首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

Comparison of intra-articular bacterial-derived hyaluronic acid (Hyalubrix®) (HA) with local analgesia (mepivacaine) for osteoarthritis (OA) of the hip.

Methods

A pilot prospective, double-blind, 6-month randomized trial of 42 patients with hip OA. HA or mepivacaine was administered twice (once a month) under ultrasound guidance. Efficacy measurements included the Lequesne's algofunctional index, a visual analog scale for pain, concomitant use of analgesia, patient and physician global measurement, and safety.

Results

Patients in the HA group exhibited a significantly reduced Lequesne's algofunctional index 3 and 6 months after treatment (P < 0.001) and significantly reduced visual analog scale pain scores 3 and 6 months after treatment (P < 0.05) compared with the local anesthetic group. All primary and secondary measures were significantly improved versus baseline, but other than the above were not different from each other at 3 or 6 months. Adverse effects were minimal.

Conclusions

This comparative study suggests a beneficial effect and safety of intra-articular HA in the management of hip OA.

Trial registration number

ISRCTN39397064.  相似文献   

2.

Introduction

The mechanism by which intra-articular injection of hyaluronan (HA) ameliorates joint pathology is unknown. Animal studies have shown that HA can reduce synovial activation, periarticular fibrosis and cartilage erosion; however, its specific effects on the different cell types involved remain unclear. We have used the TTR (TGFbeta1 injection and Treadmill Running) model of murine osteoarthritis (OA), which exhibits many OA-like changes, including synovial activation, to examine in vivo tissue-specific effects of intra-articular HA.

Methods

The kinetics of clearance of fluorotagged HA from joints was examined with whole-body imaging. Naïve and treated knee joints were examined macroscopically for cartilage erosion, meniscal damage and fibrosis. Quantitative histopathology was done with Safranin O for cartilage and with Hematoxylin & Eosin for synovium. Gene expression in joint tissues for Acan, Col1a1, Col2a1, Col3a1, Col5a1, Col10a1, Adamts5 and Mmp13 was done by quantitative PCR. The abundance and distribution of aggrecan, collagen types I, II, III, V and X, ADAMTS5 and MMP13 were examined by immunohistochemistry.

Results

Injected HA showed a half-life of less than 2 h in the murine knee joint. At the tissue level, HA protected against neovascularization and fibrosis of the meniscus/synovium and maintained articular cartilage integrity in wild-type but not in Cd44 knockout mice. HA injection enhanced the expression of chondrogenic genes and proteins and blocked that of fibrogenic/degradative genes and proteins in cartilage/subchondral bone, whereas it blocked activation of both groups in meniscus/synovium. In all locations it reduced the expression/protein for Mmp13 and blocked Adamts5 expression but not its protein abundance in the synovial lining.

Conclusions

The injection of HA, 24 h after TGFbeta1 injection, inhibited the cascade of OA-like joint changes seen after treadmill use in the TTR model of OA. In terms of mechanism, tissue protection by HA injection was abrogated by Cd44 ablation, suggesting that interaction of the injected HA with CD44 is central to its protective effects on joint tissue remodeling and degeneration in OA progression.  相似文献   

3.

Background

The intra-articular implantation of mesenchymal stromal cells (MSCs) as a treatment for knee osteoarthritis (OA) is an emerging new therapy. In this study, patients with knee OA received intra-articular implantations of autologous bone marrow–derived MSCs. We sought to assess the safety and efficacy of this implantation.

Materials and Methods

This was a phase 1/2 single-center, triple-blind, randomized controlled trial (RCT) with a placebo control. The subjects consisted of patients with knee OA randomly assigned to either an intra-articular implantation of MSCs (40?×?106 cells) or 5 mL normal saline (placebo). Patients were followed up for 6 months after the implantations. The pain level and function improvements for patient-reported outcomes were assessed based on a visual analog scale (VAS), Western Ontario and McMaster Universities Arthritis Index (WOMAC) and its subscales, walking distance, painless walking distance, standing time and knee flexion compared with the placebo group at 3 and 6 months following the implantations.

Results

Overall, 43 patients (Kellgren-Lawrence grades 2, 3 and 4) were assigned to either the MSCs (n?=?19) or placebo (n?=?24) group. Patients who received MSCs experienced significantly greater improvements in WOMAC total score, WOMAC pain and physical function subscales and painless walking distance compared with patients who received placebo. There were no major adverse events attributed to the MSC therapy.

Conclusion

This randomized, triple-blind, placebo-controlled RCT demonstrated the safety and efficacy of a single intra-articular implantation of 40?×?106 autologous MSCs in patients with knee OA. Intra-articular implantation of MSCs provided significant and clinically relevant pain relief over 6 months versus placebo and could be considered a promising novel treatment for knee OA. We propose that further investigations should be conducted over an extended assessment period and with a larger cohort.  相似文献   

4.

Introduction

Osteoarthritis (OA) is a degenerative disease characterized by cartilage breakdown in the synovial joints. The presence of low-grade inflammation in OA joints is receiving increasing attention, with synovitis shown to be present even in the early stages of the disease. How the synovial inflammation arises is unclear, but proteins in the synovial fluid of affected joints could conceivably contribute. We therefore surveyed the proteins present in OA synovial fluid and assessed their immunostimulatory properties.

Methods

We used mass spectrometry to survey the proteins present in the synovial fluid of patients with knee OA. We used a multiplex bead-based immunoassay to measure levels of inflammatory cytokines in serum and synovial fluid from patients with knee OA and from patients with rheumatoid arthritis (RA), as well as in sera from healthy individuals. Significant differences in cytokine levels between groups were determined by significance analysis of microarrays, and relations were determined by unsupervised hierarchic clustering. To assess the immunostimulatory properties of a subset of the identified proteins, we tested the proteins' ability to induce the production of inflammatory cytokines by macrophages. For proteins found to be stimulatory, the macrophage stimulation assays were repeated by using Toll-like receptor 4 (TLR4)-deficient macrophages.

Results

We identified 108 proteins in OA synovial fluid, including plasma proteins, serine protease inhibitors, proteins indicative of cartilage turnover, and proteins involved in inflammation and immunity. Multiplex cytokine analysis revealed that levels of several inflammatory cytokines were significantly higher in OA sera than in normal sera, and levels of inflammatory cytokines in synovial fluid and serum were, as expected, higher in RA samples than in OA samples. As much as 36% of the proteins identified in OA synovial fluid were plasma proteins. Testing a subset of these plasma proteins in macrophage stimulation assays, we found that Gc-globulin, α1-microglobulin, and α2-macroglobulin can signal via TLR4 to induce macrophage production of inflammatory cytokines implicated in OA.

Conclusions

Our findings suggest that plasma proteins present in OA synovial fluid, whether through exudation from plasma or production by synovial tissues, could contribute to low-grade inflammation in OA by functioning as so-called damage-associated molecular patterns in the synovial joint.  相似文献   

5.

Introduction

Magnetic resonance imaging (MRI) is increasingly used to examine joints for research purposes. It may detect both suspected and unsuspected abnormalities. This raises both clinical and ethical issues, especially when incidental abnormalities are detected. The prevalence of incidental, potentially clinically significant abnormalities identified by MRI and their clinical significance in a population undergoing knee MRI in research studies are unknown.

Methods

We examined the prevalence of such lesions in healthy asymptomatic adults and those with symptomatic knee osteoarthritis (OA) undergoing knee MRI with limited sequences for the purpose of research. The MRI findings in 601 asymptomatic subjects and 132 with knee OA who underwent at least one limited knee MRI scan for cartilage volume measurement were examined by an MRI radiologist for the presence of potentially clinically significant abnormalities.

Results

These were present in 2.3% of healthy and 2.3% of OA subjects. All required further investigation to exclude non-benign disease, including four with bone marrow expansion (0.7%), requiring further investigation and management. A single potentially life-threatening lesion, a myeloma lesion, was identified in a subject with symptomatic knee OA on their second MRI scan in a longitudinal study.

Conclusion

As musculoskeletal MRI is increasingly used clinically and for research purposes, the potential for detecting unsuspected abnormalities that require further investigation should be recognized. Incorporating a system to detect these, to characterize unexpected findings, and to facilitate appropriate medical follow-up when designing studies using this technology should be considered ethical research practice.  相似文献   

6.

Introduction

Viscosupplementation with hyaluronic acid (HA) of osteoarthritic (OA) knee joints has a well-established positive effect on clinical symptoms. This effect, however, is only temporary and the working mechanism of HA injections is not clear. It was suggested that HA might have disease modifying properties because of its beneficial effect on cartilage sulphated glycosaminoglycan (sGAG) content. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) is a highly reproducible, non-invasive surrogate measure for sGAG content and hence composition of cartilage. The aim of this study was to assess whether improvement in cartilage structural composition is detected using dGEMRIC 14 weeks after 3 weekly injections with HA in patients with early-stage knee OA.

Methods

In 20 early-stage knee OA patients (KLG I-II), 3D dGEMRIC at 3T was acquired before and 14 weeks after 3 weekly injections with HA. To evaluate patient symptoms, the knee injury and osteoarthritis outcome score (KOOS) and a numeric rating scale (NRS) for pain were recorded. To evaluate cartilage composition, six cartilage regions in the knee were analyzed on dGEMRIC. Outcomes of dGEMRIC, KOOS and NRS before and after HA were compared using paired t-testing. Since we performed multiple t-tests, we applied a Bonferroni-Holm correction to determine statistical significance for these analyses.

Results

All KOOS subscales (‘pain’, ‘symptoms’, ‘daily activities’, ‘sports’ and ’quality of life’) and the NRS pain improved significantly 14 weeks after Viscosupplementation with HA. Outcomes of dGEMRIC did not change significantly after HA compared to baseline in any of the cartilage regions analyzed in the knee.

Conclusions

Our results confirm previous findings reported in the literature, showing persisting improvement in symptomatic outcome measures in early-stage knee OA patients 14 weeks after Viscosupplementation. Outcomes of dGEMRIC, however, did not change after Viscosupplementation, indicating no change in cartilage structural composition as an explanation for the improvement of clinical symptoms.  相似文献   

7.

Objective

To investigate the effect of CoenzymeQ10 (CoQ10) on pain severity and cartilage degeneration in an experimental model of rat osteoarthritis (OA).

Materials and Methods

OA was induced in rats by intra-articular injection of monosodium iodoacetate (MIA) to the knee. Oral administration of CoQ10 was initiated on day 4 after MIA injection. Pain severity was assessed by measuring secondary tactile allodynia using the von Frey assessment test. The degree of cartilage degradation was determined by measuring cartilage thickness and the amount of proteoglycan. The mankin scoring system was also used. Expressions of matrix metalloproteinase-13 (MMP-13), interleukin-1β (IL-1β), IL-6, IL-15, inducible nitric oxide synthase (iNOS), nitrotyrosine and receptor for advanced glycation end products (RAGE) were analyzed using immunohistochemistry.

Results

Treatment with CoQ10 demonstrated an antinociceptive effect in the OA animal model. The reduction in secondary tactile allodynia was shown by an increased pain withdrawal latency and pain withdrawal threshold. CoQ10 also attenuated cartilage degeneration in the osteoarthritic joints. MMP-13, IL-1β, IL-6, IL-15, iNOS, nitrotyrosine and RAGE expressions were upregulated in OA joints and significantly reduced with CoQ10 treatment.

Conclusion

CoQ10 exerts a therapeutic effect on OA via pain suppression and cartilage degeneration by inhibiting inflammatory mediators, which play a vital role in OA pathogenesis.  相似文献   

8.

Introduction

We tested the hypothesis that there exist relationships between the onset of early stage radiographically defined knee osteoarthritis (OA), pain and changes in biomarkers of joint metabolism.

Methods

Using Kellgren-Lawrence (K/L) grading early radiographic knee OA (K/L 2) was detected in 16 of 46 patients. These grades (K/L 1 is no OA and K/L 2 is early OA) were divided into two groups according to the presence or absence of persistent knee pain. Sera (s) and urines (u) were analysed with biomarkers for cartilage collagen cleavage (sC2C and uCTX-II) and synthesis (sCPII), bone resorption (uNTx) and synovitis (hyaluronic acid: sHA).

Results

sCPII decreased and sC2C/sCPII, uCTX-II/sCPII and sHA increased with onset of OA (K/L 2 versus K/L 1) irrespective of joint pain. In contrast, sC2C and uCTX-II remained unchanged in early OA patients. Of the patients with K/L grades 1 and 2 sC2C, sCPII, sHA, uNTX and uCTX-II were all significantly increased in patients with knee pain independent of grade. Among the K/L grade 2 subjects, only uCTX-II and uCTX-II/sCPII were increased in those with knee pain. In grade 1 patients both sC2C and sCPII were increased in those with knee pain. No such grade specific changes were seen for the other biomarkers including sHA.

Conclusions

These results suggest that changes in cartilage matrix turnover detected by molecular biomarkers may reflect early changes in cartilage structure that account directly or indirectly for knee pain. Also K/L grade 1 patients with knee pain exhibit biomarker features of early OA.  相似文献   

9.

Introduction

We aimed to describe the distribution of radiographic chondrocalcinosis (CC) and to examine whether metacarpophalangeal joint (MCPJ) calcification and CC at other joints occurs in the absence of knee involvement.

Methods

This was a cross-sectional study embedded in the Genetics of Osteoarthritis and Lifestyle study (GOAL). All participants (n = 3,170) had radiographs of the knees, hands, and pelvis. These were scored for radiographic changes of osteoarthritis (OA), for CC at knees, hips, symphysis pubis, and wrists, and for MCPJ calcification. The prevalence of MCPJ calcification and CC overall, at each joint, and in the presence or absence of knee involvement, was calculated.

Results

The knee was the commonest site of CC, followed by wrists, hips, and symphysis pubis. CC was more likely to be bilateral at knees and wrists but unilateral at hips. MCPJ calcification was usually bilateral, and less common than CC at knees, hips, wrists, and symphysis pubis. Unlike that previously reported, CC commonly occurred without any knee involvement; 44.4% of wrist CC, 45.9% of hip CC, 45.5% of symphysis pubis CC, and 31.3% of MCPJ calcification occurred in patients without knee CC. Those with meniscal or hyaline articular cartilage CC had comparable ages (P = 0.21), and neither preferentially associated with fibrocartilage CC at distant joints.

Conclusions

CC visualized on a plain radiograph commonly occurs at other joints in the absence of radiographic knee CC. Therefore, knee radiographs alone are an insufficient screening test for CC. This has significant implications for clinical practice, for epidemiologic and genetic studies of CC, and for the definition of OA patients with coexistent crystal deposition.  相似文献   

10.

Introduction

Transplantation of mesenchymal stem cells (MSCs) derived from synovium is a promising therapy for cartilage regeneration. For clinical application, improvement of handling operation, enhancement of chondrogenic potential, and increase of MSCs adhesion efficiency are needed to achieve a more successful cartilage regeneration with a limited number of MSCs without scaffold. The use of aggregated MSCs may be one of the solutions. Here, we investigated the handling, properties and effectiveness of aggregated MSCs for cartilage regeneration.

Methods

Human and rabbit synovial MSCs were aggregated using the hanging drop technique. The gene expression changes after aggregation of synovial MSCs were analyzed by microarray and real time RT-PCR analyses. In vitro and in vivo chondrogenic potential of aggregates of synovial MSCs was examined.

Results

Aggregates of MSCs cultured for three days became visible, approximately 1 mm in diameter and solid and durable by manipulation; most of the cells were viable. Microarray analysis revealed up-regulation of chondrogenesis-related, anti-inflammatory and anti-apoptotic genes in aggregates of MSCs. In vitro studies showed higher amounts of cartilage matrix synthesis in pellets derived from aggregates of MSCs compared to pellets derived from MSCs cultured in a monolayer. In in vivo studies in rabbits, aggregates of MSCs could adhere promptly on the osteochondral defects by surface tension, and stay without any loss. Transplantation of aggregates of MSCs at relatively low density achieved successful cartilage regeneration. Contrary to our expectation, transplantation of aggregates of MSCs at high density failed to regenerate cartilage due to cell death and nutrient deprivation of aggregates of MSCs.

Conclusions

Aggregated synovial MSCs were a useful source for cartilage regeneration considering such factors as easy preparation, higher chondrogenic potential and efficient attachment.  相似文献   

11.

Background

Recent data have suggested a relationship between acute arthritic pain and acid sensing ion channel 3 (ASIC3) on primary afferent fibers innervating joints. The purpose of this study was to clarify the role of ASIC3 in a rat model of osteoarthritis (OA) which is considered a degenerative rather than an inflammatory disease.

Methods

We induced OA via intra-articular mono-iodoacetate (MIA) injection, and evaluated pain-related behaviors including weight bearing measured with an incapacitance tester and paw withdrawal threshold in a von Frey hair test, histology of affected knee joint, and immunohistochemistry of knee joint afferents. We also assessed the effect of ASIC3 selective peptide blocker (APETx2) on pain behavior, disease progression, and ASIC3 expression in knee joint afferents.

Results

OA rats showed not only weight-bearing pain but also mechanical hyperalgesia outside the knee joint (secondary hyperalgesia). ASIC3 expression in knee joint afferents was significantly upregulated approximately twofold at Day 14. Continuous intra-articular injections of APETx2 inhibited weight distribution asymmetry and secondary hyperalgesia by attenuating ASIC3 upregulation in knee joint afferents. Histology of ipsilateral knee joint showed APETx2 worked chondroprotectively if administered in the early, but not late phase.

Conclusions

Local ASIC3 immunoreactive nerve is strongly associated with weight-bearing pain and secondary hyperalgesia in MIA-induced OA model. APETx2 inhibited ASIC3 upregulation in knee joint afferents regardless of the time-point of administration. Furthermore, early administration of APETx2 prevented cartilage damage. APETx2 is a novel, promising drug for OA by relieving pain and inhibiting disease progression.  相似文献   

12.

Background

Pentosan polysulfate sodium (pentosan) is a semi-synthetic drug manufactured from beech-wood hemicellulose by sulfate esterification of the xylopyranose hydroxyl groups. From in vitro and animal model studies, pentosan has been proposed as a disease modifying osteoarthritis drug (DMOAD). The objective of this study was to assess the efficacy, safety, and patient satisfaction in patients with mild radiographic knee osteoarthritis (OA) findings and OA-associated symptoms and signs.

Methods

Twenty patients were assessed clinically at Nagasaki University Hospital. The radiographic indications of OA were grade 1 to 3 using the Kellgren-Lawrence Grading System (K/L grade). Pentosan used in this study was manufactured and supplied in sterile injectable vials (100 mg/ml) by bene GmbH, Munich, Germany. The study was a single-center, open-label trial. Treatment consisted of 6 weekly subcutaneous injections (sc) of pentosan (2 mg/kg). Patients were clinically assessed at entry and 1 to 8, 11, 15, 24 & 52 weeks post treatment. The results were analyzed using one way ANOVA and Dunnett's method.

Results

Hydrarthroses were reduced quickly in all cases. The clinical assessments, i.e., knee flexion, pain while walking, pain after climbing up and down stairs, etc, were improved significantly and these clinical improvements continued for almost one year. The dose used in this study affected the blood coagulation test, but was within safe levels. Slightly abnormal findings were noted in serum triglycerides.

Conclusions

Pentosan treatment in twenty patients with mild knee OA seemed to provide improvements in clinical assessments and C2C level of cartilage metabolism.

Trial Registration

UMIN Clinical Trials Registry (UMIN-CTR) UMIN000002790  相似文献   

13.

Objective

Knee osteoarthritis (OA) is a common skeletal impairment that can cause many limitations in normal life activities. Stem cell therapy has been studied for decades for its regenerative potency in various diseases. We investigated the safety and efficacy of intra-articular injection of placental mesenchymal stem cells (MSCs) in knee OA healing.

Methods

In this double-blind, placebo-controlled clinical trial, 20 patients with symptomatic knee OA were randomly divided into two groups to receive intra-articular injection of either 0.5–0.6?×?108 allogenic placenta-derived MSCs or normal saline. The visual analogue scale, Knee OA Outcome Score (KOOS) questionnaire, knee flexion range of motion (ROM) and magnetic resonance arthrography were evaluated for 24 weeks post-treatment. Blood laboratory tests were performed before and 2 weeks after treatment.

Results

Four patients in the MSC group showed mild effusion and increased local pain, which resolved safely within 48–72 h. In 2 weeks post-injection there was no serious adverse effect and all of the laboratory test results were unchanged. Early after treatment, there was a significant knee ROM improvement and pain reduction (effect size, 1.4). Significant improvements were seen in quality of life, activity of daily living, sport/recreational activity and decreased OA symptoms in the MSC-injected group until 8 weeks (P < 0.05). These clinical improvements were also noted in 24 weeks post-treatment but were not statistically significant. Chondral thickness was improved in about 10% of the total knee joint area in the intervention group in 24 weeks (effect size, 0.3). There was no significant healing in the medial/lateral meniscus or anterior cruciate ligament. There was no internal organ impairment at 24 weeks follow-up.

Conclusion

Single intra-articular allogenic placental MSC injection in knee OA is safe and can result in clinical improvements in 24 weeks follow-up. Trial registration number: IRCT2015101823298N.  相似文献   

14.
15.

Introduction

Osteoarthritis (OA) is a common cause of disability in older adults. We have previously reported that an agonist for subtypes EP2 of the prostaglandin E2 receptor (an EP2 agonist) promotes the regeneration of chondral and osteochondral defects. The purpose of the current study is to analyze the effect of this agonist on articular cartilage in a model of traumatic degeneration.

Methods

The model of traumatic degeneration was established through transection of the anterior cruciate ligament and partial resection of the medial meniscus of the rabbits. Rabbits were divided into 5 groups; G-S (sham operation), G-C (no further treatment), G-0, G-80, and G-400 (single intra-articular administration of gelatin hydrogel containing 0, 80, and 400 μg of the specific EP2 agonist, ONO-8815Ly, respectively). Degeneration of the articular cartilage was evaluated at 2 or 12 weeks after the operation.

Results

ONO-8815Ly prevented cartilage degeneration at 2 weeks, which was associated with the inhibition of matrix metalloproteinase-13 (MMP-13) expression. The effect of ONO-8815Ly failed to last, and no effects were observed at 12 weeks after the operation.

Conclusions

Stimulation of prostaglandin E2 (PGE2) via EP2 prevents degeneration of the articular cartilage during the early stages. With a system to deliver it long term, the EP2 agonist could be a new therapeutic tool for OA.  相似文献   

16.

Introduction

Micronized dehydrated human amnion/chorion membrane (μ-dHACM) is derived from donated human placentae and has anti-inflammatory, low immunogenic and anti-fibrotic properties. The objective of this study was to quantitatively assess the efficacy of μ-dHACM as a disease modifying intervention in a rat model of osteoarthritis (OA). It was hypothesized that intra-articular injection of μ-dHACM would attenuate OA progression.

Methods

Lewis rats underwent medial meniscal transection (MMT) surgery to induce OA. Twenty four hours post-surgery, μ-dHACM or saline was injected intra-articularly into the rat joint. Naïve rats also received μ-dHACM injections. Microstructural changes in the tibial articular cartilage were assessed using equilibrium partitioning of an ionic contrast agent (EPIC-μCT) at 21 days post-surgery. The joint was also evaluated histologically and synovial fluid was analyzed for inflammatory markers at 3 and 21 days post-surgery.

Results

There was no measured baseline effect of μ-dHACM on cartilage in naïve animals. Histological staining of treated joints showed presence of μ-dHACM in the synovium along with local hypercellularity at 3 and 21 days post-surgery. In MMT animals, development of cartilage lesions at 21 days was prevented and number of partial erosions was significantly reduced by treatment with μ-dHACM. EPIC-μCT analysis quantitatively showed that μ-dHACM reduced proteoglycan loss in MMT animals.

Conclusions

μ-dHACM is rapidly sequestered in the synovial membrane following intra-articular injection and attenuates cartilage degradation in a rat OA model. These data suggest that intra-articular delivery of μ-dHACM may have a therapeutic effect on OA development.  相似文献   

17.

Introduction

Articular cartilage needs sulfated-glycosaminoglycans (sGAGs) to withstand high pressures while mechanically loaded. Chondrocyte sGAG synthesis is regulated by exposure to compressive forces. Moderate physical exercise is known to improve cartilage sGAG content and might protect against osteoarthritis (OA). This study investigated whether rat knee joints with sGAG depleted articular cartilage through papain injections might benefit from moderate exercise, or whether this increases the susceptibility for cartilage degeneration.

Methods

sGAGs were depleted from cartilage through intraarticular papain injections in the left knee joints of 40 Wistar rats; their contralateral joints served as healthy controls. Of the 40 rats included in the study, 20 rats remained sedentary, and the other 20 were subjected to a moderately intense running protocol. Animals were longitudinally monitored for 12 weeks with in vivo micro-computed tomography (μCT) to measure subchondral bone changes and single-photon emission computed tomography (SPECT)/CT to determine synovial macrophage activation. Articular cartilage was analyzed at 6 and 12 weeks with ex vivo contrast-enhanced μCT and histology to measure sGAG content and cartilage thickness.

Results

All outcome measures were unaffected by moderate exercise in healthy control joints of running animals compared with healthy control joints of sedentary animals. Papain injections in sedentary animals resulted in severe sGAG-depleted cartilage, slight loss of subchondral cortical bone, increased macrophage activation, and osteophyte formation. In running animals, papain-induced sGAG-depleted cartilage showed increased cartilage matrix degradation, sclerotic bone formation, increased macrophage activation, and more osteophyte formation.

Conclusions

Moderate exercise enhanced OA progression in papain-injected joints and did not protect against development of the disease. This was not restricted to more-extensive cartilage damage, but also resulted in pronounced subchondral sclerosis, synovial macrophage activation, and osteophyte formation.  相似文献   

18.

Introduction

The receptor activator nuclear factor-kappaB ligand (RANKL) diffuses from articular cartilage to subchondral bone. However, the role of chondrocyte-synthesized RANKL in rheumatoid arthritis-associated juxta-articular bone loss has not yet been explored. This study aimed to determine whether RANKL produced by chondrocytes induces osteoclastogenesis and juxta-articular bone loss associated with chronic arthritis.

Methods

Chronic antigen-induced arthritis (AIA) was induced in New Zealand (NZ) rabbits. Osteoarthritis (OA) and control groups were simultaneously studied. Dual X-ray absorptiometry of subchondral knee bone was performed before sacrifice. Histological analysis and protein expression of RANKL and osteoprotegerin (OPG) were evaluated in joint tissues. Co-cultures of human OA articular chondrocytes with peripheral blood mononuclear cells (PBMCs) from healthy donors were stimulated with macrophage-colony stimulating factor (M-CSF) and prostaglandin E2 (PGE2), then further stained with tartrate-resistant acid phosphatase.

Results

Subchondral bone loss was confirmed in AIA rabbits when compared with controls. The expression of RANKL, OPG and RANKL/OPG ratio in cartilage were increased in AIA compared to control animals, although this pattern was not seen in synovium. Furthermore, RANKL expression and RANKL/OPG ratio were inversely related to subchondral bone mineral density. RANKL expression was observed throughout all cartilage zones of rabbits and was specially increased in the calcified cartilage of AIA animals. Co-cultures demonstrated that PGE2-stimulated human chondrocytes, which produce RANKL, also induce osteoclasts differentiation from PBMCs.

Conclusions

Chondrocyte-synthesized RANKL may contribute to the development of juxta-articular osteoporosis associated with chronic arthritis, by enhancing osteoclastogenesis. These results point out a new mechanism of bone loss in patients with rheumatoid arthritis.  相似文献   

19.

Introduction

Recent evidence suggests that bone marrow lesions (BMLs) play a pivotal role in knee osteoarthritis (OA). The aims of this study were to determine: 1) whether baseline BML presence and/or severity predict site-specific cartilage defect progression and cartilage volume loss; and 2) whether baseline cartilage defects predict site-specific BML progression.

Methods

A total of 405 subjects (mean age 63 years, range 52 to 79) were measured at baseline and approximately 2.7 years later. Magnetic resonance imaging (MRI) of the right knee was performed to measure knee cartilage volume, cartilage defects (0 to 4), and BMLs (0 to 3) at the medial tibial (MT), medial femoral (MF), lateral tibial (LT), and lateral femoral (LF) sites. Logistic regression and generalized estimating equations were used to examine the relationship between BMLs and cartilage defects and cartilage volume loss.

Results

At all four sites, baseline BML presence predicted defect progression (odds ratio (OR) 2.4 to 6.4, all P < 0.05), and cartilage volume loss (-0.9 to -2.9% difference per annum, all P < 0.05) at the same site. In multivariable analysis, there was a significant relationship between BML severity and defect progression at all four sites (OR 1.8 to 3.2, all P < 0.05) and BML severity and cartilage volume loss at the MF, LT, and LF sites (β -22.1 to -42.0, all P < 0.05). Additionally, baseline defect severity predicted BML progression at the MT and LF sites (OR 3.3 to 3.7, all P < 0.01). Lastly, there was a greater increase in cartilage volume loss at the MT and LT sites when both larger defects and BMLs were present at baseline (all P < 0.05).

Conclusions

Baseline BMLs predicted site-specific defect progression and cartilage volume loss in a dose-response manner suggesting BMLs may have a local effect on cartilage homeostasis. Baseline defects predicted site-specific BML progression, which may represent increased bone loading adjacent to defects. These results suggest BMLs and defects are interconnected and play key roles in knee cartilage volume loss; thus, both should be considered targets for intervention.  相似文献   

20.

Objective

Lubricin expression in the superficial cartilage will be a crucial factor in the success of cartilage regeneration. Mesenchymal stem cells (MSCs) are an attractive cell source and the use of aggregates of MSCs has some advantages in terms of chondrogenic potential and efficiency of cell adhesion. Lubricin expression in transplanted MSCs has not been fully elucidated so far. Our goals were to determine (1) whether cartilage pellets of human MSCs expressed lubricin in vitro chondrogenesis, (2) whether aggregates of human MSCs promoted lubricin expression, and (3) whether aggregates of MSCs expressed lubricin in the superficial cartilage after transplantation into osteochondral defects in rats.

Methods

For in vitro analysis, human bone marrow (BM) MSCs were differentiated into cartilage by pellet culture, and also aggregated using the hanging drop technique. For an animal study, aggregates of BM MSCs derived from GFP transgenic rats were transplanted to the osteochondral defect in the trochlear groove of wild type rat knee joints. Lubricin expression was mainly evaluated in differentiated and regenerated cartilages.

Results

In in vitro analysis, lubricin was detected in the superficial zone of the pellets and conditioned medium. mRNA expression of Proteoglycan4 (Prg4), which encodes lubricin, in pellets was significantly higher than that of undifferentiated MSCs. Aggregates showed different morphological features between the superficial and deep zone, and the Prg4 mRNA expression increased after aggregate formation. Lubricin was also found in the aggregate. In a rat study, articular cartilage regeneration was significantly better in the MSC group than in the control group as shown by macroscopical and histological analysis. The transmission electron microscope showed that morphology of the superficial cartilage in the MSC group was closer to that of the intact cartilage than in the control group. GFP positive cells remained in the repaired tissue and expressed lubricin in the superficial cartilage.

Conclusion

Cartilage derived from MSCs expressed lubricin protein both in vitro and in vivo. Aggregation promoted lubricin expression of MSCs in vitro and transplantation of aggregates of MSCs regenerated cartilage including the superficial zone in a rat osteochondral defect model. Our results indicate that aggregated MSCs could be clinically relevant for therapeutic approaches to articular cartilage regeneration with an appropriate superficial zone in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号