited ECL cell function but were 10-1000x less potent than YF476. Agents that selectively target the CCK2 receptor may provide alternative therapeutic strategies for gastrin-mediated gastrointestinal cell secretion and proliferation such as evident in the hypergastrinemic gastric carcinoids associated with low acid states.  相似文献   

14.
Wilson AA  Jin L  Garcia A  DaSilva JN  Houle S 《Life sciences》2001,68(11):1223-1230
Three cholecystokinin type B (CCKB) receptor antagonists were labelled with 11C and evaluated ex vivo in rat biodistribution studies. The CCKB antagonists were YF 476 and two other compounds of the basic 3-ureido-1,4-benzodiazepine class. Following tail-vein administration of [11C]-YF 476 exceedingly low levels of radioactivity were found in all brain regions from 5 to 60 min post-injection. Similar results were obtained using the other two 11C-labelled CCKB antagonists. In light of the very poor brain penetration of these compounds, reports on the central nervous system activity of this class of CCKB antagonists should be viewed with caution.  相似文献   

15.
16.
Mice lacking the cholecystokinin (CCK)-B/gastrin receptor have been generated by targeted gene disruption. The roles of this receptor in controlling gastric acid secretion and gastric mucosal growth have been assessed. The analysis of homozygous mutant mice vs. wild type included measurement of basal gastric pH, plasma gastrin concentrations as well as quantification of gastric mucosal cell types by immunohistochemistry. Mutant mice exhibited a marked increase in basal gastric pH (from 3.2 to 5.2) and about a 10-fold elevation in circulating carboxyamidated gastrin compared with wild-type controls. Histologic analysis revealed a decrease in both parietal and enterochromaffin-like (ECL) cells, thus explaining the reduction in acid output. Consistent with the elevation in circulating gastrin, antral gastrin cells were increased in number while somatostatin cells were decreased. These data support the importance of the CCK-B/gastrin receptor in maintaining the normal cellular composition and function of the gastric mucosa.  相似文献   

17.
The design, synthesis and biological activity of two novel series of compounds derived from the basic Boc-CCK-4 structure which provide potent ligands for the gastrin/CCK-B receptor is outlined. Within these series, new pseudopeptide compounds were discovered which unexpectedly were functional agonists in vivo, as shown by their ability to stimulate basal gastric acid secretion in rats, an effect which was blocked by the potent gastrin/CCK-B receptor antagonist YM022.  相似文献   

18.
T Pappas  D Hamel  H Debas  J Walsh  Y Tache 《Peptides》1985,6(5):1001-1003
Spantide ([d-Arg1, d-Trp7,9, Leu11] substance P) was shown to function not only as a substance P receptor antagonist but also as a bombesin receptor antagonist. This study examined the effects of spantide on intravenous bombesin-induced stimulation of gastrin and acid secretion. Dogs were infused with spantide (1 or 10 nmol kg 1 hr 1) or saline and bombesin (60 pmol kg-1 hr-1), and the gastric acid and plasma gastrin responses were monitored. Spantide did not significantly modify gastrin or gastric acid secretion induced by bombesin. It is concluded that spantide may not be a useful bombesin antagonist for in vivo studies.  相似文献   

19.
Muscarinic antagonists in development for disorders of smooth muscle function   总被引:11,自引:0,他引:11  
Wallis RM  Napier CM 《Life sciences》1999,64(6-7):395-401
Compounds with high affinity for muscarinic M3 receptors have been used for many years to treat conditions associated with altered smooth muscle tone or contractility such as urinary urge incontinence, irritable bowel syndrome or chronic obstructive airways disease. M3 selective antagonists have the potential for improved toleration when compared with non-selective compounds. Darifenacin has high affinity (pKi 9.12) and selectivity (9 to 74-fold) for the human cloned muscarinic M3 receptor. Consistent with this profile, the compound potently inhibited M3 receptor mediated responses of smooth muscle preparations (guinea pig ileum, trachea and bladder, pA2 8.66 to 9.4) with selectivity over responses mediated through the M1 (pA2 7.9) and M2 receptors (pA2 7.48). Interestingly, darifenacin also exhibited functional tissue selectivity for intestinal smooth muscle over the salivary gland. The M3 over M1 and M2 selectivity of darifenacin was confirmed in a range of animal models. In particular, in the conscious dog darifenacin inhibited intestinal motility at doses lower than those which inhibit gastric acid secretion (M1 response), increase heart rate (M2 response) or inhibit salivary secretion. Clinical studies are ongoing to determine if darifenacin has improved efficacy and or toleration when compared with non-selective agents.  相似文献   

20.
The effects of gastrin, cholecystokinin (CCK) and bombesin on the DNA synthesis, as a biochemical indicator of trophic action in the gastroduodenal mucosa and the pancreas have been examined in rats fasted for 48 h and in rats refed for 16 h with or without administration of specific receptor antagonists for bombesin, gastrin and CCK. Bombesin and gastrin administered three times daily for 48 h in fasted rats significantly increased the rate of DNA synthesis as measured by the incorporation of [3H] thymidine into DNA in each tissue tested. CCK significantly increased DNA synthesis in the duodenal mucosa and pancreatic tissue, but not in the gastric mucosa. The stimulation of DNA synthesis induced by bombesin in the gastroduodenal mucosa and pancreas was abolished by bombesin/GRP receptor antagonist, RC-3095. RC-3095 did not affect DNA synthesis stimulated by gastrin and CCK in these tissues. L-365,260, a receptor antagonist for gastrin suppressed the DNA synthesis induced by gastrin but not by CCK or bombesin in the gastrointestinal mucosa and pancreas. L-364,718 a specific antagonist for CCK receptors was effective only against CCK stimulated duodenal mucosa and pancreatic growth. Refeeding of 48 h fasting rats strongly enhanced the DNA synthesis in all tissues tested, and this effect was significantly reduced in the gastroduodenal mucosa by blocking only gastrin receptors (with L-365,260) and that in the duodenal mucosa and the pancreas by antagonizing of CCK receptors (with L-364,718). Antagonism of bombesin receptors (with RC-3095) did not significantly affect the stimulation of DNA synthesis induced by refeeding in all tissues tested. This study indicates that the stimulation of DNA synthesis can be achieved by exogenous gastrin, CCK and bombesin acting through separate receptor but that only gastrin and CCK play the major role in the postprandial stimulation of the growth of gastroduodenal mucosa and pancreatic tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号