首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Activation of α-7 nicotinic acetylcholine receptor (α-7 nAchR) has a neuro-protective effect on ischemic and hemorrhagic stroke. However, the underlying mechanism is not completely understood. We hypothesized that α-7 nAchR agonist protects brain injury after ischemic stroke through reduction of pro-inflammatory macrophages (M1) and oxidative stress. C57BL/6 mice were treated with PHA568487 (PHA, α-7 nAchR agonist), methyllycaconitine (MLA, nAchR antagonist), or saline immediately and 24 hours after permanent occlusion of the distal middle cerebral artery (pMCAO). Behavior test, lesion volume, CD68+, M1 (CD11b+/Iba1+) and M2 (CD206/Iba1+) microglia/macrophages, and phosphorylated p65 component of NF-kB in microglia/macrophages were quantified using histological stained sections. The expression of M1 and M2 marker genes, anti-oxidant genes and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase were quantified using real-time RT-PCR. Compared to the saline-treated mice, PHA mice had fewer behavior deficits 3 and 7 days after pMCAO, and smaller lesion volume, fewer CD68+ and M1 macrophages, and more M2 macrophages 3 and 14 days after pMCAO, whereas MLA''s effects were mostly the opposite in several analyses. PHA increased anti-oxidant genes and NADPH oxidase expression associated with decreased phosphorylation of NF-kB p65 in microglia/macrophages. Thus, reduction of inflammatory response and oxidative stress play roles in α-7 nAchR neuro-protective effect.  相似文献   

2.
The Ionized calcium‐Binding Adapter molecule 1 (Iba1), also known as Allograft Inflammatory Factor 1 (AIF‐1), is a 17 kDa cytokine‐inducible protein, produced by activated macrophages during chronic transplant rejection and inflammatory reactions in Vertebrates. In mammalian central nervous system (CNS), Iba1 is a sensitive marker associated with activated macrophages/microglia and is upregulated following neuronal death or brain lesions. The medicinal leech Hirudo medicinalis is able to regenerate its CNS after injury, leading to a complete functional repair. Similar to Vertebrates, leech neuroinflammatory processes are linked to microglia activation and recruitment at the lesion site. We identified a gene, named Hmiba1, coding a 17.8 kDa protein showing high similarity with Vertebrate AIF‐1. The present work constitutes the first report on an Iba1 protein in the nervous system of an invertebrate. Immunochemistry and gene expression analyses showed that HmIba1, like its mammalian counterpart, is modulated in leech CNS by mechanical injury or chemical stimuli (ATP). We presently demonstrate that most of leech microglial cells migrating and accumulating at the lesion site specifically expressed the activation marker HmIba1. While the functional role of Iba1, whatever species, is still unclear in reactive microglia, this molecule appeared as a good selective marker of activated cells in leech and presents an interesting tool to investigate the functions of these cells during nerve repair events. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 987–1001, 2014  相似文献   

3.
4.
Neurological dysfunction after traumatic brain injury (TBI) is associated with pathology in cortical, subcortical, and brainstem nuclei. Our laboratory has reported neuropathology and microglial activation in the somatosensory barrel cortex (S1BF) and ventral posterior medial thalamus (VPM) after diffuse TBI in the rat, which correlated with post-injury whisker sensory sensitivity. The present study extends our previous work by evaluating pathology in whisking-associated sensory and motor brainstem nuclei. Brains from adult, male rats were recovered over 1 month after midline fluid percussion or sham injury. The principal trigeminal nucleus (PrV, sensory nucleus) and facial nucleus (VIIN, motor nucleus) were examined for neuropathology (silver histochemistry) and microglial activation (Iba1). Significant neuropathology in PrV was evident at 2 and 7 days post-injury compared to sham. Iba1-labeled microglia showed swollen somata and thickened processes over 1 month post-injury. In contrast, the VIIN showed non-significant neuropathology and reduced labeling of activated Iba1 microglia over 1 month post-injury. Together with our previous data, neuropathology and neuroinflammation in the whisker somatosensory pathway may contribute to post-injury sensory sensitivity more than the motor pathway. Whether these findings are direct results of the mechanical injury or consequences of progressive degeneration remains to be determined.  相似文献   

5.
6.
Although blocking VEGF has a positive effect in wet age-related macular degeneration (AMD), the effect of blocking its receptors remains unclear. This was an investigation of the effect of VEGF receptor (VEGFR) 1 and/or 2 blockade on retinal microglia/macrophage infiltration in laser-induced choroidal neovascularization (CNV), a model of wet AMD. CNV lesions were isolated by laser capture microdissection at 3, 7, and 14 days after laser and analyzed by RT-PCR and immunofluorescence staining for mRNA and protein expression, respectively. Neutralizing antibodies for VEGFR1 or R2 and the microglia inhibitor minocycline were injected intraperitoneally (IP). Anti-CD11b, CD45 and Iba1 antibodies were used to confirm the cell identity of retinal microglia/macrophage, in the RPE/choroidal flat mounts or retinal cross sections. CD11b(+), CD45(+) or Iba1(+) cells were counted. mRNA of VEGFR1 and its three ligands, PlGF, VEGF-A (VEGF) and VEGF–B, were expressed at all stages, but VEGFR2 were detected only in the late stage. PlGF and VEGF proteins were expressed at 3 and 7 days after laser. Anti-VEGFR1 (MF1) delivered IP 3 days after laser inhibited infiltration of leukocyte populations, largely retinal microglia/macrophage to CNV, while anti-VEGFR2 (DC101) had no effect. At 14 days after laser, both MF1 and DC101 antibodies markedly inhibited retinal microglia/macrophage infiltration into CNV. Therefore, VEGFR1 and R2 play differential roles in the pathogenesis of CNV: VEGFR1 plays a dominant role at 3 days after laser; but both receptors play pivotal roles at 14 days after laser. In vivo imaging demonstrated accumulation of GFP-expressing microglia into CNV in both CX3CR1gfp/gfp and CX3CR1gfp/+ mice. Minocycline treatment caused a significant increase in lectin+ cells in the sub-retinal space anterior to CNV and a decrease in dextran-perfused neovessels compared to controls. Targeting the chemoattractant molecules that regulate trafficking of retinal microglia/macrophage appears to be a compelling therapeutic strategy to control CNV and treat wet AMD.  相似文献   

7.
Prion diseases are fatal neurodegenerative disorders characterized by accumulation of PrPSc, vacuolation of neurons and neuropil, astrocytosis, and microglial activation. Upregulation of gene expressions of innate immunity-related factors, including complement factors and CD14, is observed in the brains of mice infected with prions even in the early stage of infections. When CD14 knockout (CD14−/−) mice were infected intracerebrally with the Chandler and Obihiro prion strains, the mice survived longer than wild-type (WT) mice, suggesting that CD14 influences the progression of the prion disease. Immunofluorescence staining that can distinguish normal prion protein from the disease-specific form of prion protein (PrPSc) revealed that deposition of PrPSc was delayed in CD14−/− mice compared with WT mice by the middle stage of the infection. Immunohistochemical staining with Iba1, a marker for activated microglia, showed an increased microglial activation in prion-infected CD14−/− mice compared to WT mice. Interestingly, accompanied by the increased microglial activation, anti-inflammatory cytokines interleukin-10 (IL-10) and transforming growth factor β (TGF-β) appeared to be expressed earlier in prion-infected CD14−/− mice. In contrast, IL-1β expression appeared to be reduced in the CD14−/− mice in the early stage of infection. Double immunofluorescence staining demonstrated that CD11b- and Iba1-positive microglia mainly produced the anti-inflammatory cytokines, suggesting anti-inflammatory status of microglia in the CD14−/− mice in the early stage of infection. These results imply that CD14 plays a role in the disease progression by suppressing anti-inflammatory responses in the brain in the early stage of infection.  相似文献   

8.
9.
10.
11.
Microglia are cells of the myeloid lineage that reside in the central nervous system (CNS)1. These cells play an important role in pathologies of many diseases associated with neuroinflammation such as multiple sclerosis (MS)2. Microglia in a normal CNS express macrophage marker CD11b and exhibit a resting phenotype by expressing low levels of activation markers such as CD45. During pathological events in the CNS, microglia become activated as determined by upregulation of CD45 and other markers3. The factors that affect microglia phenotype and functions in the CNS are not well studied. MicroRNAs (miRNAs) are a growing family of conserved molecules (~22 nucleotides long) that are involved in many normal physiological processes such as cell growth and differentiation4 and pathologies such as inflammation5. MiRNAs downregulate the expression of certain target genes by binding complementary sequences of their mRNAs and play an important role in the activation of innate immune cells including macrophages6 and microglia7. In order to investigate miRNA-mediated pathways that define the microglial phenotype, biological function, and to distinguish microglia from other types of macrophages, it is important to quantitatively assess the expression of particular microRNAs in distinct subsets of CNS-resident microglia. Common methods for measuring the expression of miRNAs in the CNS include quantitative PCR from whole neuronal tissue and in situ hybridization. However, quantitative PCR from whole tissue homogenate does not allow the assessment of the expression of miRNA in microglia, which represent only 5-15% of the cells of neuronal tissue. Hybridization in situ allows the assessment of the expression of microRNA in specific cell types in the tissue sections, but this method is not entirely quantitative. In this report we describe a quantitative and sensitive method for the detection of miRNA by real-time PCR in microglia isolated from normal CNS or during neuroinflammation using experimental autoimmune encephalomyelitis (EAE), a mouse model for MS. The described method will be useful to measure the level of expression of microRNAs in microglia in normal CNS or during neuroinflammation associated with various pathologies including MS, stroke, traumatic injury, Alzheimer''s disease and brain tumors.  相似文献   

12.
Traumatic brain injury (TBI) is frequently characterized by neuronal, axonal and myelin loss, reactive gliosis and neuroinflammation, often associated with functional deficits. Endogenous repair mechanisms include production of new neurons from precursor cells, but usually the new neurons fail to integrate and survive more than a few weeks. This is in part mediated by the toxic and inflammatory environment present in the injured brain which activates precursor cells to proliferate and differentiate but limits survival of the newborn progeny. Therefore, an understanding of mechanisms that regulate production and survival of newborn neurons and the neuroinflammatory response after brain injury may lead to therapeutic options to improve outcomes. Suppressor of Cytokine Signaling 2 (SOCS2) promotes hippocampal neurogenesis and survival of newborn neurons in the adult brain and regulates anti-inflammatory responses in the periphery, suggesting it may be a useful candidate to improve outcomes of TBI. In this study the functional and cellular responses of SOCS2 over-expressing transgenic (SOCS2Tg) mice were compared to wildtype littermates following mild or moderately severe TBI. Unlike wildtype controls, SOCS2Tg mice showed functional improvement on a ladder test, with a smaller lesion volume at 7d post injury and increased numbers of proliferative CD11b+ microglia/macrophages at 35d post-injury in the mild injury paradigm. At 7d post-moderately severe injury there was an increase in the area covered by cells expressing an anti-inflammatory M2 phenotype marker (CD206+) but no difference in cells with a pro-inflammatory M1 phenotype marker (CD16/32+). No effect of SOCS2 overexpression was observed in production or survival of newborn neurons, even in the presence of the neuroprotective agent erythropoietin (EPO). Therefore, SOCS2 may improve outcome of TBI in mice by regulating aspects of the neuroinflammatory response, promoting a more anti-inflammatory environment, although this was not sufficient to enhance survival of newborn cortical neurons.  相似文献   

13.
This study aims to determine whether sickle cell mice could recapitulate features of cognitive and neurobehavioral impairment observed in sickle cell patients and whether neuroinflammation could be a potential therapeutic target as in other non-sickle cell disease-related cognitive dysfunction. Cognitive (learning and memory) and behavioral (anxiety) deficits in 13- and later 6-month-old male Townes humanized sickle cell (SS) and matched control (AA) mice were evaluated using novel object recognition (NOR) and fear conditioning tests. Immunohistochemistry was performed to quantify peripheral immune cell (CD45+) and activated microglia (Iba1+) as markers of neuroinflammation in the dentate and peri-dentate gyrus areas. We evaluated cell fate by measuring 5''-bromodeoxyuridine and doublecortin fluorescence and phenotyped proliferating cells using either glial fibrillary acid protein (GFAP+), neuronal nuclei (NeuN+), CD45+, and Iba1+. In addition, Golgi-Cox staining was used to assess markers of neuroplasticity (dendritic spine density and morphology and density of dendrite arbors) on cortical and hippocampal pyramidal neurons. Compared to matched AA controls, 13-month-old SS mice showed significant evidence of cognitive and behavioral deficit on NOR and fear conditioning tests. Also, SS mice had significantly higher density of CD45+ and activated microglia cells (i.e. more evidence of neuroinflammation) in the dentate and peri-dentate gyrus area. Additionally, SS mice had significantly lower dendritic spine density, but a higher proportion of immature dendritic spines. Treatment of 13-month-old SS mice with minocycline resulted in improvement of cognitive and behavioral deficit compared to matched vehicle-treated SS mice. Also, treated SS mice had significantly fewer CD45+ and activated microglia cells (i.e. less evidence of neuroinflammation) in the dentate and peri-dentate gyrus, as well as a significant improvement in markers of neuroplasticity.Impact statementThis study provides crucial information that could be helpful in the development of new or repurposing of existing therapies for the treatment of cognitive deficit in individuals with sickle cell disease (SCD). Its impact is in demonstrating for the first time that neuroinflammation and along with abnormal neuroplasticity are among the underlying mechanism of cognitive and behavioral deficits in SCD and that drugs such as minocycline which targets these pathophysiological mechanisms could be repurposed for the treatment of this life altering complication of SCD.  相似文献   

14.

Introduction

Recent accumulating evidence indicates a crucial involvement of macrophage lineage in the pathogenesis of systemic sclerosis (SSc). To analyze the assembly of the monocyte/macrophage population, we evaluated the expression of CD163 and CD204 and various activated macrophage markers, in the inflammatory cells of the skin and in the peripheral blood mononuclear cells (PBMCs) derived from patients with SSc.

Methods

Skin biopsy specimens from 6 healthy controls and 10 SSc patients (7 limited cutaneous SSc and 3 diffuse cutaneous SSc) were analyzed by immunohistochemistry using monoclonal antibody against CD68 (pan-macrophage marker), CD163 and CD204. Surface and/or intracellular protein expression of CD14 (marker for monocyte lineage), CD163 and CD204 was analysed by flow cytometry in PBMCs from 16 healthy controls and 41 SSc patients (26 limited cutaneous SSc and 15 diffuse cutaneous SSc). Statistical analysis was carried out using Mann-Whitney U test for comparison of means.

Results

In the skin from SSc patients, the number of CD163+ cells or CD204+ cells between the collagen fibers was significantly larger than that in healthy controls. Flow cytometry showed that the population of CD14+ cells was significantly greater in PBMCs from SSc patients than that in healthy controls. Further analysis of CD14+ cells in SSc patients revealed higher expression of CD163 and the presence of two unique peaks in the CD204 histogram. Additionally, we found that the CD163+ cells belong to CD14brightCD204+ population.

Conclusions

This is the first report indicating CD163+ or CD204+ activated macrophages may be one of the potential fibrogenic regulators in the SSc skin. Furthermore, this study suggests a portion of PBMCs in SSc patients abnormally differentiates into CD14brightCD163+CD204+ subset. The subset specific to SSc may play an important role in the pathogenesis of this disease, as the source of CD163+ or CD204+ macrophages in the skin.  相似文献   

15.
Neuroblasts from the subventricular zone (SVZ) migrate to striatum following stroke, but most of them die in the ischaemic milieu and this can be related to exacerbated microglial activation. Here, we explored the effects of the non-steroidal anti-inflammatory indomethacin on microglial activation, neuronal preservation and neuroblast migration following experimental striatal stroke in adult rats. Animals were submitted to endothelin-1 (ET-1)-induced focal striatal ischaemia and were treated with indomethacin or sterile saline (i.p.) for 7 days, being perfused after 8 or 14 days. Immunohistochemistry was performed to assess neuronal loss (anti-NeuN), microglial activation (anti-Iba1, ED1) and migrating neuroblasts (anti-DCX) by counting NeuN, ED1 and DCX-positive cells in the ischaemic striatum or SVZ. Indomethacin treatment reduced microglia activation and the number of ED1+ cells in both 8 and 14 days post injury as compared with controls. There was an increase in the number of DCX+ cells in both SVZ and striatum at the same survival times. Moreover, there was a decrease in the number of NeuN+ cells in indomethacin-treated animals as compared with the control group at 8 days but not after 14 days post injury. Our results suggest that indomethacin treatment modulates microglia activation, contributing to increased neuroblast proliferation in the SVZ and migration to the ischaemic striatum following stroke.  相似文献   

16.

Introduction

Recent accumulating evidence indicates a crucial involvement of macrophage lineage in the pathogenesis of systemic sclerosis (SSc). To analyze the assembly of the monocyte/macrophage population, we evaluated the expression of CD163 and CD204 and various activated macrophage markers, in the inflammatory cells of the skin and in the peripheral blood mononuclear cells (PBMCs) derived from patients with SSc.

Methods

Skin biopsy specimens from 6 healthy controls and 10 SSc patients (7 limited cutaneous SSc and 3 diffuse cutaneous SSc) were analyzed by immunohistochemistry using monoclonal antibody against CD68 (pan-macrophage marker), CD163 and CD204. Surface and/or intracellular protein expression of CD14 (marker for monocyte lineage), CD163 and CD204 was analysed by flow cytometry in PBMCs from 16 healthy controls and 41 SSc patients (26 limited cutaneous SSc and 15 diffuse cutaneous SSc). Statistical analysis was carried out using Mann-Whitney U test for comparison of means.

Results

In the skin from SSc patients, the number of CD163+ cells or CD204+ cells between the collagen fibers was significantly larger than that in healthy controls. Flow cytometry showed that the population of CD14+ cells was significantly greater in PBMCs from SSc patients than that in healthy controls. Further analysis of CD14+ cells in SSc patients revealed higher expression of CD163 and the presence of two unique peaks in the CD204 histogram. Additionally, we found that the CD163+ cells belong to CD14brightCD204+ population.

Conclusions

This is the first report indicating CD163+ or CD204+ activated macrophages may be one of the potential fibrogenic regulators in the SSc skin. Furthermore, this study suggests a portion of PBMCs in SSc patients abnormally differentiates into CD14brightCD163+CD204+ subset. The subset specific to SSc may play an important role in the pathogenesis of this disease, as the source of CD163+ or CD204+ macrophages in the skin.  相似文献   

17.
Microglia are brain‐resident macrophages with important, but insufficiently understood functions in development, health, and disease. In a new exciting study, Wlodarczyk and colleagues uncover a transient subset of CD11c+ microglia that regulate CNS myelination via IGF‐1 expression. These findings represent not only the first evidence for a microglial role in myelinogenesis, but the first for a functionally distinct, genetically defined subpopulation of microglia.  相似文献   

18.
19.
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) are life‐threatening condition in critically ill patients. Resveratrol (Res), a natural polyphenol, has therapeutic effect in animal model with ALI; however, whether Res attenuates ALI through modulation of macrophage phenotypes in the animal model remains unknown. We in this study treated LPS‐induced murine ALI with 30 mg/kg Res and observed significantly reduced severity of ALI in the Res‐treated mice 48 hours after Res treatment. Neutrophil infiltrates were significantly reduced, accompanied with lower infiltration of CD45+Siglec F? phenotype macrophages, but higher population of CD45+Siglec F+ and CD45+CD206+ alternatively activated macrophages (M2 cells) in the Res‐treated mice with ALI. In addition, the expression of IL‐1beta and CXCL15 cytokines was suppressed in the treated mice. However, Res treatment in mice with myeloid cell‐restricted SOCS3 deficiency did not significantly attenuate ALI severity and failed to increase population of both CD45+Siglec F+ and CD45+CD206+ M2 subtype macrophages in the murine ALI. Further studies in wild‐type macrophages revealed that Res treatment effectively reduced the expression of IL‐6 and CXCL15, and increased the expression of arginase‐1, SIRT1 and SOCS3. However, macrophages’ lack of SOCS3 expression were resistant to the Res‐induced suppression of IL‐6 and CXCL15 in vitro. Thus, we conclude that Res suppressed CD45+Siglec F? and CD45+CD206? M1 subtype macrophages through SOCS3 signalling in the LPS‐induced murine ALI.  相似文献   

20.
Ionized calcium-binding adapter molecule 1 (Iba1) is a 147-amino-acid calcium-binding protein widely in use as a marker for microglia. It has actin-crosslinking activity and is involved in aspects of motility-associated rearrangement of the actin cytoskeleton. The Iba1 gene and protein are identical to allograft inflammatory factor-1 (AIF-1), a protein involved in various aspects of inflammation, which was investigated independently from Iba1. Although regarded to be monocyte/macrophage-specific, expression by germ cells in testis showed that AIF-1/Iba1 is not exclusively expressed by cells of the monocyte/macrophage lineage. Furthermore, AIF-1 was found in cells not belonging to the monocyte/macrophage lineage under pathological conditions. Here, the distribution of AIF-1/Iba1 in the normal mouse has been examined, by immunohistochemistry, to determine whether AIF-1/Iba1 expression is confined to macrophages and spermatids. Spermatids are the only cells not belonging to the monocyte/macrophage lineage found to express AIF-1/Iba1 in the normal mouse, by this method. This study has not demonstrated AIF-1/Iba1 expression in dendritic cells, although this protein might be expressed by subsets of dendritic cells. AIF-1/Iba1 can be regarded a “pan-macrophage marker” because, except for alveolar macrophages, all subpopulations of macrophages examined express AIF-1/Iba1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号