共查询到18条相似文献,搜索用时 46 毫秒
1.
通过对典型草原优势植物种羊草(Leymus chinensis)的盆栽实验,模拟5个土壤水分梯度(分别为土壤持水量的75%~80%(对照)、60%~65%、50%~55%、35%~40%和25%~30% )对羊草叶片相对含水量、光合速率、光合产物分配和种群CO2交换速率的影响。结果表明:随着土壤水分胁迫的增加,羊草叶片相对含水量呈先增加而后下降的单峰型变化,且在50%~55%处理下达到最大;叶片光合速率随着水分胁迫的增加而减小,且75%~80%、60%~65%、50%~55%的水分处理与35%~40%、25%~30%的水分处理的叶片光合速度日动态规律不同。羊草总生物量及根、鞘、叶生物量均随着水分胁迫的增加呈下降趋势。干旱促进早期羊草根的分配和根冠比增加, 但到后期却使它们降低, 表明羊草在受到较长期的持续干旱后通过增加根部的比重来提高抗旱性的能力逐渐降低。羊草根茎的生物量和分配随着土壤水分含量降低均呈现出先增加而后下降的趋势,羊草根茎的生物量在50%~55%处理下达最大(1.28 g·株-1),而羊草根茎的分配在35%~40%处理下达最大(48.5%)。羊草种群CO2的净交换速率随着水分胁迫的增加而减小,其日交换量随着水分胁迫的增加而增加,且在60%~65%处理下达到最高,而后呈下降趋势,并在25%~30% 处理下为负值。研究结果表明,土壤持水量的40%可能是羊草对于水分变化响应的阈值。 相似文献
2.
干物质分配系数反映作物各器官干物质的分配与积累,研究干物质分配系数对干旱胁迫的响应,是研究干旱胁迫对作物生长发育影响的基础.本文基于华北夏玉米主产省山东、河北和山西3个试验点2013—2015年田间水分控制试验资料,建立了夏玉米苗期、抽雄期、灌浆期3个主要发育阶段叶、茎、穗的干物质分配系数与土壤相对湿度的定量关系模型,分析了叶、茎、穗干物质分配系数对不同程度干旱胁迫的响应.结果表明: 3个阶段叶、茎、穗的干物质分配系数与土壤相对湿度均呈显著的一元二次关系.干旱胁迫下,叶片向外转运的干物质相对减少,叶干物质分配比例增加,并且在轻、中度干旱胁迫时的灌浆期(叶干物质分配系数增加0.04~0.09)以及重度干旱胁迫时的抽雄期(叶干物质分配系数增加0.17)响应最敏感.穗干物质分配系数对干旱胁迫表现为负响应,干旱胁迫越严重,分配系数越小,轻-重度干旱胁迫使穗干物质分配系数减小0.08~0.34.茎干物质分配系数对干旱胁迫的响应总体表现为灌浆期(正响应)>抽雄期(负响应)>苗期(负响应). 相似文献
3.
不同生长期干旱胁迫对刺槐幼树干物质分配的影响 总被引:4,自引:0,他引:4
采用盆栽试验,分别在刺槐(Robinia pseudoacacia)幼树生长初期、生长盛期和生长后期进行了5种不同土壤水分含量试验,以研究不同生长阶段内干旱胁迫对该树种干物质分配的影响。结果表明:各生长阶段内刺槐幼树茎、枝分配比率并不受土壤水分含量变化的影响,短期(15d)及中轻度干旱(70%和87.8%相对土壤含水量)胁迫对刺槐叶、地上部分干物质分配比率及根冠比的影响亦不明显;而长期(45~60d)严重干旱(40%相对土壤含水量)胁迫则显著降低了刺槐叶、地上部分配比率,提高了粗根干物质分配比率及根冠比。受树木本身生长特性和气候因素的季节性变化影响,不同生长阶段之间干旱胁迫对刺槐干物质分配的影响存在明显差异,其影响程度大小为生长初期生长盛期生长后期。 相似文献
4.
植物各组织中的非结构性碳水化合物(Non-structural carbohydrates,NSC)含量能反映植物对能量物质的分配策略,揭示干旱胁迫下植物NSC的动态变化有助于了解干旱环境下植物生存的资源分配策略。本研究以藏东南地区两种沙生植物白莲蒿(Artemisia gmelinii Weber)和云南沙棘(Hippophae rhamnoides subsp. yunnanensis Rousi)为研究对象,探讨在不同程度干旱胁迫下植物各器官(叶片、枝条、粗根、细根)中的非结构性碳水化合物含量的分配动态。结果显示:(1)干旱胁迫导致植物的根冠比显著增加,枝条、粗根和细根中的可溶性糖和NSC含量亦随干旱胁迫强度的增加而增加;(2)干旱胁迫发生后,NSC及其组分优先被分配至地下部位,叶片和细根中的NSC主要以可溶性糖的形式累积;(3)干旱胁迫下,白莲蒿细根的可溶性糖、淀粉及NSC的占比随干旱胁迫强度的增加而降低,而云南沙棘则与之相反。研究结果表明,植物通过储存更多的可溶性糖来抵御干旱胁迫,并且主动将NSC储存至根部来提升植物应对干旱的能力。 相似文献
5.
为探明灌溉对干旱区冬小麦(Triticum aestivum)产量、水分利用效率(WUE)、干物质积累及分配等的影响, 以甘肃河西走廊冬小麦适宜种植品种‘临抗2号’为材料进行了研究。在冬季灌水180 mm的条件下, 生育期以灌水量和灌水次数等共设置5个处理, 分别为: 拔节期灌水量165 mm (W1)、拔节期灌水量120 mm +抽穗期灌水量105 mm (W2)、拔节期灌水量105 mm +抽穗期灌水量105 mm +灌浆期灌水量105 mm (W3)、拔节期灌水量75 mm +抽穗期灌水量75 mm +灌浆期灌水量75 mm (W4)、拔节期灌水量105 mm +抽穗期灌水量75 mm +灌浆期灌水量45 mm (W5)。结果表明: 随着生育期的推进, 土壤有效含水量(AWC)受灌水次数及灌水量影响更加明显; W3、W4处理的土壤各层AWC在灌浆期均较高; 叶面积指数(LAI)下降慢, 延缓了生育后期的衰老; 生育后期干物质积累增加, 提高了穗粒数、千粒重和籽粒产量。籽粒产量以W3处理最高, 但W4具有最高的WUE, 且籽粒产量与W3无显著差异, 但W4较灌溉总量相同的W2和W5以及灌水量最少的W1具有明显的指标优势。W1、W2、W5处理灌浆期各层土壤AWC均较低, 花后LAI下降快, 干物质积累减少, 灌浆持续期缩短, 穗粒数和千粒重减少, 最终表现为籽粒产量和WUE下降。灌浆期水分胁迫可促进花前储存碳库向籽粒的再转运, 并随着干旱胁迫的加重而提高, 对籽粒产量起补偿作用; 水分胁迫提高了灌浆速率, 但缩短了灌浆持续期。相关性分析表明, 灌浆持续期、有效灌浆持续期、有效灌浆期粒重增加值和最大籽粒灌浆速率出现时间与千粒重和籽粒产量均呈正相关。综合考虑, 拔节、抽穗及灌浆期各灌溉75 mm是高产高WUE的最佳灌水方案。 相似文献
6.
等渗盐分、干旱胁迫下冬小麦叶片部分渗透调节物质的动态变化 总被引:6,自引:0,他引:6
分别以PEG-6000、NaCl模拟干旱胁迫及盐胁迫,采用水培方法研究了抗旱耐盐冬小麦沧-6001在干旱胁迫、盐胁迫条件下叶片可溶性糖、脯氨酸和可溶性蛋白质含量的动态变化以及Na+、K+在地上部和根系的分布。结果表明可溶性糖和可溶性蛋白变化趋势相似,其含量随干旱胁迫或盐胁迫时间延长而增加,但在胁迫处理后期下降,并且随胁迫强度增加,二者出现下降时间提前;脯氨酸在干旱胁迫条件下快速积累达到峰值后下降但在胁迫处理后期再次增加,在盐胁迫条件下,随胁迫强度的增加和胁迫时间的延长而增加;Na+在干旱胁迫下随胁迫程度增加而下降,盐胁迫条件下随胁迫程度的增加而增加,K+在干旱胁迫或盐胁迫下均随胁迫程度的增加而下降,且在根系中下降的速度大于地上部。 相似文献
7.
该试验以荒漠区主要建群种红砂幼苗为研究对象,设置适宜水分(CK)、轻度干旱(MD)、中度干旱(SD)和重度干旱(VSD)4个胁迫处理(即田间持水量的80%、60%、40%和20%),采用盆栽控水试验,分别测定干旱胁迫15、30、45和60 d时红砂幼苗的叶、茎、粗根和细根中非结构碳水化合物(NSC)及其组分的含量,分析不同胁迫强度下不同干旱持续时间红砂幼苗NSC的动态变化及各组分差异,以揭示红砂NSC对干旱胁迫的响应机制。结果表明:(1)干旱胁迫强度和胁迫持续时间对红砂幼苗不同器官NSC及其组分均有显著影响,其中胁迫持续时间对NSC动态变化的影响尤为显著。(2)干旱胁迫初期,红砂叶中的NSC含量呈下降趋势,而茎中的NSC含量呈上升趋势,粗根和细根中NSC含量在各胁迫处理下基本保持稳定。(3)干旱胁迫后期,红砂叶和茎中的可溶性糖、淀粉和NSC含量逐渐增加,而粗根和细根中的淀粉和NSC含量呈下降趋势(中度干旱除外),且这一时期重度干旱处理下各器官可溶性糖和NSC的含量明显高于CK。研究发现,重度干旱胁迫能显著诱导提高红砂幼苗不同器官中的NSC含量,并通过分解根中淀粉和增加叶片中可溶性糖含量的方式来调节细胞渗透势平衡,以维持细胞活力,进而保持红砂在干旱胁迫后期的存活。 相似文献
8.
不同光照下,冬小麦PSⅡ的光化学效率(Fv'/Fm')、非光化学猝灭(NPQ)和叶黄素循环组分中物质的转化[(A+Z)/(A+Z+V)]之间存在着密切的相关性。NPQ与(A+Z)/(A+Z+V)呈线性正相关,与Fv'/Fm'呈线性负相关。这种相关性与物种和环境条件无关。在过董光下,不抗旱品种较抗旱品种具有较小的NPQ升高和较小的Fv'/Fm'降低,干旱下这一趋势明显加大。据此可以判断冬小麦抗逆性大小。 相似文献
9.
以冬小麦(Triticum aestivum L.)品种周麦18(Zhoumai18)和豫麦49(Yumai49)为材料,采用盆栽培养,研究100、250、350 mmol/L和450 mmol/L NaCl 浓度胁迫下,小麦幼苗干物质分配、根系特征、叶绿素含量、游离脯氨酸含量和根系活力变化规律.结果表明,随着盐分浓度的增加,两个品种小麦的叶面积、地上干重以及根的长度显著减小;根系干重、根直径、根表面积、根体积、根系活力以及叶绿素含量呈先上升后下降趋势,在250 mmol/L NaCl处理下达最大.叶绿素a/b随NaCl浓度升高而上升.随盐分浓度变化周麦18叶片游离脯氨酸含量高而变化幅度大,450mmol/L处理组的含量高于对照组1.5倍.供试品种冬小麦耐盐阈值为250~350 mmol/L. 相似文献
10.
华北平原冬小麦干旱灾损风险区划 总被引:28,自引:1,他引:28
干旱是华北平原最严重的农业气象灾害之一,是冬小麦产量稳定上升的重要限制因素。本文从冬小麦产量的实际灾损角度,对减产率、发生概率及产量的变异系数等因子进行了分析,构建了华北平原冬小麦干旱产量灾损风险评估模型,并对华北平原冬小麦进行了实际灾损风险区划。结果表明,风险高值区约占该地区19.8%,主要分布于鲁西、鲁西北-冀东北,鲁西南-豫东地区;中值区约占34%,主要分布在冀中南、豫北、豫中和豫西以及山东中部丘陵地区;风险低值区占46.2%,主要集中于鲁中部、南部和豫中南、西南的广大地区。 相似文献
11.
利用黄土高原半湿润区西峰农业气象试验站冬小麦生长发育定位观测资料、加密观测和对应平行气象观测资料,分析气候变化对冬小麦生长发育的影响,以及冬小麦穗干重生长与气象条件的关系。结果表明,研究区域降水量年际变化呈波动变化,20世纪90年代降水量最少。降水量存在3、8a的年际周期变化。气温年际变化呈上升趋势,气温变化曲线线性拟合倾向率为0.325℃/10a。作物生长季干燥指数呈显著上升趋势,干燥指数变化曲线线性拟合倾向率为0.069/10a,20世纪90年代至2010年明显趋于暖干化。受气候变暖的影响,冬小麦播种期每10 a推后2—3d,返青期每10a提前4—5 d,开花期和成熟期每10a提前5—6 d。冬小麦越冬期每10a缩短5—6 d、全生育期每10a缩短7—8 d。冬小麦返青后第83天开始,穗干重的生长由缓慢转为迅速生长阶段,从返青后第101天开始,其生长从迅速生长又转为缓慢生长,在返青后的第87天,穗的干物质积累速度最大。由于气候变暖,冬小麦生育期大部分时段热量充足。播种—越冬前和拔节—开花期产量对气温变化的响应十分敏感;降水量的影响函数同温度的影响函数呈反相位分布,除成熟期降水量对产量形成为负效应外,其余时段降水量对产量影响均为正效应,而在冬小麦播种期和返青—拔节期产量对降水量变化的响应也十分敏感。 相似文献
12.
13.
以土垫旱耕人为土为供试土壤进行盆栽试验,在不同施氮水平条件下,以NR9405、9430、偃师9号、小偃6号陕229、西农2208、矮丰3号等7个冬小麦品种为材料,研究不同品种冬小麦对氮肥反应敏感性。结果表明:7个品种中,9430、西农2208、偃师9号和NR9405属于氮肥较敏感品种,小偃6号和矮丰3号属于氮肥敏感性较差品种,陕229居中。小偃6号对氮肥的反应敏感性最差,属于典型的对氮肥反应不敏感型品种。根据对不同品种干物质转移量、干物质转移效率和转移干物质对籽粒贡献率的分析,将供试品种分为两类:一类是在生长后期(开花至成熟)主要靠同化产物的继续大量形成和转移而影响籽粒产量,可称为“后期同化累积型”;另一类在生长后期则主要靠开花前干物质的转移而影响产量,可称为“后期物质转移型”。偃师9号、西农2208和9430属于比较典型的“后期同化累积型”,而小偃6号属于比较典型的“后期物质转移型”。将不同品种地上部分干物质、氮素累积对氮肥反应的敏感性对比分析后发现,“后期同化累积型”品种对氮肥反应相对敏感,“后期物质转移型”对氮肥反应的敏感性差,这种差异性可能与“后期同化累积型”在生长后期仍需继续从介质中吸收大量氮素,以满足同化需要,而“后期物质转移型”在生育后期主要靠花前吸收氮素转移和再分配以满足花后同化需要,从介质中吸收的氮素有限有关。 相似文献
14.
15.
为了反映作物与干旱的相互关系,人为再现干旱灾害对作物产量的影响程度,选择华北地区冬小麦干旱灾害为研究对象,对作物生长模型WOFOST在区域上进行适应性进行分析、检验的基础上,然后利用区域作物模型实现干旱灾害对作物影响定量分析和动态评估。以减产率和气象条件作为灾害严重程度划分的标准,利用数值模拟试验,确定导致减产的主要气象因子及其量值,对研究区干旱灾害进行影响评估,包括典型灾害年份影响评估和年代际灾害影响评估,并给出了评估结果。 相似文献
16.
通过盆栽试验研究了返青期根修剪对冬小麦(Triticum aestivum)后期耐旱性及水分利用效率的影响。在返青期设置了两个根修剪处理: 1)小剪根, 在植株一侧切去部分侧生根; 2)大剪根, 在主茎四周切去部分侧生根。不剪根者设为对照(CK)。研究结果显示, 两个根修剪处理均显著减少了小麦的根系, 但对根冠比没有显著影响。在花期, 两个根修剪处理的小麦旗叶的叶绿素荧光参数最大光化学效率(The maximum photochemical efficiency of PSⅡ, Fv/Fm)、 PSⅡ潜在活性 (PSⅡ potential activity, Fv/Fo)、实际光化学量子产量(Effective PSⅡ quantum yield, ΦPSⅡ)、表观光合电子传递速率(Apparent rate of photosynthetic electron transport, ETR)、光化学淬灭系数( Coefficient of photochemical quenching, qP)和非光化学淬灭系数(Coefficient of non-photochemical quenching, NPQ)值, 在停止供水7 d后, 均显著高于对照, 这表明根修剪小麦的耐旱性强于对照, 因此在干旱胁迫下有较高的光化学活性。小剪根处理在高水条件下对小麦产量无显著影响, 而在中度干旱条件下显著提高了小麦的产量, 因此, 小剪根处理显著提高了小麦的抗旱系数; 小剪根处理在高水分处理(土壤水分含量为田间持水量的85%)和中度干旱胁迫处理(土壤水分含量为田间持水量的55%)条件下, 均显著提高了小麦的水分利用效率。但大剪根处理由于严重影响了群体数量和产量, 水分利用效率和抗旱系数均没有提高。可见, 适当地减少根系有助于小麦的耐旱性和水分利用效率的提高。 相似文献
17.
18.
采用简化的deWit替代系列法研究了盆栽冬小麦‘长武135’(Triticum aestivum cv. Changwu 135)在拔节初期断根对冬小麦根冠关系、竞争能力及其与产量性状的关系。无论干旱或湿润,单栽条件下断根降低了小麦的根冠比,在混栽条件下,断根小麦的相对穗重和相对地上部生物量均显著低于未断根小麦,说明断根降低了小麦的竞争能力。根冠比越大竞争能力越强,即作物的竞争能力与根冠比存在正相关关系。单栽湿润条件,断根降低了小麦的穗重和籽粒产量,而在中等干旱条件下,断根小麦穗重和籽粒产量高于未断根小麦 。说明在水资源充分的条件下,较高的作物个体竞争能力则具有较高的生产能力,而在水资源有限的情况下,降低作物个体竞争能力反而提高了群体籽粒产量。 相似文献